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Feynman-type integrals for spin
- and the functional approach

to quantum field theory

Jan Tarski

IT. Institut fiir Theoretische Physik

der Universitit Hamburg

Abstract. A construction of Feynman-type integrals for systems
with spin is outlined. In particular, in case of fields with
half-odd-integer spin, one integrates over a space of pairs
11,— C% . While the problems of analysis are only briefly con-
sidered, those of geometry are treated in greater detail, and
some ideas from the theory of symplectic manifolds are utilized.
As a sequel to this construction, a preliminary set of axioms

for quantized fields in functional form is suggested.



1. Preliminaries

1A. Introduction.

The functional formalism appears to be useful in an ever-
increasing variety of applications in gquantum physics. A num-
ber df such applications involve both general and specirfic pro-
blems in quantum field theory. Under tanis circumstance it was
natural to ask the guestion: Could quantum rield theory be based -
on the functional formalism, in a mathematically precise way?

Now, there are two other well~known mathematical approa-
ches to quantum field theory, i.e. the algebraic one and that of
Wightman. In each approach, a set of axioms for quantum field
theory was suggested. In this paper we present a preliminary
set of axioms for the functional framework, after a discussion
of some preliminary problems. We hope %o provide in this way a
better orientation into the possipilities and the limitations
of this framework.

One aspect oi this rramework which has beeu in a rather
unsatistactory state is that relating to spin. In fact, spin
has long been recognized as a particularly awkward entity to han-
dle in this way. A number of attempts to construct Feynman-type
(i.e. path or history) integrals for spin and for fermi fields
were carried out, to be sure. But the approaches in those works
have been developed only to a minimal extent. Moreovexr, they ?ﬁ&
to give the feeling that they are not quite what one would really
like. (Por these reasons we cite only a few of these works in
the references.)

We describe here an independent attempt to coastruct
Feynman~type integrals for spin and for fermi fields. We

chose 4o describe the construction in terms of
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the concepts of symplecticmanifolds, including the elabo-
rations which arise in Kostant's theory of group represen-

tations.

The fragments of this theory which we need can be
reduced to familiar facts about SU2 and about the Poincare
group, and the general notions of the theory could be by-
passed. However, the theory of Kostant points to several
useful entities, and it enabled us to see more clearly the

analogies between spin and the translational modes.

OQur study is not rigorous. We described the simple
geometric notions in detail, but we left many problems of
analysis open. Typically, we would suggest that an inte-
gral could be constructed in a certain way (whefe the de~
tails may be'only vaguely sketched), and that it would
have certain properties. We feel that our suggestions are
reasonable, in view of the prior experience with similar
constructions. Of course, it was then pointless to discuss fine

points, like the question of differentiability, in detail.

We consider in the text several other aspects of
the functional formalism. One of these is the spin-statis-
tics correlation. We develop here further the idea, which

was suggested on several occasions in recent years, that
this correlation should stem from the homotopy proper-
ties of fields. In such a case one should be able to extend
it also to nonrelativistic fields. Furthermore, some of the
problems that we encounter are not related to spin. We are
led to consider, in particular, the use of nonstandard ana-
lysis to define fields at a sharp time, and to consider a

stochastic interpretation of fields.
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In the remainder of Part 1 we review certain facts
concerning symplectic manifolds and path infegrals. Part 2
deals with nonrelativistic systems with spin. We treat in
turn particles, fields, and specifically the commutation
rules. In Part 5 we make brief remarks about relativistic
systems with spin. Part 4 contains comments on the stochas-
tic interpretation, the axioms, and some concluding remarks.
A short appendix is devoted to funciional integrals over a
quotient space.

The author thanks members of the II. Institut for dis-
cussions. In particular, he appreciated comments oi Professor
R. Haag, and he thanks Dr. D. Buchholz for an example used in
the text. He is grateiul to Professors R. Haag and H. Lehmann
for hogpitality at the II. Institut. He carried out this inves-

tigation as a Senior U.S. Scientist Awardee of the A. v. Hum-

boldt-Stiftung.

1B. Symplectic manifolds and sections.

The present section summarizes certain facts about
symplectic manifolds, and about Kostant's theory of group

representations. The sources for this section are [1 - 5}.

A symplectic manifold has by definition an every-
where-defined (and sufficiently smooth) bilinear, non-
singular, skew-symmetric form w on the tangent vectors

Xj . Thus one has
O (E)X}\ = - (Xj> Zi)- (1.1)

A symplectic manifold has an even dimension Zn, and the

form w can always be expressed locally as follows,



w = Z;A?L/\d%i- (1.2)

Familiar examples of symplectic manifolds are the
phase spaces of classical physics. Such spaces are identi-
fiable with cotangent bundles T*M, on which there are sym-

plectic structures coming from the Poisson brackets.

Symplectic manifolds are also basic in Kostant's
theory. One important notion in this theory is that of pola-
rization. Physically, this corresponds to the selection of
a complete set of observables when a system is quantized.

In mathematical terms this means selecting pn vector fields
YT,...,Tn which are combinations (in general, complex)
of the Xi, which are complex-linearly independent, and

which satisfy

w (20,9070 for Ay 6n (3

We remark that the approach of Kostant, in the
particular context of the quantization of classical systems

was discovered independently by Souriau [4] .

To a given polarization corresponds a space of ad-
missible wave functions & satisfying i{iﬁ =0 for Vi
(Strictly speaking, one should use here certain covariant
derivatives.) For instancejby selecting fi:.é/aPL, with w
as in (1.2), one gets the coordinate space representation

of wave mechanics. If ££ = 6yéﬂz% one, gets the momentum

representation. A still different possibility is to set

N\—-—
™o
Ta -~

(‘f.] *‘:Pj‘) ; 53:5/9(13)*3 (1.4)
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so that the conditions E3£==O yield analytic functions.
This device is familiar in case of the harmonic oscillators,

where one can identify a space of states with a Fock space

[5 . 6] .

The polarizations, to be sultable, nust satisfy
certain conditions which we do not state in detail. One of
these is that of group invariance, if a group action is re-
lefant. This invariance eliminatés e.g. the possibility that
the coordiﬁate representation might be transformed into the

momentum representation by the group.

