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1, Examples and definitions

This appeafs to be a convenient time for a review of the
work done on Feynman-type integrals, both of the rigorous
work dealing with the foundations, and of the applications
to specific problems. One may note that the rigorous work
comprises so far only a few articles, and seems to be far
away from what even the simpler of applications require.’
Still, the available results can furnish a first orienta-
tion into problems which may arise.

The integrals we have in mind are in particular those

A, where A 1is the

characterized by the weight factor-_ei
action of the physical system. This includes the path in-
tegrals for the (quantum) particles and . the history inte-
grals for fields. There are, bésides, some problems which
lead to integrals not of this form, for instance to a
Gaussian integral with a complex variance. However, the

subsequent discussion can be readily adapted to such Gaus-

sian integréls,
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We will present several alternative definitions for
Fey%manmtype integrals. None of the definitions can at
present be regarded as superior over the others, and all
may produce some useful toéls. We ourselves, however,
tend to favour the definition- based on geheralized
measures. Before reviewiqg these definitions, we will

give several forms of Feynman-type integrals, and will

comment on the history of the subject.

A basic formula for the path integral is the following
(where the X\ € R", usually n = 3% , the tk refer to the

time, and w lelow is the mass):
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Here G is the Green's function for the corresponding °

Schrédinger equation and A 1is the classical action,eng,
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The functions 7 are real, the entity ,3(7) is, heuristi-
cally, an infinite product of Lebesque measures, and is

invariant under translation)

8(')38('1*01,), (3)'

Finally, N in (1) is a normalizing factor that will de-

" pend on the definitioh of the integral.



We will write 2)() quite generally in functional inte-
grals, and two such entities occurring in different inte-
grals need not be related in a simple way. If need be, one

can write 84 N 22) etc.

In (1) we may set x, =0, T, - 0, and m = 1, and con-

sider more general integrands, so as to have

S 9(?) ;.<7 7>£ [7) (1)
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The restriction 7(£J;&can come through a factor SC%(tJ'"Ka)
in -?o. A change of the variable function brings (4) to the

form

nge {55

Furthermore, several works recently discussed the following

(f). | (5)

variant of (1),

(P ‘1‘) (6a)
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An integration over P in (6a), carried out in accordance
with the usual rules ?;r Gaussian integrals, brings the in-
tegral to the form (6a). The variable l (‘Ij) in (6a) is
analogous to in (4) or in (1), while p is analogous

to € in (5).



In the case of quantized fields, one has the following

A

formula for time-ordered functions,

(R, = §96)e "V ety o

where we assumed a single scalar field with action A, and " inte-
gration is over the histories of the field. The

time interval is (-o0o, o) . The propagator of the theory

can be obtained by taking F(Q)==CP(Q)<?(3) . One can give,
moreover, an expression which is intermediate between (1)

and (7), namely a Green's functional,
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Here the time interval for integration is [to s t{] , and

N is a normalizing factor.

With regard to the history, it seems fair to say that the
path integral had its roots in a paper of Dirac of 1933 [1]
who elaborated on the theme that "... it would seem desirable
to take up the question of what corresponds in the quantum

theory to the Lagrangian method of the classical theory."

Feynman took up the subject afterwards in his thesis, and
in his well-known article of 1948 [2] . Shortly thereafter he
applied these ideas in his basic works on quantum electrodyna-
mics [3] . Around 1954 several other authors independently
exploited such integrals for fields and constructed solutions,
necessarily heuristic, to more general quantized fields wifh
interactioﬂ [5‘- 9] . These solutions have the general fbrm

of eq. (7).



The first attempt at a rigorous construction of the path
integral was apparently that of Cameron of 1960 Bfﬂ. He ob-
served that there is no measure (having the usual properties)
for the path integral, even if the exponent in eiA is modi-
fied so as to have a real part. He adapted therefore the ap-
proximation scheme which is familiaf in case of the Wiener
integral ( <f. [38]), where the time interval [O, f] is

first broken into n parts by the separating points
t <t, T (9)
O_"to< ,1<,.. 14 9

The paths «1 are then assumed to be polygonal, with the
successive corners at 4l(t .)). The functionals e iA
are evaluated for such polygonal paths, one integrates over
the wvalues qt(tj), and passes to the limit max (tj m-tj_1)LO .
For path integral, the integrals over 41(tj) must be de-

fined with the aid of a convergence factor, e.g. by letting

m-»m + io , where &V 0 subsequently.

