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Definitions and selected applications

of Feynman-type integrals

Jan Tarski

II. Institut fiir Theoretische Physik
der Universitédt Hamburg

1, Examples and definitions

This appeafs to be a convenient time for a review of the
work done on Feynman-type integrals, both of the rigorous
work dealing with the foundations, and of the applications
to specific problems. One may note that the rigorous work
comprises so far only a few articles, and seems to be far
away from what even the simpler of applications require.
Stili, the available results can furnish a first orienta-
tion into problems which may arise.

The integrals we have in mind are in particular those

A, where A 1is the

characterized by the weight factor-‘ei
action of the physical system. This includes the path in-
tegrals for the (quantum) particles and the history inte-
grals for fields. There are, bésides, some problems which
lead to integrals not of this form, for instance to a
Gaussian integral with a complex variance. However, the

subsequent discussion can be readily adapted to such Gaus-

sian integrals,
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We will present several alternative definitions for
Feyhman-type integrals. None of the definitions can at
present be regarded as superior over the others, and all
may produce some useful toéls. We ourseives, however,
tend to favour the definition based on geheralized
measures. Before reviewipg these definitions, we will

give several forms of Feynman-type integrals, and will

comment on the history oflthe subjéct.

A basic formula for the path integral is the following
(where the xke.Rﬁ; usually n =3 , the tk refer to the

time, and wm below is the mass):

. ! ' | ' A
Gt 2ty x)= N S Blr)e (7). (1)
7#Q“ﬁk :
Here G is the Green's function for the corresponding -

Schrdinger equation and A is the classical action,eLg.

| t i s | _
A(‘Z) = S;ol'r{—;-mjz" [’73(7)]2-V(7(’c)_)}_ - (2)

0
The functions oz are real, the entity ,8() is, heuristi-
cally, an infinite product of Lebesque measures, and is

invariant under translation)

D) - B vw).

Finally, N in (1) is a normalizing factor that will de-

" pend on the definition of the integral.



We will write 296) quite generally in functional inte-
grais, and two such entities occurring in different inte-
grals need not be related in a simple way; If need be, one
can write 84 N 32) etc.

In (1) we may set x =0, t, = O, and m = 1, and con-

o}
sider more general integrands, so as to have

R
KA )
S H(s)e ) (4)
7(0):.0 (7) —QD (/‘Z .

The restriction Y(tJiﬁcan come through a factor gék(t;)‘xa)
in Qo . A change of the variable function brings (4) to the

form

§3(5) S §>£(§). \ (5)

Furthermore, several works recently discussed the following

variant of (1);

' LA(?i) (6a)
G ({4 X5 %, f."-\ =N S? I -}?(i)g(i)a )

-

' t Moo . " 2 |
Alpg) 5, (2 ¥ - [L 3 (- vell§.

An integration over p in (6a), carried out in accordance
with the usual rules‘zbr Gaugssian integrals, brings the in-
tegral to the form (6a). The variable flf.(ij) in (6a) is

analogous to in (4) or in (1), while p is analogous

to € in (5).
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In the case of quantized fields, one has the following

\

formula for time-ordered functions,

{(F(@),), = S@(ag)em(7)r(7) ) @

where we assumed a single scalar field with action A, and-inte-
gration is over the histories of the field. The

time interval is (-es, o) . The propagator of the theory

can be obtained by taking F(?)z-@%?)c?(ﬂ) . One can give,
moreover, an expression which is intermediate between (1)

and (7), namely a Green's functional,

G (55050, 3,)= N j{ s Sk@%) e

Here the time interval for integration is [to ’ t{] y and

Al
U (e

N is a normalizing factor.

With regard to the history, it seems fair to say that the
path integral had its roots in a papér of Dirac of 1933 D]
who elaborated on the theme that "... it would seem desirable
to take up the question of what corresponds in the quantum

theory to the Lagrangian method of the classical theory."