Another important notion is that of a line bundle

L over a manifold M . Such a bundle is constructed by

associating to each point c:é:ﬁq a complex plane, to be
denoted by Lc , 80 that L = UceMLc . A section of L
is a map o : M—*L such that o (c)c’:—Lb for V¢, If a
reference section o, is chosen such that oo(c) £ 0

for Yc, then we can identify o with a complex-valued

function £ on M by

o(c) = £(e) o5 (c). (1.5)

An obvious example or & line bundle is M x C1. Here
the choice UB(G) = 1 allows a natural identification of

1

MxC with functions on M. We describe below a siightly

more intricate situation, where the use of sections avoids

some of the ambiguities associated with the "double-valued

functionsh,
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We turn to group representations. Let G be a
connected Lie group ¢ its Lie algebra, let v ¢ I '
(the dual to ©3 ), let (. be the subgroup of G which
leaves y invariant, let YV be the Lie algebra of G-_J)
and let M be the orbit G,ﬂ,y. One can define on M an

invariant sympletic structure by the equation

(X, 9)= (o [29]) toe X ¥e/5,. 0.0

Finally, let h be a homomorphism of & into C'\{of
that extends to a representation of ( . Such an h exists
e.g. if (< 1is semisimple and simply connected, and if

is a weight.

There exists a bijection between the (% sections 2
on M and a subset S of functions @‘”(G). Note first that
G, acts naturally on Gx(C! [:or on CM(G-)] by

or: (¥,2) = (Yg, wW(g)z). (1.7)

The quotient space [ = (G‘ "Cf)/G‘r is a linear bundle over
M , but need not be identifiable with M x C' .

We define
> - {ce C(6): 5 (%) = L\(g_i)oﬂ"(f)) VB’GG’,%e‘G’.}, (1.9)

~
and to each ey we associate o*ez by

G*(E)_JX) =, (7, 5(9), (1.9)

where P" and T, are the natural maps from G onto M,

&
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and from G x C1 onto L , respectively.

.
In the sequel we use the correspondence D > Z:)

but without the restriction to (% runctions and sections.

We should like to give next some explicit rela-
tions for SU, . (A fuller account can be found in [33 . )
Here M is a sphere, and there are two group-invariant
polarizations, which are complex conjﬁgates. In a suitable
parametrization, the respective vectors are proportional

to 9/z or to o/oz*, cf. eq. (1.4).
Let v~ be the weight of the representation with
spin s . Then the condition (1.7) , which becomes
'
restricts the function on SU2 to the linear combinations

where

of the representation matrix elements j)&)i

j=s,s+{)... ; and "‘=S>3"1\-">'A' The polarization
defined by %VQZ* restricts the functions further, namely to
those where 3= $ , 80 that one has an irreducible repre-
sentation. (One encounters here analytic sections, which
are defined in terms of covariant derivatives, and which
differ from analytic funétions on M, The latter can only

be constants.)

We note the following. In the case of integral spins,
the condition (1.10) yields directly functions on the sphere
M , while for the half-odd-integer spins, (1.10) yields
functions on M defined only up to a sign. Thus we can
introduce thﬁ unit spinors for the group 503, and then,

(3)z

for 6; :j) , and for the appropriate ¢ and LL, we

Tt



have the correspondence between the (unordered) pairs,

like the following,

{‘ft,(x) :6‘;(?)}} > {x (1,08, (1.11)

For some other v, h, and S, we can identify the re-
sulting section with the wvector (1,0,0), etc. A suitable
normalization for the sections is of course presupposed.
To spinor-valued functions, such as encountered in wave

mechanics, we can assign pairs of section-valued functions,

L (%, 00 e Tr, (9, =9, 5 (M (1-12)

where '?1 : R3~->C1 . The covering group of the Euclidean
group acts on such functions in the natural way. I.e., for
a translation T and for pe;Sua, to which corresponds the

rotation R , one has the rules
T () =% (T ) e ¥ ()=, (R%')) (1.13a)
TDUY):() = D%}s(‘)\ @D?%*%D?S@{') (1.13b)

Let us suppose further that the functions '¢4 form a
linear topological space (of dimension 2< n<e), and let
us leave out the point 4;: 0 . Then a standard result [T]
asserts that the spaces of pairs in (1.,12) have double con-

nectivity.
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1C. Path integrals, perturbations, and degeneracy.

We now review certain features of the path integral.
Let us start by summarizing the construction of Itd, who
defines an integral over a Hilbert space 3( in terms of a
generalized invariant measure 8(“) [8]. Consider the Gaus-
sian measures on ]{ . We denote such a measure by dF“ra
if it has the covariance operator T (strictly positive,
symmetric, and trace-class) and the mean vector o . We then

set

1 77) ) ™
59() )':UmtﬁSAHnw&§e<T%&ﬁ1J4ﬂ

Tooe

where

L
es Sy, (et TP (1140

The limit T-—»w is to be taken in a suitable way, and is to

be independent of a .

The limit of the integrals in (1.14), if it exists,
is a linear functional of f . The generalized measure‘ia(J
is then defined by this functional, while heuristically it
is 1imT;M,C{‘qu)& . More generally, one can define
generalized measures as suitable limits of measures, or in

terms of limits of integrals [9] .

The generalized measure,@(ﬁ of (1.14) is invariant
under rotations and translations. This fact allows us to

extend the definition of the integral to a hilbertian space,

i.e. to a metric space which can be mapped isometrically on-

to a Hilbert space.
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The foregoing ideas can be used as follows, Take

the real Hilbert space of functions (or paths) ~ :R‘#,R"

Y - CYJ) , such that t
. i
(V= [=0, ()= SkZ{fE)ce (s
°

This space can be mapped isometrically onto the space of

functions satisfying

""Z/O]:UL) 7[%.)20‘) <7)?><00 (1.16)

The Green's function for a Schroedinger particle with mass

m in an external potential V 1is now given by

G(f sy 0, «) = Camt S 97)6%) (1.17)

7{0) W, y(é) =

where

¢
Ah SML SM(H” :é"“<77> Sdf\’ "(“) (1.18)

The quantity A 1is the action, and we should like
to make this comment. The time integral of 64@) serves to
define the path integral, while V 1is treated like a per-
turbation. One can say that V 1is coarser than $4“), in
the following sense: If a path integral is defined with the
help of H@} as above, then a potential will be continuous
on the space of integration, but not vice-versa. (We do not

attempt to give a general definition at this point.)
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Let us also review the usual heuristic construction
of the path integral. One breaks the interval [0, tl into

smﬂlamhnmwﬂs[ﬁbﬁ+d where

O=t, << <k, =t, (1.19)

. PO~
We assume now free propagation from tS to €. and let the p

3ol
tential V(az) be computed along the resulting polygonal
paths. Moreover, a complete set of states is inserted at each
t, - The limit max (tj*{ - tj)—>0 is then taken. Various

details can of course be modified in this procedure.

We consider degenerate Lagrangians next. These are
the Lagrangians where the quadratic form giving the kine-
tic energy is of less than the maximal rank ETQ] . A situa-
tion of this general kind arises in the case of spin, and
it is instructive therefore to examine a more elementary
example of degeneracy, namely that of (scalar) particles

in the static limit, m-—> w.