Cameron showed that the integrals evaluated as above
converge to a path integral satisf&ing (1), if the poten-
tial V satisfies some rather strong conditions, which in-

clude in particular some analyticity.

We can point out two drawbacks to this approach. First,
the method appears awkward in case of more intricate systems
like fields. Second, the method does not seem to tie in with

any convenient mathematical structure, and this would tend



to handicap the development of such an integration theory.

Next, there are two methods introduced by Nelson uﬁ[ﬁ%].
The first amounts to interpreting the path integral in

terms of Trotter's formula (valid under suitable conditions),
exp (t (A+B\) = lim [éxf’ (£A/n) exp (+8/")] ", (10)

One may take A= =~ 1 H(o); where H(O) igs the free Hamil-
tonian, and B = - iV ., Then the successive approximations

in (10) form a variant to the successive approximations
which occur in Cameron's method, and the limit can be identi-

fied with the path integral.

The second method of Nelson depends on replacing m in
the action A by twva , so as to have a (measure—theoretic)
Wiener integral, One then establishes analyticity in mn ,
and continues from the positive-imaginary to the positive-

‘real values.

The first of these methods has the drawback, that it
does not define.the integration of polynomials and of various
other functionals. The second is applicable only to situations
with extensive analyticity. However, both the analytically-
continued form of history integrals, and the Trotter formula,
héve shown their usefulness in recent work on Euclidean field

theory [}3] .

The last method whibh we discuss is that suggested by
It6 lj@. We consider the path integral in the form (5), and



" we define the symbol 2)() as a limit of measures. Expli-
citly: The form (5) presupposes a Hilbert space ;% . Let
d”T,a be the Gaussian measure on 3{ defined by'the cova-
riance operator T and the mean vector « . (Then T must
be of trace class, symmetric, and strictly positive.) We

set

RS !
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where

Cy = SOlF*T,O(S:) ezi(§,§> . B (1)

Then we define

P8 e st T, ), 0D

where the 1imit T->» must be suitably taken, and must be

independent of «a .

It8 established the convergence of the integrals in (12),
and the validity of eq. (1), so far for a very limited class

of functionals £, resp. potentials V ,



This construction was adapted by the present author to the
free scalar field [17]. Here the action can be put into the

form

Aly) = Ly, By -5 C)) (13)

where B and C are bounded symmetric operators on a suitable
Hilbert space. The operator C 1s chosen so as to provide the
irx_crement‘:mz—) m® - ig. Thus C>0, C<E.

It appeared in the above examples that the operators T occur
in certain formulas in an awkward way, and that approximating se-
quences other than {}ipﬁw} may be more useful. We were thus led
to defining the generalized measures, quite generally, as suitable
limits of measures [4?].

Clearly, generalized measures can be introduced also for va-
rious measure-theoretic integrals, A measure may then factorize
into a translationally-invariant generalized measure and a weight
factor. There are examples where the two factors. l.e. the gene-
ralized measure and the weight, have quite different physical in-
terpretations,

But let us return to the path integral., If a comstruction is
like It8's, so that one deals with the space of paths as a whole,
we will say that we have the global or the Hilbert space approach.
C. DeWitt also contributed to this approach in her construction of
a path integral with the help of the theory of distributions L1é}.

For contrast, we should like to call an approach based on break-
ing up the time interval, the time-evolution approach. The con-

struction of Cameron, and the one based on Trotter's formula, are

of this kind. (The analytic continuation in m from the Wiener
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‘integral could be classified either way!) Other constructions

based on the time-evolution approach can be found in [11 - 13, 1#].

2., Some problems of integration.
We comment below on five types of problems. Only in the case

of the first one are there rigorous results available for infinite-

- dimensional integrals.

(a) One basic problem is that of integrability. Examples of in-
tegrable functions (or functionals) can of course be found in the
cited articles [10-18]. For the case of Itd's definition, the
results are réther limited, and it appears reasonable to try to
extend them by studying the finite-dimensional case. Let us con-

sider for definiteness

i) u,u)y
]:(Q) hh CLO S & “Q‘L ( Quy, (14)

C. DeWitt pointed out that the weight ety g yny,
Schwartz's spaces @’M and O, , so that I(f) is defined for fé@’};
and € 6b [18], the procedure with 1im(s {0) being unnecessary
here, The space (96_ is that space of functions whose dual is 86.
Furthermore, the case :f‘é-,L1 is trivial, and the case where f 1is
the Fourier transform of a measure of bounded absolute variation
was treated in £15]. Certain other classes of integrable functions
are noted in a forthcoming paper [1§].