Feynman took up the subject afterwards in his thesis, and
in his well-known article of 1948 [2] . Shortly thereafter he
applied these ideas in his basic works on quantumr electrodyna-
mics [3] . Around 1954 several other authors independently
exploited such integrals for fields and constructed solutions,
necessarily heuristic, to more general quantized fields with
interactioﬁ [F" 9] . These solutions have the general fbrm

of eq. (7). |



The first attempt at a rigorous construction of the path
integral was apparently that of Cameron of 1960 Dfﬂ. He ob-
served that there is no measure (having the usual properties)
for the path integral, even if the‘exponent in eiA is modi-
fied so as to have a real part. He adapted therefore the ap-
proximation scheme which is familiaf in case of the Wiener
integral (cQ.[}B]), where the time interval [0, f] is

first broken into n parts by the separating points
0 -t,<t, <. <t 7T | (9)

The paths '1 are then assumed to be polygonal, with the
successive corners at ('tJ 4z(t3)) The functionals e iA
are evaluated for such polygonal paths, one integrates over
the values 1L(tj), and passes to the limit max (tj - tj_1)LO .
For path integral, the integrals over ”1(tj) must be de=-
fined with the aid of a convergence factor, e.g. by letting

m—>m + i , where $¥ O subsequently.

Canmeron showed that the integrals evaluated as above
cdnferge to a path integral satisf&ing (1), if the poten-
tial V satisfies some rather strong conditions, which in-

clude in particular some anaiyticity.

We can point out two drawbacks to this approach. First,
the method appears awkward in case of more intricate systems
like fields. Second, the method does not seem to tie in with

any convenient mathematical structure, and this would tend



to handicap the development of such an integration theory.

Next, there are two methods introduced by Nelson  ¢[1{].
The first amounts to interpreting the path integral in

terms of Trotter's formula (valid under suitable conditions),

One may take A= - i H(O); where H(®) is the free Hamil-
tonian, and B = - iV . Then the successive approximations

in (10) form a variant to the successive approximations
which occur in Cameron's method, and the limit can be identi-

fied with the path integral.

The second method of Nelson depends on replacing m in
the action A by iw , so as to have a (measure-theoretic)
Wiener integral. One then establishes analyticity in m ,
and continues from the positive-imaginary to the positive-

real wvalues.

The first of these methods has the drawback, that it
does not define the integration of polynomials and of varilous
other functionals. The second is applicable only to situations
with extensive analyticity. However, both the analytically-
continued form of history integrals, and the Trotter formula,
have shown their usefulness in recent work on Euclidean field

theory [}3] .

The last method whibh we discuss is that suggested by
It8 [?ﬂ. We consider the path integral in the form (5), and



- we define the symbol-@(ﬂ) as a 1limit of measures. Expli-
citly: The form (5) presupposes a Hilbert space U{ . Let
d“T,a be the Gaussian measure on.i( defined by the cova-
riance operator T and the mean vector a . (Then T must
be of trace class, syﬁmetric, and strictly positive.) We

set

SRESAY,
IT‘X‘(?\ =-§_*T§olm,,;(§\e Q[&')D (11a)

b

where

| L Ligs
Cy = S"lf*-r,o(g)e ¢ > ‘ (11®)

Then we define

5Ty st T, O

where the limit T-w must be suitably taken, and must be

independent of ao .

T+5 established the convergence of the integrals in (12),
and the validity of eq. (1), so far for a very limited class

of functionals §, resp. potentials V .



-8 -

This construction was adapted by the present author to the
free scalar field [17]. Here the action can be put into the

form

LA({) = %i 7 Bq)l -;_(7,67), (13)

where B and C are bounded symmetric operators on a suitable
Hilbert space. The operator C is chosen so as to provide the

'm 2 2
increment AR m

- ig, Thus C>0, Co¢g,

It appeared in the above examples that the operators T occur
in ¢tertain formulas in an awkward way, and that approximating se-
quences other than {}JHﬁwﬁ may be more useful. We were thus led
to defining the generaligzed measures, quite generally, as suitable
limits of méasures [42].

Clearly, generalized measures can be introduced also for va-
rious measure-theoretic integrals. A measure may then factorisge
into a translationally-invariant generalized measure and a weight
factor, There are examples where the two factors. i.e. the gene-
ralized measure and the weight, have quite different physical in-
terpretations.

But let us return to the path intégral. If a construction is
like It8's, so that one deals with the space of paths as a whole,
we will say that we have the global or the Hilbert space approach.
C. DeWitt also contributed to this approach in her construction of
a path integral with the help of the; theory of distributions [}8}.