To study this 1limit, approximate the integral by

assuming free propagation from tj to Epi , as above, The

integral then contains the factors

(mfami)? exp {im [mle ) - (4)I728,  (1:200)

and when m-» o , one finds factors proportional to

8(/7 (tj”) —7(£J))7 | (1.20b)

so that the paths become static. (In particular '
) m<%7>%0
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and not o0). The static paths are of course in accord

with the solution to the Schrodinger equation,

- . AV
-i%ﬂﬂ VY = Pl x)=e U(”)Wo,g), (1.21)

We close this section with an example of another
form of the path integral [jf] . This example corresponds
to the polarigation (1.4), and at each '63 of the sub-
division (1.19) we insert the eigenstates of 2z . (For
simplicity we take one degree of freedom here). Since 2
can be interpreted as an annihilation operator, the eigen-
states are the coherent states, which we can index by
W= W, + LW e To get completeness, one integrates over

C.{ with the measure

—lul?

Aﬁ(u):ﬁ_fdurdule . (1.22)

The expectation values of 2z and 2 are then

given (heuristically) by

<(FCZ *)2}‘)+>o - S @(MT_JQiAGx )D()E(o(*)d) ) (1.23)

0(-(*—00):0
where

A (o{’k)oé) = Sj't [ét (oo - (®)6) - H (o(*)(x):J,

(1.24)

The af.) are paths in the complex plane, and..g(dﬁ@ is
formally an infinite product of measures TfJJurAqﬁ,

Presumably S)(-) can be given a precise meaning as a
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generalized measure. The Gaussian in (1.22) yields the
first part of the action A. The values a(i ) = 0

correspond to having the vacuum initially and finally.

The operators 2z and z° do not commute and
S0 z*(r) cannot be represented multiplicatively to-
gether with 2z (t) . However, z" acts on a coherent
vector at left (in a scalar product) by multiplication,
and this implies that z () can be represented by one oi tihe
*
lim o (Tx€). In [11) the analogue to the commuta-

£l0
i ¥
tion rule Lz, Z J = 1 was in faect established:

i (Dta)e [wBoctles) ~o*bree) (D= 1]-0. (1.25)

40

In view of this equation, eq. (1.24) for A is ambiguous.
A satistactory way of defining the products in (1.24) is

to replace

DL*—‘?O‘*(T"'O), 0(—>OC(T'). (1.26)

One can, moreover, verify the following. If the ear-
liest time 1©, that enters expiicitly in a product is an
argument of o , or if the latest Ty is an argument of o,

then the path integral (1.2%) vanishes:

A
occurrance of & (7,) or of Oz-*( Ty )%S@@g*}e F=0.
(1.27)
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2. Nonrelativistic systems with spin

2A. The path integral for a particle

In the nonrelativistic theory the translational and
the spin degrees of freedom are kinematically independent,
and this fact allows us to treat separately the respective
contributions to the path integral. Explicitly, let
E'= (q,y), where q 1is the coordinate, and Y refers to
the spin. I.e., y can be a pair (j, m), or a point of
a sphere, etc. In place of q one can also have here p ,
or the 2z of (1.4). The path integral should then be
defined in terms of a generalized measure 9({) over paths

%(.), and in our construction this measure factorizes)

9[5}') =9[g)9[3). (2.1)

The integration with respect to q is as usual, and we

will now consider only the integral with respect to is .

Let us take for definiteness an electron free to
flip its spin but otherwise stationary. Then the construc-
tion of the path integral for spin is suggested by the
arguments given for a (scalar) static particle, cf. egs.
(1.20),and by the polarization %/Dz* [}ee the discussion
following eq. (1.9)] .

The (free) Lagrangian associated with spin vanishes.
In other words, one has a degeneracy, and the example of a
static scalar particle suggests that we should let only the
static paths contribute. If we give the weight % to each
of the two possibilities, b(v) = % % for VT, then the
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path integral for the Green's function takes the form

2§

L) =G (4o)= 8, (2.2
IJ‘(O)-’-k)ﬂrC{:)':ﬂ%o[) Gu( O) Ll

where k, 1 = p % . This equation presupposes the same sign
for the spinor at 7©v=0 and 7T =t . Note also that

the generalized measure %O(-) is in fact a measure.

One can perhaps make the analogy between spin and a static
particle more striking by the following example. Consider
paths b () on (0,t) with a finite number of jumps (i.e.
where 2 % changes to + -12). Let ||bi{l indicate.this number.
Let us give the relative weight e,"Km’“ to the totality of
paths with a given [lb{|, and let us introduce the measure
S(b) that assigns to a set of paths the Lebesque measure,
in RWY | of their discontinuity points. For the two

constant paths, take the measure -15 for each. Then one

has the limit
- -t o -HKn
limK_ewgﬂr)&K“blt ! ‘/(_anoq,ﬂ ):@O [[5—) (2.3)

Here the parameter K indicates the reluctance, or inertia,
of the spin against Ffree-mevemeal flipping, and the usual

theory corresponds to K — .

One may be tempted to say that there is no particu-
lar content to the formula (2.2). We include it for complete-
ness, and as background for the history integrals for fields

which are more interesting.
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However, we should like to make two further ob-
servations about (2.2). First, the restriction to con-
stant paths makes it impossible to incorporate the effect
of e.g. a magnetic field in the x-direction, which induces
a mixing of the two states. But one should note that an
interaction potential like hxqig*—g is in fact analogous
to a nonlocal potential in the coordinate space, i.e. to a

term like

Hoe = S&qdq_"w@)ﬂ’)w*{g) w[f). (2.4)

As far as we know, such interactions have not yet been con-
gidered in the context of path integrals (even though a
temporal nonlocality can be readily handled, cf. [12} ).
We will return to the problem of the mixing of spins in

Sec., 2B.

Second, the possibility of handling all spins
simul taneously was indicated in [13} . This can also be
done in our set-up, where one would take static paths on
the linear bundle (G x C')/G , see eq. (1.7). Then by
projecting at initial and final times one can obtain the

restriction to a definite spin.
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?B. History integrals for fields.

We recall the basic conclusions concerning the
history integral for the relativistic free scalar field
q@)[j4j. There the integration is over a space of real-
valued functions on r* (or on M4). The action functional

is the following,

(o)( SJ‘{ [(Jg? _CV?]’MZ :{ (2.5)

Then the functional integral can be defined by the weight
exp (iA(o)) and yields the time-ordered vacuum expecta-—

tion values,

<(F(cgta)) > S@{Y e’*P[ Am(”( ]F(?> (2.6)

This formula has been established for a very limited class

of functionals F .