Tt would alsoc appear desirable to have some more general cri-
teria for integrability, e.é. an adaptation of the bounded conver-

gence theorem., We observe that this theorem cannot hold in the

usual form, and it is instructive to look at two counterexamples,
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For the first, we have the integrable function fo(u) = 2, and the
nonintegrable one e""{ij'(u"i> . The second example is that of a
real, non-negative, non-decreasing function f on R1, which 1is
bounded by the integrable fo(u) = uz, and which we will define

presently.
Consider the real part of I(f), and the zeros of the weight

cos(%uz). They are at |[u| equal to

{ L
&, = (31* e tar ) av\al an = Cfﬁw‘%m’n’)z)n.—q 1,2,... - (15)

At a, the cosine becomes positive as \u} increases, and at b,

negative., Let

Cu)y=0 Lor u<a,, (16a)
=af Sor a,gu<ang. (16b)
The following estimate is . >~ . - = - ~adequate for us,
d. ‘J““ 4 a"u!—“
2 3 an
On:;wg 3“605(%,’“'“):3.«(8 Ar+§ do
3 o b

st g
L s [%af’(zwwaﬂ > cco:}e.)n“s/z-;,o) (17)
for sufficiently large n. (In the first integral with respect

to v the sine is positive, and in the second negative. If n is
large then v remains small, and an expansion is effective.)
Hence Zfa Z¢ diverges. The divergence as g0 in (14) can

n n
now be easily established, and also follows from the results of

[19].
It is clear that the function f can be modified to a CT”,

strictly increasing function, without changing the conclusion,

(b) In the case of infinite-dimensional integrals, a bagic
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problem is that of the space of integration: On what space must

£ be defined, for the integral I(f) to be meaningful? Alter-
natively, one may ask: What topology is to be imposed on the func-
tions, when they are defined on a Hilbert space?

Of course, only experience can teach us what choices are con-
venient here, Ve shouid therefore like to present two illuminating
examples, These examples in fact emphasize the close correspond-
ence between the positive-~definite Gaussian integrals and the
Feynman-type Gaussian integrals, even though there is no countably-
additive measure associated with the latter.

The first example is the functional form of the formula [p,d]: 1"1

S@( ARSERY; 'Lgal’r V(T(T))

X [7(%5)7[?) “Z(’“)ﬂ?(fc a)— L ] O (18)

See [271 for a heurigtic derivation. (We assumed here a one-dimen-
sional system with a continuocus potential V and mass unity.) This
equation harmonizes with the choice of the Hilbert space 3{ deter-
mined by the norm <?),?> as the space of integration. Indeed, the
elements of :f mave derivatives which are meacuyra®ic bul 5 gone-
ral not continuous, while eq. (18) expresses a mean value (in

some sense) of the discontinuity of the derivative in the sample
paths,

On the other hand, Gaussian integrals lead to familiar integra-
bility conditions, which require that various functionals be deter-
mined by Hilbert-Schmidt or by trace-class operators. We expect
such conditions to arise also in the case of the Feynman-type
integrals, We find, explicitly, for a symmetric operator B with

discrete spectrum and eigenvalues AJEiO,
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N~

Lol my Ly 5, B4 -
§9G) @zt(ﬁz’ﬁef(wbv): [T [“'Ajz):l . (19)
The product converges if and only if B is Hilbert-Schmidt.

This amounts to saying that the functional e%i(B”> must be ex-
tendible to a larger space, of the form C"1U€ (where C is non-
singular and Hilbert-Schmidt), in order to be integrable. This
is also equivalent to the condition that the functional egi(B':>
be continuous in the J -topology of L. Gross=[39].

(¢) The problem of the space of integration appears in a dif-
ferent light when degenerate Lagrangians aré considered. To il~
lustrate, let us use the form (6) for the path integral, and let
us choose the canonical variables P, Q in such a way that the
Hamiltonian vanishes. Then

(PR
G (40,5 4,0)- N[ 2@ TH oy
Q[t's\%zj.
Heuristically the P-integration yields & (Q), so that, with an ap-

propriate normalization, one has

G(;é’{)a"fl)to’Qo):S[@,t“‘Qo), (21)

This result [243, which is expected for a theory where H = 0,

shows an effective reduction of the space of integration.
Degenerate Lagrangians also occur in static models (where m->e

and H®= 0), in some formulations of spin [35], and in gauge the-

ories. Further discussion can be found in [26].