For contrast, we should like to call an approach based on break-
ing up the time interval, the time-evolution approach. The con-

struction of Cameron, and the one based on Trotter's formula, are

of this kind. (The analytic continuation in m from the Wiener
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‘integral could be classified either way!) Other constructions

based on the time-evolution approach can be found in {:11-13, 16].

2, Some problems of integration.

We comment below on five types of problems., Only in the case
of the first one are there rigorous results available for infinite-

dimensional integrals.

(a) One basic problem is that of integrability. Examples of in-
tegrable functions (or functionals) can of course be found in the
cited articles [10-18]. For the case of It8's definition, the
results are réther limited, and it appears reasonable to try to
extend them by studying the finite-dimensional case. Let us con-

sider for definiteness
Lli-eYu,uw
]:(Q) “h e;o S & “Q‘L S >Q(“). (14)

C. DeWitt pointed out that the weight AU .
Schwartz's spaces &M and @'c, so that I(f) 4is defined for fé@"y;
and € 8¢ [18}, the procedure with 1im(e {0) being unnecessary
here, The space Cn:‘ is that space of functions whose dual is @é.
Furthermore, the case félq is trivial, and the case where f is
the Fourjier transform of a measure of bounded absolute variation
was tfeated in E15]. Certain other classes of integrable functions
are noted in a forthcoming paper [15].

It would also appear desirable to have some more general cri-
teria for integrability, e.g. an adaptation of the bounded conver-
gence theorem. We observe that this theorem cannot hold in the

usual fbrm, and it is instructive to look at two counterexamples.



- 10 -

For the first, we have the integrable function fo(u) = 2, and the
1i
nonintegrable one e Zi<n’ﬁ> . The second example is that of a

real, non-negative, non-decreasing function f on R1, which is

bounded by the integrable fo(u) = uz, and which we will define
- presently.
Consider the real part of I(f), and the zeros of the weight

cos(éuz). They are at |u] equal to

1 bt
a,= (317’ +4m~,—)i aV\A ofn = ("n‘-i—’-{'mﬂ’)z)‘nzo) {,2) - {(15)

At a  the cosine becomes positive as ]u\ increases, and at Db,,

negative., Let

Cuy=0 GLor u<a,, (16a)
- af for a,guc<a,,. (16b)
The following estimate is - . . ~ < -  adequate for us,
avu-{ ‘iﬁ"_‘___,{ a_'_‘_‘_‘i__
- £ - a. a.
Gn'}c Sa,. i COSCE“):aMCSO U—’d“g d(}‘)

. PSR
X gim [%&f(?t}’+<}'2):‘ > (co:;":.)nﬂa’/zso) (17)

for sufficiently large n. (In the first integral with respect
to v the sine is positive, and in the second negative. If n is
large then v remains small, and an expansion is effective,)
Hence z?anzcn diverges. The divergence as gl0o in (14) can
now be easily established, and also follows from the results of
[19].

It is clear that the function f can be modified to a C:ai

strictly increasing function, without changing the conclusion.

(b) In the case of infinite-dimensional integrals, a basic



problem is that of the space of integration: On what space must
£ be defined, for the integral I(f) to be meaningful? Alter-
natively, one may ask: What topology is 1o be imposed on the func-
tions, when they are defined on a Hilbert space?

0of course, only experience can teach us what choices are con-
venient here. We shouid therefore like to present two illuminating
exﬁmples. These examples in fact emphasize the close correspond-
ence between the positive-definite Gaussian integrals and the
Feynman-type Gaussian integrals, even though there is no countably-
additive measure associated with the latter.

The first example is the functional form of the formula [p,d]: i~

S%( L("(,*f) —LSATVTCT’))

XL"Z(T%)?["“) 7(’“)”7( “Q‘Lj 0. (18)

See [27} for a heuristic derivation. (We assumed here a one-dimen-
sional system with a continuous potential V and mass unity.) This
equation harmonizes with the choice of the Hilbert space ?{ deter-
mined by the norm <7,'%> as the space of integration. Indeed, the
elements of }f have derivatives which are messuratle bul I gone-
ral not continuous, while eq. (18) expresses a mean value (in

some sense) of the discontinuity of the derivative in the sample
paths.