As with the path integral, other forms of the history
integral can be readily given. One alternative is given in
54] . Another can be obtained by first approximating the
field by a large number of oscillators, each having a de-
finite value of k . One then uses (1.23) for each oscil-
lator and passes (heuristically) to the limit of a continuous
distribution of the k's . The result is

<(F(a o) > S@@c x ,q("J(* )

Fl® ). (2.7)

The entities a(%ﬁ _are the annihilation operators (rather,

distributions), satisfying
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[alk), of‘(l‘{)] :5(5-5’). (2.8)

The action functional can be represented in terms of the function
o {which represents a as a multiplicative operator) and «  as

follows, cf. (1.24), (1.26),
70 (o e L (10 [k - (Y X] - HOt) (209)
A (0( , D{) = gol.?gal& E t t*"/.,. 0(-—( - Ll
-0
We remark that if one makes the restriction to a fixed

time, then both (2.6) and (2.7) reduce to measure-theoretic inte-

grals which are related by the duality theorem of Segal [15] .

The form (2.7) of the integral can be adapted at once
to the nonrelativistic scalar field Y. Indeed, this field and
‘P* are the Fourier transforms of a and a* respectively. Thus
the formulas (2.7 - 2.9) can be transcribed directly to the co-

ordinate space. In particular,
E - SJTS'J:'X (it [l}‘*(t’*ojﬁ)wh[‘q‘*)lpl_ H("\LKJ 1L)>‘(2.10)

The Hamiltonian need not be the free-field one.

An analogue to (2.5 - 2.6) for a nonrelativistic scalar

field is also possible. Let & = Y+ ‘#* . Then ( satisfies
2 )-& a7 .
[-at_cap A ]d?—-O\ (2.11)

and the corresponding action functional is given by
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One can then obtain (heuristically) the analogue to (2.6). We will

not consider this form further.

Let us now treat the case of a nonrelativistic field with
spin. For the basic kinematical variables we take E;(g,m) and t ,
as in sec. 2A, and the field 1P with spin s has the components
'W(t, a, m) or '¢m(t, g), where m =+ s, ¥ (s-1),... This field
can be represented by section-valued functions. This corresponds
to the representation of CQ(O) by ‘7 in (2.6), in view of the

use of sections for spin. Following sec. 1B, we make the corres-

pondence
b () 8) o (8 o 20) = (R B o 2B, (2130

(_QM or i'@w) < S*C*U_ ((Y’ ((S-Mm’ t{&mv SEJM(X))'ED (2.13Db)

where ﬁm refers to integer spin, and t Pm‘J to half-odd-integer.

[See eq. (1.i2i].

We want next to integrate functionally over a space of
functions Bm or of pairs * Bm . The elementary Gaussian inte-
grals and generalized measures over a space of pairs hi Bm are

briefly discussed in the Appendix.

We will assign a generalized measure 9(@) to the field ¥ .
The kinematical independence of the translational modes and of

spin, and the degeneracy associated with the latter, imply the



factorization

9((5)1 9(?)9[{534) 9/{@} (2.14)

where %((3“.)
Ashould more properly be written 9((@)M,-ﬁm)) in case of half-

odd-integer spin. (Same for § .)

We now look for a formula of the kind

. . ; *)63 «
(e - (9t e TR D). s

Here the functional A involves B and B¥* in a way which
corresponds to scalar combinations of Y and '%* (and of
perhaps other fields). We presuppose for this functional ap-
propriate ordering and counter terms, as needed. [E.g.,
B*(t+0) and B8(t-0); the counter terms arise in particular in
relativistic interactions,]

The product @(B)ef;1 will specify a generalized measure and

a weight.

For F , we consider first polynomial functionals, with all

the arb%trary functions restricted to nonovexrlapping time inter-
vais. n
the integrand, ¥ and Y* will be represented respectively

>

by functions B and 6* in case of integral spin, and by

* 3 and I g* for half-odd-integer spin. We will determine
in sec. 2C the corresponding rules of integration, in particu-
lar the choice of signs, and the correlation between spin and
statistics. Once these rules are determined, one can envisage
various limiting cases like equal times and nonpolynomial

functionals.
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We close this section with the example of a static electron
quantized along the z-axis, in a magnetic field in the x-

direction. The Green's function can be represented by

)2 T(IDE) e (RS b 06T
2.17a
y Q*P(; YALZ@ (“ﬁﬂ[“) b~&96-aj])

(2.17v)

e =5 0L~f [z.- (Jﬁr (ﬂ )6]

stat .
J-—

Here t>0 ; j, k=25 . The %
in bifi was suppressed. The limits b*( T4+0) are presup-

posed.

We deal here essentially with a single-particle theory,
so the ambiguities of sign are irrelevant. One can evaluate
the history integral by expanding the exponential and by
using the rules (1.25 - 26), or otherwise. The resultj

(ij(é)) S (L 9)eoslen) = é)“"‘(“")) (2.18)

is in agreement with the solution of the system

-%at(i\b_):]"(‘f cj)(‘t+) (2.19)
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2C. Commutation rules and homotopy.

In the functional framework one works only with ordinary
commuting entities. The familiar examples of noncommutation
must, however, have their counterparts in the properties of
functionals, or of functional integrals. Now the only possible
way to order the factors in an integrand is with respect to
time (aside from effects due to fermions), and so the familiar

relation Lp,zkgfcorresponds to
’ i£<‘)‘ ot "V LY
. N
X [ 4ty y(e) =gl qle-e)-< 10,

(One assumes here 0<t< £, o = 1, and that V does not contain

(2.20)

derivatives.) This equation is derived heuristically in [ﬁ@])

but it can be adapted, and proved, for the Wiener integral.

This equation for either the path integral or the Wiener
integral can be understood as follows. We consider the Hil-
bert space j{u/ defined by the inner product §jﬂﬁ>and the
condition v/p)=0. This is the space naturally associated with
the weight ei<T%) . Every Yelfw is continuous, but in

general does not have a continuous derivative.

The path integral for an oscillator constructed in terms
of the creation and the annihilation operators, z*(T) and z(rﬁj

cf. see 1C, offers another example. The action (1.24) becomes
¢ L U A 2, ¥ (2.21)
A‘:SO’T[iLZ z-,-t(z)szzz], *
0 ;

The natural space of integration is that of (complex) functions

a satisfying

2 . & A
:LAT(IO‘,lJr [o(O(’)(oo) o __idc)(lw[ff)!%(“)’ﬂ('”)} <M('2.22a,b)
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Such functions are not necessarily continuous as the following

example (due to D. Buchholz) shows. 1f

A
&[w\ = [(1+ leol) q-oa ({+ 1wl ] 5 (2.23)
then (2.22b) is fulfilled, but
Ao REY - (2.24)
() = 257 5.

The non-continuity of the a's is of course expected, in
view of the commutation rule [g, z*] = 1 . Cf eq. (1.25))f0r

which the Hamiltonian should not contain derivatives.