(d) There has been some interest recently in the special pro-
blems which are brought about by curvilinear coordinates in Feyn-
man-type integrals (e.g. [20, 25, 3%]). We confine ourselves to
recalling the close correspondence between the path and the Wiener

integral, and the available extension of the latter to Riemannian



e 1% -

manifélds [36}.

(e) The asymptotic behavior of Feynman-type integrals was in-
vestigated by the saddle-point method, in several recent papers.
However, wlth regard to rigorous results, it appears that only the
case of one-dimensional integrals has been fully treated [ﬁ1].

confine ourselves to stating Kelvin's formula,

LwQ(S

Sjads em%) )2 'W/“E (22)

0 20 (i

Here one aggumes that f has exactly one extremum on (a,b), na-
mely at 8, that £"(8) 1is defined and 4 0, and that g is con-
tinuous at 8. The large parameter u 1is assumed real, The sign

in tin/4 agrees with tyf"(8) > 0.

%, Applications.

Historically the most significant application of Feynman-type
integrals has been to quantum electrodynamics [j]. There the in-
tegrale gerwad to eivazmlise dla mo-fenladione and therefore
helped to clarify the nature of various difficulties like the di-
vergences, These integrals continue to be exploited in quantum
field theory, where they may facilitate in particular the isolation
of dynamical components of gauge fields [27], and the investiga-
tion of partial sums of the perturbation series (e.g. [2{1).

An (apparently) minor application of a foundational nature has
been 1o nonrelativistic problems involving "bad" potentials, i.e.

those where the sum H(O) + ¥V 1is not densely defined, so that the

Schrodinger equation does not provide a sufficient description
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[13, 14, 16]. An alternative approach to such potentials is by
way of quadratic forms [4@].

We will now describe three other types of applications 1n a
little more detail. (But we make no attempt to provide a com-
plete survey of applications.)

(a) The asymptoti%evaluations depend on adapting the formula
(22) to function space integrals. The procedure is typically as
follows., In the integrand one separates the factor eiB(ﬁl),
where B depends linearly on the large parameter under consgide-

ration. Then the path %’ defined by

35/5 Jl . =0 (23)
is expected to provide:the dominant effect. One thus supposes

that
‘ B7 7 - ()XY
59(7)6‘%%(7) N éﬁ(ﬁ)c(ﬁ)@mga 7 & >’ (24)
where the second functional derivative (32317 at ;i is a kernel
_which defines an operator, and we denote the latter by the same
symbol, |
The last integral is Gaussian, and so can be done in closed
form. Its value can be interpreted as the Jacobian resulting
from a change of variable. Cf.—luf"(é)]"%eiin/4 in (22).
A detailed presentation of asymptotic estimates can be found
in [31]. A short but more mathematical discussion is in [30].
Here we confine ourselves to a few simple examples.
(i) Take for és'the contribution of the kinetle energy, and
for C, that of the potential energy. One recovers the result

of ordinary perturbation theory.
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(11) In case of a potential gV, with g being the large pa-
ramétér, one cannot simply interchange the roles of eiB and C
in (1). However, a clever change of variables leads to meaning-
ful results [ﬁf}.

(11i) For the semiclassical approximation we take B = A (the
action) and C = 1., This approximation was first investigated in
[}], and was applied in recent years by Pechukas [35] and others
to problems in atomic collisions.

(iv) These methods have been applied to the classical problem
of scattering of waves by a random medium [25]. One starts here

by imbedding the problem of the. reduced wave equation into the
initial-value problem defined by a Schr8dinger-like equation.

(b) Sometimes the usefulness of a perturbation expansion can
be enhanced by rearranging the terms. A closed expression for the
quantity of interest (e.g. for a Green's function) might thus
serve as a useful guide for first making and then investigating
the rearrangements. We give two examples from many-body theory.
(1) The perturbation éxpansion of a path integral depends on
expanding exp Lmi‘gdrv), evaluating the successive integrals,
or moments, which we denote by Mj, and summing. One may rear-

range this sum by introducing the series of cumulants Kj, where
oo o0
1+ My o= erp (250K, (24a)
so that
) ?
K= My, K=M My ete (24b)

The article [2#] points out some possible advantages of the
cumulants over the moments. E.g., for certain problems the path

integral yields the following estimate for an asymptotic region,
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