On the other hand, Gaussian integrals lead to familiar integra-
bility conditions, which require that various functionals be deter-
mined by Hilbert-Schmidt or by trace-class operators. We expect
such conditions to arise aléo in the case of the Feynman-iype
integrals. We find, explicitly, for a symmetric operator B with

discrete spectrum and eigenvalues AJZ:O,
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N

100 ~ 1. ‘)6‘ 2 -
59(7) e <“M>ef (81 7>: [‘ﬂ; [H—ﬂj )] . (19)

The product converges if and only if B is Hilbert-Schmidt.
This amounts to saying that the functional e%j‘(B"> nust be ex-
tendible to a larger space, of the form 0-13( (where C is non-
singular and Hilbert-Schmidt), in order to be integrable. This
is also equivalent to the condition that the functional e%i<3‘3>

be continuous in the 3'-t0pology of L. Grosse[SQJ.

(c) The problem of the space of integration appears in a dif-
ferent light when degenerate Lagrangians aré congidered. To il-
lustrate, let us use the form (6) for the path integral, and let
us choose the canonical variables P, Q in such a way that the
Hamiltonian vanishes, Then

G (€8 ;54.0)=N @M TN o
QH:‘Q-‘—QJ’_
Heuristically the P-integration yields ‘S(é), so that, with an ap-

propriate normalization, one has

G‘C“H,Q{')to,@o}: S(@i_éo) | (21)

This result [?4], which is expected for a theory where H = O,

shows an effective reduction of the space of integration.
Degenerate Lagrangians also occur in static models (where m-sq

and H* = 0), in some formulations of spin [35], and in gauge the-

ories, Further discussion can be found in [26].

(d) There has been some interest recently in the special pro-
blems which are brought about by curvilinear coordinates in Feyn-
man-type integrals (e.g. [20, 25, 3%}). We confine ourselves to
recalling the close correspondence between the path and the Wiener

integral, and the available extension of the latter to Riemannian
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manifqlds [}é}.

(e) The asymptotic behavior of Feynman-type integrals was in-
vestigated by the saddle-point method, in several recent papers.
However, with regard to rigorous results, it appears that only the
case of one-dimensional integrals has been fully treated [}1]. We

confine ourselves to stating Kelvin's formula,

b w 86) L $(3) I 5 to/y
Sads e %[s) ~e %(5)(m e . (22)

Here one assumes that f has exactly one extremum on (a,b), na-
mely at s, that £"(8) is defined and 4 O, and that g is com-
tinuous at E. The large parameter u is assumed real. The sign

in +in/4 agrees with tuf"(s) > O.

3. Applications.
Historically the most significant application of Feynman-type

integrals has been to quantum electrodynamics [3}. There the in-
togralyg germs? ta sirmenmlina Sha mesfenlodfone and +thorefnre
helped to c¢larify the nature of various difficulties like the di-
vergences. These integrals continue to be exploited in guantum
field theory, where they may facilitate in particular the isolation
of dynamical components of gauge fields [27], and the investiga-
tion of partial sums of the perturbation series (e.g. [2{1).

An (apparently) minor application of a foundational nature has
been to nonrelativistic problems involving "bad" potentials, 1i.e.
those where the sum H(o) + V is not densely defined, so that the

Schrédinger equation does not provide a sufficient description
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[13, 14, 15]. An alternative approach to such potentials is by
way of quadratic forms [4@].

We will now describe three other types of applications in a
little more detail. (But we make no attempt to provide a com-

plete survey of applications.)

(a) The asymptoti%evaluations depend on adapting the formula
(22) to function space integrals. The procedure is typically as
follows. In the integrand one separates the factor eiB(ﬂz),
where B depends linearly on the large parameter under conside-

ration. Then the path %’ defined by

SB/S (D . =0 (23)
| 7 ]1“1 |
is expected to provide'the dominant effect. One thus supposes

that
: "R % ' (58 A A '
§9() eB(7)C(7) ~ eﬁBMC(:ﬂ §59/7)@<( LK >, (24)
where the second functional derivative (SZB)f at 3i is a kernel
_which defines an operator, and we denote the latter by the same
symbol.

The last integral is Gaussian, and so can be done in closed
form. Its value can be interpreted as the Jacobian resulting
from a change of variéble.' cf. qu"(é)l"%eiin/4 in (22).