The situation with the anticommutativity of fields with
half-odd-integer spin is of a different nature. Intuitively,

there should be no difference between the two values

pmiuo,g)@m({-or‘%ﬁ) and (3WKJ°+0,,%/)P,.({'D’&) (2.25)

(for "most" of the functions §,), if u and u' are far
apart. This appears particularly evident in the relativistic

theory.

The change of sign between the two terms in (2.21) must
then come from performing some kind of an exchange opera-
tion between the two terms. This possibility depends of
course on the homotopic properties of the space of integra-
tion, specifically on its double connectivity, and wés de-

monstrated in detail by Finkelstein and Rubinstein [16].
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Their results provide a more general context for the following

aiscussion oi an excuange process.
. . p (+)
Consider two wave functions %

8 = % y, M = % , at the time t . Assume that these functions

for a particle with

are spherically symmetric around the respective points T w
located in the x-y plane, and that the supports have a radius

_ () . .
< llwll . The annihilation parts ¥, (¢ ) contribute to the inte-

grand of the history integral the rfactor

58, = 0B, () (R LB ) )

. . (e)
For reasons of eovariance,the functions £ as well as f_

o)
should be associated with sections. For -Q( ; these are

S, (0, 26 (Y and (8, <80 ON (2us

We now exchange the two supports by rotating counterclock-
wise around the z-axis by = . This rotation to be denoted by

Y{ , transforms the two sections respectively into [cf.eqs_

(1.13)]

STW (dja t“c(w()g:(y))z ’amfl {HJ (Y}'};tQ(J)()(?:(X})} (2.24)

The transformation of the functional Fg)induced by 3:)corres-
ponds to taking the same signs (upper or lower) in both (2.23)
and (2.24). Therefore

E[(}J%— E[GJ. (2.25)
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Now, it is shown in [16] that the exchange of one pair
of identical particles (as e.g. above) is homotopic to the
exchange of any other such pair. We will consegquently use
(2.25) to describe the effect of any such exchange, and
moreover, we impose the following requirement on the functio-
nals: If parameters associated with one component of a spinor
field are varied so as to invert the relative time ordering
of two factors, then an exchange must be made when the two

times are equal,

We will return to the problem of exchange in secs. 4B

and 4C.

For several independent spinor components, the symmetry
under the Klein group allows us to select anticommutation. :
(This is as in the Wightman theory [17].) Finally, for the
two spinor fields Vgh and 4jf we will determine the commu-
tation law by an algebraic argument, which can also be easi-

1y cast into the functional form.

Let us consider only one degree of freedom)that which
corresponds to the (real) test function f) and let us

set
z ()= Catu & (u) S(n-t) b (v, (2.26a)

£ 4 £ Y * 3 p?
similarly =2 (T} z gd wX o T ohere gJ,gQ =1 (2.26b,c)

We assume that

(2(0) = (="(N* =0

) (2.27)
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but in place of (1.25), we assume more generally that

o B (s 0T,

where the appropriate signs are to be determined. Upon mul ti-
plying both sides by g (T+ 2¢) and z(T- 2¢) and assuming

time-ordering, we get
+ u"‘"uo [z*(’tﬂig) Z(T)Z?f—g) 4 (’T-JZ{)] =

= Uiy (2 (veae) 2 (v-26)] (2.29)

from which the + sign in the first term of (2.28) follows direc-
tly. The second term cen be similarly shown to be plus. The ex-

tension to more degrees of freedom is direct.

One can,conversely, assume (2.28) with plus signs, and a

similar argument will lead to (2.27).

Finally, we summarize the rules for integrals over section-
valued functions, or histories. The problem is primarily that

of determing the signs of functionals.

First, on physical grounds we assume

that a polynomial functional with an odd number of spinor

factors integrates to zero.

Second, the relative signs of 8, and of Bn* are to be

chosen s0 that

@: (T+O) Pm (’I’) ?0) F’mﬁ)F’j(f‘"“O) >0, (2.30)
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Third, when time parameters are varied, the sign of a
function Pm or of Pm* should change only when relative

time ordering is inverted as explained above.

Fourth, an interaction can mix different spinor compo-
nents, c¢f. (2.17). Then the form of the interaction pre-

supposes relative signs of the components.

We should also like to recall here the possibility that
contributions of different homotopy classes to the integral
may enter with different phase factors [j3 ’ 15} « This
complication does not arise here, since the histories have

the same phases as in a bose-field integral.

With regard to calculations, one can evaluate an integral
for fermions in the same way as for bosons, provided compen-
sating terms are supplied whenever time ordering is inverted.

One can start with factors Bm(f) ﬂm*(?*o) , which do not

require compensating terms.
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3. Aspects of the relativistic field

—— e T W w

In order to extend the preceding development to relati-
vistic systems, we need the corresponding Lagrangians or
actions. We will specify Lagrangians for the free fields
by using the momentum space and by choosing a specific
Lorentz frame and helicity states. For each p #0 (the ne-
glect of the Jine p=0 1s of no consequenc;), a classi-
cal, irreducible fiéld ,7 with spin s will have 2 s + 1
components % (E } , where w is the helicity, m = ts ,
Y(s-1), ... . We will choose the following form for the

SO RN (S S PR RO CNER

We assume here that W>0 , or that p= 0, s =0, (Cf. also
below.)

As far as we lmow, this obvious expression has not been
explicitly given before., We should therefore like to make
several comments concerning it.

a) The form (3.1) shows the kinematical independence of
spin and the translational modes, when one uses the momen-
tum variables, This fact allows the discussion of Part 2
to be easily adapted to the present case.

b) It is not at all obvious if the action (3.1) can be
put into the form of an integral of a local Lagrangian over

d4x . In fact, only for a few low values of spin are the
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local Lagrangians available [19] +» We will ashow in sec, 3B
how one can relate (3.1) (taken twice) to the usual expres-

sion for the Direc field.

(c) Let PV , Mui)
of the Poincaré group. Given a particle of mass }L>O and

be the generators of the Lie algebra q]

spin 8 , the orbit of the corresponding element of ‘jv is

the manifold M defined by
PP, - WoW, = s (e )
el p P SETY, (3.2)

vV pp.lcﬁ
where [J :';EE, J?PM“ [20] . Equation (1.6) then de-
fines a symplectic structure on M ., The group-invariant
polarizations on M specify f) and m [in specific Lorentz
frames, cf. (3.1£]as the independent variables [}] .

() If 8 =0, then w cannot vary, but otherwise
nothing is changed. However, the cases Jp= 0, s5>0 have to
be considered as exceptional in all the approaches to gquantum
field theory. Here, in particular, p and w are no longer
suiteble independent variables. Indeed, if ft=0 and s>0
then the form (3.1) requires additional special tricks, as

one knows from quantum electrodynamics.

