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The Invariance of the S-Matrix under Point Transformations

in Renormalized Perturbation Theory

R. Flume

1I. Institut fiir Theoretische Physik, Universitdt Hamburg

Abstract
We give a simple proof of the invariance of the $~matrix under point transfor=-

mations of the fields in renormalized perturbation field theory.

T. Introduction

The equivalence theorem of Lagrangian field theory can be stated in the follow-
ing form: The quantization of two classical Lagrange densities .f(¢,au¢) and

(z'(¢,a'¢) related to each other through a point transformation of the fields

4 > (6 + h(g)), (00 =0, —g‘%= 0)
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gives rise to the same S-matrix.

There exist several formal proofs for this theorem in the literaturel’z. Re-
cently Lam3 proposed a constructive and rigorous proof in renormalized pertur-
bation theory. His method of proof is based on the technique of anisotropically
quantizeﬁ normal productsé. The purpose of this note is to present a procf of
the equivalence theorem, which subsists on a minimum of technicalities and,in
particular, avoids the rather involved normal product formalism.Furthermore,
in contrast to Lam's approach, we don't need to refer in our proof to the Haag-

Ruelle {(L.S.Z)-thecrem.
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We confine ourselves to a Lagrangian:C (¢,8u¢) which is a function of a single
scalar massive field (of mass m). We exclude higher than first space-time de-
rivatives. The proof presented below applies modulc a greater amount of book-

keeping also to Lagrangians involving several fields of possibly different type.

To start with, we construct for a given not necessarily renormalizable Lagran-

glan kﬂ(¢,3u¢)* the S-matrix

[ea)

lim X (:i)n T(:z(xl):..:zxxn):) g(xl)..g(xn) dxl..de1 (D
g*konst. n=o n! !

S(X)

X =kfree+zi

by specifying through some ad hoc prescription, which may or may not correspdnd
to a minimal subtraction scheme, the time ordered operator valued distributions
T(:E{xl):..:zkxn):). One knows from-the work of Epstein and Glasers’6 that the
adiabatic limit g -+ konst in (1) exists®™" and that the theory fulfils in the

adiabatic limit all requirements of locality and unitarity in the sense of for-

mal power series.

X(¢,8u¢) goes under a point transformation ¢ +[¢ + h(¢)) over into
zt1= Z(¢ + h(e¢), BU(¢ + h(¢$))). h has to be considered as a formal power
series in ¢ (h{(0) = 0,dh/d¢ = 0). We interpolate by and): h by

X, ) =L(o + xn,3, (6 + 2h)) 0< A<

Specifying the time ordered products TA(XI"'Xn) = T(:zk(x)f....fk(x)f) we
obtain 2 one parameter family SA of S-matrices. We will éefine the" TA in
such a way that dSA/dk vanishes and SO is given by equ. (1). To make the
motivation of our procedure clearer we give first a naive argument, which after-
wards will be made rigorous. The argument is taken over with slight modifica-

. . 2
tions from Divakaran™.

dSA/dA is entirely determined by the derivatives with respect to A of the

time ordered products TA

* x (¢,8u¢) is supposed to have a formal power series expansion in ¢,3U¢

around ¢ = 8u¢ = 0.

“* After correct mass and wave function renormalization.
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We can manipulate dx)\/d)\ as follows:

12 54 24 '
T8+ M3 (¢ + 2h)) = hos SGT 3,6 h

%,
el

- v - dh
‘\U = (¢ + )Lh)! h d¢
We set:
_ h
£ 1 + Ah'
i'{&:érkfﬁu R He =
ax 33 e
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One expects that the first term in (2) - f multiplied with the equation of

motion — does not contribute on the mass shell. The second term should drop out
also off mass shell in the adiabatic limit because of the total derivative in

front.

. ; . ~ . 5,6 .
We model the inductive comstruction a laEpstein and Glaser”’ of the time or-

dered products closely after the naive argument given above.

Assume that all time ordered products with less than n points have already

been defined. We include in our induction hypothesis the following assumptions

(whos€ consistency is easily verified in the case of the two point function):

4 (;) ( )y = 4 (;) =
N W e G W W
m x. (=), . (=), .
- E {(a 1 T l,l,u + T 2,]. + (3)
Lo u A,m A,
1=1
=), .
2,3
T (.. Ko q¥yqe X )+

(_i).i.s(xi XD T
jfi ’

(—)3 _
(P H]) G ¢ T, I (m < n)
(=)

T denotes alternatively chronological or antichronological ordering.
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f}\¢ = ——‘“3”*"‘“—‘“ - (O e
’ 8¢ (37 ¢)

:([]+ 52)¢_ .ol Ti o denotes a sum of expressions with at least one operator
(OJ+ m2)¢ in their Wick ordered operator part. Tk,m’ T;:;’U, Ti:;, Ti,m

can be represented as formal power series in A.