A detailed presentation of asymptotic estimates can be found
in [31]. A short but more mathematical discussion is in [30].
Here we confine ocurselves to a few simple examples.,

(i) Take for 8 the contribution of the kinetic energy, and
for C, that of the potential energy. One recovers the result

of ordinary perturbation theory.
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(11) In case of a potential gV, with g being the large pa-

1B and C

rameter, one camnot simply interchange the roles of e
in (1). However, a clever change of variables leads to meaning-
ful results [}f].

(iii) For the semiclassical approximation we take B = A (the
action) and C = 1. This approximation was first investigated in
[?], and was applied in recent years by Pechukas [35} and others
to problems in atomic collisions.

(iv) These methods have been applied to the classical problem
of scattering of waves by a random medium [23]. One starts here

by imbedding the problem of the reduced wave equation into the

initial-value problem defined by a Schrddinger-like equation.

(b) Sometimes the usefulness of a perturbation expansion can
be enhanced by rearranging the terms. A closed expression for the
quantity of interest (e.g. for a Green's function) might thus
serve as a useful guide for first making and then investigating
the rearrangements. We give two examples from many-body theory.

(i) The perturbation expansion of a path integral depends on
expanding exp L—i‘gdrv), evaluating the successive integrals,

or moments, which we denote by M and summing. One may rear-

j,
range this sum by introducing the series of cumulants Kj’ where

1 +z;,1 M) = 9/}{'3 (Z:‘; KJ\> (24a)

so that

2
K,= M, K,=Mz "My ete (24D)

p)

The article [2@] points out some possible advantages of the
cumulants over the moments. E.g., for certain problems the path

integral yields the following estimate for an asymptotic region,
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KZ”‘\"K3"‘\"... >0, (25)
Moreover, the cumulants appear to give better numerical results
(than the moments) for the téil of the density of states in dis-
ordered systems.
(ii) In another approximation scheme [?2] one starts with the

usual expression for Green's function in quantum field theory ﬂq"CUJ,

Glema) = 9 B) e ) 3ly). (26)

The action A contains a gquadratic part A{o) with a kernel fun-
ction and an interaction AI. The scheme depends on expanding

iA . _
e I and adjusting the kernel in A(o) 80 that G be determined by

A(o) alone.
The resulting expansion has led to some useful results concer-

ning the behavior of systems near their critical points.

(¢c) The last application is of an abstract character.

The problem of possible statistics of given particles has been
treated by functional methods in two different ways (whichlwe sum-
marize below). In both of these one integrates over a multiply-
connected space of functions (cf. also [3%1). The basic premises
in the tﬁo cases are rather different, but in each case one con-
cludes that only bose and fermi statistics are possible.

(i) One way to proceed is to take as the configuration space
for n identical particles the space ROP - (51""’5n) , with
the elimination of the points where two of the vectors b9 coin-
cide, i.e. where 53 = X for some J + k. Then we form the space

of equivalence classes, where

(El)"')fnv = CX'T‘I’(*)"“.)’(W(“)) QO\" sowme V€ Sn. (27)
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The resulting space R has Sn as its covering group.
The path-integral expression for the propagator G now includes
contributions Ga from different homotopy classes. One may express

G as follows,

— Y
G (t1 )‘}7—1 ) to)go\ = e Z.ﬂ.egﬂ%(ﬂ’) G_TT 0"13“‘) 5 (28)

where Xké?i, eig is an irrelevant phase factor, and the 7(10
form a one-dimensional unitary representation of Sn‘ There are
only two such representations, giving bosons and fermions.

(ii) Another way depends on assuming, for particles with spin,
a history integral over a suitable space of functions with spin
[35]. In the case of integral spin, and for a fixed time, such a
formulation yields directly commutativity, hence symmetry under
exchange. On the other hand, for half-odd-integer spin one is led
to integrating over spaces of pairs {1)~72 of functions, which
transform as spinors. Such spaces are not simply connected. Then
if one formulates the exchange of two particles in a natural way,
an easy calculation (or a topological argument [}7]) shows the
following: The functional F(+) which corresponds to the two
particles in question undergoes a change of sign.

Thus, in both (i) and (ii) parastatistics are ruled out.
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