One could try to proceed in these exceptional cases as
follows. Determine a satisfactory set of (three) independent
variables from a group-invariant polarization and a satisfactory
form for the free-field action. Then the construction of the

history integral should be possible,

(e) The canonical structure for fields, or for systems with
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an infinite number of degrees of freedomjis of course much
less developed than the theory for a finite number (e.g.[ﬁd]).
Discussions of the infinite case can be found e.g. in

[21 - 24] . However, the fragment of the theory that

is important for us, the passage from a Lagrangian to a
Hamiltonian, can be done in various cases by the usual co-

ordinate-dependent manipulations, e.g. as in [?5] .

The following points should be noted. First, the term
. - RWE]
(72 [or (p°] LY':] in the Lagrangian will normally remain

in the Hamiltonian. In view of the relation

0= U~ (B(7)e [7(“ Vol -pler) g ft-e,0) -8 (-],

(3.3a)

one can represent <7 as follows,

7 (ts) = §/59(s), (3.3b)

when restriction to the time t 1is made. Second, the resulting
Hamiltonian will in general contain an infinite constant asso-
ciated with the vacuum, and this constant must be eliminated

in order to have a meaningful expression.

(f) The occurrence of the manifold M , Egs. (3.2) brings
to mind the former attempts to construct quantized fields on
homogeneous spaces of the Poincaré group [26 ’ 27] . It is
therefore good to keep in mind that the manifolds are used
in rather diﬁ?erent ways in those works and in the present

one. In particular, in [é?] , the free-field creation and
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annihilation parts are, so to say, transferred to a larger
manifold by integrating with a suitable kernel. Consequently,
the dimension of the manifold no longer indicates the num-

ber of degrees of freedom of a particle,

3B The Dirac field, field strength renormalization, and non-
standard analysis.

The presentation of the material of this section will be
still more fragmentary than the presentation in Part 2. However,
we have a certain optimism that the details could be filled
without undue complications,and that these details would not

alter our general conclusions,

Let us first take the case of a field with s = % and
two components ‘?1, and with the action given by (3.1). The

conclusions of sec. 2C tell us that

D7) oxp [1A Vo N b)7 () 2 el mgs0,
(3.4)
where £(I \al) =21 (for a #:0). The generalized measure
.9(0 is over complex historie3j7f7i1n.view of the anticommu-
lativity, a definite time ordering must be specified in the

action, i.e. one must take

A(o) ___Sol{; cliuﬁ[ oz_t_(fi‘o,t}_) [25:“] ’7— ({ * 0/ 55\ . (3.5)

Then the sign Y before £ in (3.4) is determined by the choice

of the upper or of the lower signs in (3.5)
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We see that the histories ’71 correspond to an irreducible
field ﬂﬂ) with s = % , satisfying only the Klein-Gordon

equation:

where
[OL;(E\, a;(“]’—gijg(k-{)_ (3.7)

The situation with the Dirac field ‘P is somewhat more
complicated, and we confine ourselves to brief remarks.
There are four components, and two irreducible fields with
s = % are mixed in 1P . One would therefore like to iso-
iate two hermitian conjugate pairs, (qa,q2*> q;_)qg* ), in
terms of which the components of %’ can be expressed. Then
one can integrate with respect to the corresponding (complex)

histories §1 and §2.

We recall [25] that the Dirac action,in terms of 1{/’ is
0) — ~ ~
A:=*SJYP1\[’ (’P)(?{’L’u) 11»[;3). (3.8)

This action does not agree in general with (3.1) However,

one has A = 0 in both (3.1) and in (3.8) for free fields,
and one can reproduce the usual results by integrating with

ém as weight, A being as in (3.1) or as in (3.8). Only the
correspondence between the variable functions and the different

fields must be kept in mind. The difference between (3.1) and

(3.8) bvecomes significant, however, when couplings are introduced.
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The Dirac spinors can be used to construct various simple
models of coupled fields., We note here in particular the gauge
model, discussed on numerous occasions and recently in [28], with

the Lagrangian

L{%, @) = L) + L98) +ig bim ., _,,
YT (3.9)
X[ () (1) W) = F vy %, V¥ V)

The variables X, xj

tion F 1is one whose singularity in the 1limit is to compensate

are to have space-like separations. The func-

the singularity of the product of fields. The L(O) are the free
field Lagrangians, given in (3.8) and in (2.5) resp. An over-all -
(o)

additive constant, which would result from Wick ordering in L R

is irrelevant and omitted.

In this and in various other models one finds the formal equal

time anticommutators for the renormalized fields (with ¥ =;$ ¥°),
(¥, (4 0), ¥20, 4] -2
o y X N G,(,:a . a D‘Pg(f’jy, ZJ’»\YO. (3.10)

The usual way of handling the situation is to require the fields:
to be distributions in both the time and the space variables.
However, non-standard (n.s.) analysis provides a more general
framework than the theory of distributions, and the usual manipu-
lations, allowed by n.é. analysis but not in distribution theory,

appear convenient here.

Non-standard analysis was discussed recently in connection

with various physical problems [29,30]. In some of these applica-
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tions one used the standard number system for space-time variables,
and the extended {or n.s.) system for magnitudes of wave functions
and the like. For the model in gquestion, it appears convenient to
introduce one infinite quantity, Zéi of Eq.(3.10), and then Z, and
also 23/2 are infinitesimals, not zero. On the other hand, the

singularity of F 1in (3.9), and the distribution-like dependence

on x and ¥y, can perhaps be best handled by the usual means.

For the gauge model we may now employ the unrenormalized fields

W1+ “q;* of infinitesimal magnitude,
)

" 1 x 3. X
Y Ly 4’) WZlW > (3.11a)

but satisfying

s

[:“IPM (¢, Q) “1{’(:[{,3)]*:&??[5-3\, (3.11b)

If we now employ the action determined by (3.9) for a history
integral, then the commutation rules will be determined by the
time derivatives which occur in the action. The examples of Sec.2C
then show us that we will recover the time-ordered functions of

the unrenormalized fields)

LECw, W )Y =088 F(5.5% 7). .10

Let us consider in particular the two-point function restrict-

ed to a fixed time, and with a=8:
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Wy~ Calt0,2) o, ) ~2S V(0 0) K0 ),
= Zl ((’\l;‘fo) t+0 X ) £°)*£_0}§)>0+3?~<._‘> +) (3.13a)

:59(S)Q:AS;_ ({\‘0) 35_) Sof/{-o)g)_ (3.130)

Familiar manipulations allow us to reduce the integral to one over
% *

the functions T, &, at time t, which we denote by £,& | (Cf. [14]

for the corresponding handling of the free scalar field.) Then we

find the form

\A)_,_'-f@(f)@/f*)e,aﬁ gx)f{{)f*[j), (3.142)

In view of (3.13a), Q@ should have a bilinear part B which would

yield the free-field function, and a remainder O(gz). Thus

W, - gp[ﬂ 9[? *) e,'zl- 855 eg () £/x) g*@)(llﬂb)

AV O R A AN

The point of interest here is that Zgi should appear in the exponent

when the restriction to a fixed time is made.
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4, Attempt at a functional framework

4o, Stochastic quantum fields.,

In the functional formalism as here discussed, one has to deal
with ordinary (c-number) functionals, and the quantum fields are
represented as factors of the functionals, i.e. multiplicatively.
Thelr conventional interpretation, by way of operators (which in
general do not commute) 1s quite extraneous to the present approach.
We may cbserve two conspicuous shortcomings of the functional
approach at this point. First, one should like to interpret the
different entities which enter, in a way which would be more in
line with the formalism as a whole. Second, the framework has to
include a particle interpretation, and has to yield (at least in

principle) the S-matrix.