- (n) ,n
TA,m N z Tk,m A
n
d _ (n) n-1
- LT D
n
() ‘ . .
TA o s equal Tm of equ. (1). Equ. (3) has to be understood as equality in
bl
the sense of formal power series. Furthermore we assume that the c-number ker-
nels, which appear in a Wick product expansion of TA o’ Ti’é’(U) have all
s 3

properties necessary for establishing the adiabatic limits

(1,3)Cw)
S'TA,mJ (xl,...xm) g(x]... g(xm) dx]...dxm, g -+ konst.

R

Equation (3) implies dSA/da = 0: the contributions to dSA/dk from T

are cancelled by those from
. 2,1

(-1) S(x. - x.) T2 .
jii 1 k) A,m

The second term picks up from the perturbation expansion a factor (-1)/(m+1)
relative to the first one. 1/m <cancels against the sum over j and (-1i)

produces a relative minus sign.
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The contribution from Bu T;’i’udrops out in the adiabatic limit and the con~
- 3 .
tributions from the terms :([I+ M) ¢ "':TA o vanish on the mass shell.
’

In order to construct the time ordered n-point product TA(XI"'Xn) (along Ep-

stein and Glaser's lines) we consider first

( ) . _ ¥ £ - IJI
™ (yox_yiny = 1[50, [ D
JuJ' = {xi...xn_l}
JaJ' = ¢
J =0

Applying the induction hypothesis (3) to the factors Ty s Ti {with less than

n points) one obtains

n
d k 1,0,k k .
L = Y 0 D, + DT o+ (1) §{x. - %) °
dr TA,n k=1 u ,n A,n fpen ] 1
(6)
2, ] -, ,
R UNNERC SE S Ky pixg) * 0 me Dy
1,u,k 2,k . ) 1,k 2,k )
Dl,n s Dk,n are similarly defined as Tk,n R Tk,n’ that is, the operator

:z;(xk): of Dl,n is substituted by :fgzgﬁ%y (Xk): and :fi;’¢(xk): respec—

3

tively. The only feature of the term (O+ EZ)¢ et DA to be noted is the

n
s
explicit occurrence of an operator (O+ m2)4.

A proper Jefinition of the time ordered n—point product is obtained by ‘splitt-

T

ing" D. _, that is, one looks for a 'retarded' product R, (x _;xn), whose

)\,‘L’l - 4n # T 1°
support is contained in V = {x = {xl...,xn} R, (x, - xn)zz_O
i
. . + -
%0 - x° > 0, i<n'lt such that the support of (D + R ) is in ¥V = -V .
1 n Asn A,

(The support of D is contained in vy V).

Every term on the right side of equ. (6) has according to the induction hypothe—

sis the same structure as D,. This fact enables us to split every term indivi-

~ dually. Afterwards we integrate formally with respect to A



) and add Rn This procedure renders an acceptable defini-

»A=O

tion of RA(XI"'Xn—l;Xn) and thereby also a proper definition of the time or-

dered product

" (J) L
= . - ' - = -
TGeex) = RyGoyeeex _5x) = ] T(D T, ,x)(-1) S
JI' = {x,...x_ .}
1 n—1
JnJ' = ¢
J + ¢
. . d
By a computation analogous to the computation of o Dy n (equ. 6) one can
3
easily verify that Ri n satisfies by itself the induction hypothesis.

>

We have to build in all splittings the correct mass and wave function renorma-

lisations in order to garantuee the existence of the adiabatic limit. The term

‘ 2,k
8 - x. ’
Jik (Xk XJ) D}\sn_l

of equ. (6) 1is handled in the same manner as Dijz—l in the preceding induc-
3
tion step {(the é-functions are unessential) . Dn = 0 is treated according to
?

some ad hoc prescription as it was fixed after equ. (1). Concerning the term

1 . . 1 . .
azk Dn’i’u we first split Dn’s,u and apply only afterwards the derivative
. Y , :

BU » that is, we leave the derivative outside the I-product. Following these

prescriptions we reproduce the induction hypothesis for T One should note

A,n
that apart from the restrictions for the selfenergy kernels one can choose the
_ 1,k,u 2,k 3 . .
splitings of DA,n , DA’n and DA,n arbitrarily.
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