Now, the history integral yields the time-ordered vacuum expec-
tation values of fields. From these time-ordered functions one can
get the S-métrix via the LSZ formalism [31] (or via a modification
thereof, in case qf infrared phenomena).'A new interpretation of the
formalism therefore is not absolutely necessary, even though it

remains desirable.

One way to interpret the fields is by adapting the ideas of
stochastic quantum mechanics, for the following reason. In
stochastic quantum mechanics one represents the operators of posi-
tion at any given time as random variables (i.e. measurable func-
tions) on a measure space. In the functional formalism for fields,

one has a similar action of fields.
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There exist several approaches to stochastic quantum mechanics
([32,33] and references given there). That of [32] seems convenient
for adaptation, and we give a few details for an interacting scalar
field. One considers a state funetional T(t,£), £ :R3 + Ri, satis-

fying the (formal) Schrddinger equation,

é N i,
2T u = LA [ () (s ] B er Fle)

\

_'zt {4 (55[;«,)3 e B Y (), (4.1b)

where Hi is assumed to be a multiplicative operator.

We next introduce the definitions,

bir Fl5) = §d 55(6) Flns), [gd S8)](e)- si/x)

(R RIED=SLx B (5x) R (%), o

(4.2a,b)

‘I:MP(RHS')) tL;gmﬂl R, U—z?ImAS' (4.24)

Then, if one makes a suitable choice of the arbitrary constants
in H, and in S, Egs.(4.1) will be equivalent to Egs.(3) of
[32, § 15]:
{arad di ~arad {v
= ~=qara g 'y w + [ tern,
a-eu' 2% a <, > ( )) (4.,3a)
cod F44 —vdivurudicuw +

9, v = -9
+-izd)\f' %\"‘O«J v+ (1‘%), (4.3b)
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The details here are not really important for us. The point is that
the functionals u and v can be interpreted in stochastic terms,
describing a kind of diffusion in a function space. One obtains in
this way a space on which the (smeared) fields at a given time can

be random variables.

(cf. [32] for a description of the diffusion. One new feature
in the present case is that the measure for a given time includes
the absolute square |m(°)]2 of the vacuum functional as a weight
[34]1. We may also note that the stochastic mechanics was discussed

in the context of field theory in [35].)

These random variables, besides ylelding mean values after inte-

gration, are also multiplicative operators on functionals §:

(Wt.ﬁ\@)(ﬂ $) = §/) B, 5). (4. 4)

If one starts with the vacuum Io’ an extensive space of functionals
can be obtained by applying the fields. One can (presumably) then
discuss the asymptotic limits of the functionals. But we forgo

this here.

4B, A tentative set of axioms.

The work in quantum field theory of the last two decades has
shown us several ways in which an axiomatic approach can be useful.
We shall therefore present a preliminary axiom scheme for quantum
field theory in functional form,We wish to emphasize the tentative
nature of the axioms, which we do not state below with full preci-

sion. We expect that as more experience is gained, a more satisfactory
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set of axioms will suggest itself.

A quantized field will be assumed to have a definite spin,
while its mass spectrum is to be determined by the totality of the
interactions (and by the "bare mass"). This is the usual way of

proceeding. The case m = O, s > O is to be excluded, cf.Sec.3A.

Let us suppose for definiteness a single K-component complex
field ¢ = (¢j) of spin s, with ¢j = ¢£lj' The following state-
ments introduce the auxiliary entities needed for the theory.
(i) T is a linear space of functions,-RLL -> Cl, with a given
topology. (Test functions)

(ii) & 4is a linear space of functions rY o Ri, and .ﬂq is the

corresponding space of pairs {n, -nl. Explicitly, we can write

Lj =(L\§OZ)/'{{,-12. (4.5)

XK, the K~-fold Cartesian product, is the integration space if s

£

is integral, andiiﬁK is the integration space of & is half-odd-

integer.
. XK . . . XK
In the following, &€ wlll refer to integral spin, and -ﬂq s to

s half-odd-integer.

(iil1) A is a funetional (action functional))
XK (
A: LR 4 4 :i_xqu R! (4.6)

A choice of temporal ordering in products is to be made.
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(iv) D(-} dis a generalized measure orLXXK or on fﬁK, invariant

under translation, with the weight elA. (See Appendix).

(v) The above imply a space F of integrable functionals £, i.e.
those for which
J TABELTA
(.LXKor L;K) Z © 7 (4.7)
is defined. In particular, 1 € F by definition of weight. The
space F can be enlarged to Egen by admitting distributions and/or

nonstandard analysis.

(vi) If f € ¥ then one introduces the time-ordered vacuum expec-

tation value of f(¢) by

<(£(C?))-+>o : jg(f)ejﬁ(ﬂ?/?)- (4.8)

Furthermore, a field component at a point acts on a Space‘?o of
functionals by multiplication. These functionals are associlated
with a given time, and we do not try to relate here 35 to F. If

¥ € SO then
(‘?J‘ (¢, %) @)(7) =75 (¢ ) 1};(7) | (4.9)

The functional of n 1implied by the r.h.s. belongs to the extended
space ?o,gen'
Equation (4.8) allows us to relate the history integral to other
approaches to field theory, while Eq.(4.9) allows the stochastic
interpretation of ¢{if an assumption about the measure at time t 1is

made ).
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We come finally to the axioms proper.

(A1) (Integrability and continuity.) First of all, we require that
. /
1+ LI, c T (4,10)

Next, let fi""fn € T be such that their supports with reference

to the time axis are nonoverlapping. Then
Q(?) = Trk’: <£k’7€;> = te¥, (4.11)

(In case of half-odd-integer s, this functional is defined on
pairs, and its integration is to be carried out as indicated in the

Appendix.) Furthermore, if the f, are varied continuously in the

k
given topology of 7, and the supports of the fk with reference to
the time axis remain nonoverlapping, then the history integral

JD(n)elAf varies continuously.

(A2) (Relativistic covariance.) The history integral must transform
covariantly under a transformation of the proper inhomogeneous
Poincaré group, provided the transformation dces not alter the re-

lative time ordering of the functions f (We forego a more explicit

Kk
statement here.)

(A3) (Positivity at a fixed time.) Consider the 1limit in (4.11)

where each fk iz of the fornm

Q—k ({:’ i) = S(—t—-T—- 8(331:(0? 53 (jké '3'), (4.12a)

so that f € Egen [ef.(v) above]. Let
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Ek(t’ i) - g({ T+ ek\a:(o)f‘)) 3(7)=T<§k7?¢k>' (4.120)

Consider the Hamiltonian operator H determined by the action A

and normalized so that (cf. Sec. 34)

jg(y) QLA 7 (H 1)(7) = (4.13)

We now require that

e, S0 VT ) () ()20,

&w vk 59(73 S L(y*) (7 z0. (4.1%)

These axioms are of course modeled on the familiar systems,
such as in [17]. Note that we made no special assumption corre=
sponding to locality. This property corresponds to the representa-

tion of the field by multiplicative functionals.

We give two simple consequences of the axioms. First, the

| arguments of [14] can be easily extended to establish the following.
Lemma 1. The free relativistic scalar field (hermitation or

complex) satisfies the above axioms. One can take for T -the

space £, and for ¥, the Hilbert space described in [14].

Second, we summarize a part of the discussion of Sec. 2C as follows:
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Lemma 2. Take two functions fj and f, of (4.11) which refer
to the same component of the fileld (i.e. so that lj z lk). Let
both approach the limit of sharp time support at t = T, one from
above, one from below. If the relative time ordering of the func-
tions is changed, then the product (in the 1limit) is to be multi-
plied by -1 for s half-odd-integer, and unchanged for s 1inte-

gral,

Note that his lemma and the positivity axiom (A3) delimit the
choice of signs for the functionals f, if s 1s half-odd~integer.
The ideas of Sec. 2C, if developed more fully, should suffice to

determine the signs completely.

4C, Concluding remarks.

We conceived this work as providing a certain orientation point
for further research in the functional approach to guantum field
theory. We hope to have offered a glimpse at some of the possibi-

lities and at some of the complications.

One natural question is the following: In what ways does the
functional approcach differ from the other familiar and better-
established ones (i.e. the algebraic and that of Wightman)? We note
here three ways. First, the basic objects of the theory are the
time-ordered functions, rather than expectations of products of
fields or of operators. One might therefore envisage a theory where
the latter do not necessarily exist, but the time-ordered functions
do. Second, in the functional framework the dynamics is defined

by the action rather than by the Hamiltonian. Third, we have here
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a spin-statistics correlation also for nonrelativistic fields.

The action is indeed a fundamental quantity, which the two
other approaches do not seem to accomodate easily. We may illuétrate
the significance of the action by recalling the existence of
systems of field equations for which the time evolution can be
described by a Hamiltonian, but for which there is no corresponding

action. The equations have no local solutions [36].

With regard to spin, our work lends further support to the view
(expressed in [16] and elsewhere) that the spin-statistics corre-
lation should be topological in nature and that it should not
depend on the details of a relativistic dynamics, or of the

Poincaré group.

We may also emphasize at this point, that our presentation of
spin-statistics {(like that of other ideas) is %entative. There are
obvious shortcomings: We had to consider separately the cases of
the same component, of different components, and of conjugate
fields v and yp*. Furthermore, the requirement of Sec.UB, that there
must be continuity if relative time ordering of fields is not
changed, but continutiy is not imposed if time ordering is changed,

is somewhat ad hoc.

There are two other negative conclusions that we may draw.
First, the present work does not appear to contribute to the more
conerete {(i.e. calculational) applications of the functional

formalism. Second, our system of axioms is rather awkward, with the



b

multiply-connected spaces of integration and with the complica-
tions of non-standard analysis. This system does not appear at pre-

sent useful for investigating the general structure of quantized

fields.
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Appendix: Gaussian integrals over a quotient space

We wish to adapt the Gaussian integral over a real Hilbert

space M to an integral over the space [ef.(4.5)]
Ay =(H\§R)/ 54,13 (a.1)

For definiteness, we will take the isotrepic integral with variance

unity. Let u be the corresponding cylinder set measure on 'J-f

We select an extension H' of # on which the extension u' of u
has the value unity, and which is symmetric under reflection. Let
3{(’1 be the corresponding extension of }fq. We define a measure ué

on subsets Uq Qﬂél by letting

[Li (ui) = F‘CUB CIQ p'(u) is AeQinealJ) (A.2)

where U is the inverse image of Uq, with reference to the mapping
implied in (A.1). ‘If uw'(U) is not defined, we do not define uc'l(Uq).
One verifies that ugl is a measure. Integration on 2{;1 1s therefore

possible.

In so far as the original integral is often considered to be
over '}f rather than H', we may consider the integral just con-

structed to be over }}fq rather than over 'Jf(‘q

There remain the problem of transcribing the usual functiocnals
from F® to 'Hq. Consider first the linear functional <a,x> for

x €', and let



48

X=Aa +X"L) (a,xl>=0. (A.3a)

Then, on Hq, the functional becomes

S ({o3)=alal or —allal, (A.3b)

and in principle the sign can be chosen independently for each
pair {x,-x}. A requirement of continuity would reduce the value of
f to one of the two possibilities +|r| ||a|]|, the chosen expression

being valid for all x.

However, for applications envisaged in this paper, we must
require that the integral of f vanish. We may rationalize this
prescription by saying that there is no reason to prefer one sign
over the other, and the average will give zero. This applies also

to products of an odd number of such factors.

For a product of two such linear factors we set

3(5?‘:"‘2) =2, 00l 10y =+ {a, < . (A1)

The two signs in the middle are independent, but the over-all sign
cannot change if continuity is required. Sometimes this sign can
be determined by a positivity condition of Sec. 4B. The integral
of g over E-fq is easily evaluated by integrating over 3-? and

by using the usual rules.
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If the integration space is complex (this is the case for

spinor fields), then the following functional is of interest:

<a, X+i3><a’}(-ilj> = (3) X>z + (a, ij>2‘ (A.5)

We assume that a € & is real, for simplicity. The two terms inte-
grate to 2 < a, a > by the above conventions. On the other hand, if
we had x + iy twice on the 1l.h.s., then the two terms would give

contributions which cancel.

Another aspect of integratioh that is relevant for us is that
of factorizing the measure into é weight and a translationally in-
variant generalized measure. The concept of translational invariance
is not a priori given, since %ﬂl is not a linear space. However,
by considering (for a given y € ¥) a sufficiently restricted set

of functions, one can find a way to give a meaning to the equation

g(?*: "‘Z) = 9(&,42 +§%_Lﬁ), (A.6)

Admittedly, the way in question will be somewhat artificial.
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