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Representation Theory of the Universal Covering of the

Fuclidean Conformal Group and Conformal Invariant

Green's Functions.

by

G. Grensing

Abstract:

We present a special realization for the universal covering of the euclidean
conformal group. This group can be defined as a transformation group on the
euclidean version of compactified Minkowski space such that the action on this
space coincides with the usual one of the euclidean conformal group. We con-—
struct the representations of the principal and complementary series and derive
the intertwining kernels for the equivalent representations. The connection be-
tween representation theory and conformal invariant quantum field theory is
studied. To this end we also give the reduction of the temsor product of two

representations of the supplementary series.



The group SU*4) [1] is the universal covering of the euclidean conformal
group SO (5,1). The unitary irreducible representations of this group are comple—
tely known on the pure Lie algebra level of representation theory [2,3,4,5].

is the main goal of this paper to develop the global representation theory.

The investigation is motivated by the recent interest in conformal invari-
ant euclidean quantum field theory [6,7,8], the underlying symmetry group being
the twofold covering of SO (5,1). It is generally accepted that such a theory
becomes relevant if lnterpreted as a Gell-Mann Low limit [9] of a renormalizable

field theory [10].

As is well known, the two- and three-point functions of a conformal inva-
riant quantum field theory are, up to a multiplicative constant, uniquely de-
termined {11,121, For the four-point function a conformal invariant partial wave
decomposition has been given, which contains only products of two— and three-
point functions [13]. With this knowledge the system of coupled integral equa—
tions the n-point functions are known to obey [14] becomes tractable. This has
been shown by Mack [6]. Furthermore, he has drawn attention to the fact that
the two— and three-point functions have a pure group theoretical meaning. A

thorough investigation of this point will be given in this paper.

We present a special realization G of SU*(4) (Sect.l), which will be use-
ful in exhlbltxng the relation between representation theory and conformal in-
variant quantum field theory. A factorization of this group can be derived
(Sec.2) such that the euclidean version of compactified Minkowski space 1s,ob~
tained as the factor space G/G', where G' is the inducing subgroup for the uni-
tary irreducible representations of G. Our choice of the universal covering
group proves to be significant because the action of G on G/G' coincides with
the usual one of the conformal group (Sec.3). Thus, the representations of the
principal (Sec.4) and supplementary series (Sec.5) of G act on fields over
Euclidean space and they yield a transformation law, which is adapted to the
conformal group. The two-point functions appear in this context as kernels for
the scalar product of the supplementary gseries or as intertwining kernmels for
equivalent representations (Sec.6), and the three—point functions as Clebsch-
Gordan kernels for the tensorlproduct of two representations of the supplemen-

tary series (Sec.7).

After completion of this work we have received a preprint by Koller [15],
in which a similar program is carried out for the groups SOo(n,l). He gives an
independent derivation of the intertwining kernels by means of the nontrivial

element of the Weyl group.



1. The universal covering group of SO (5,1)

We use the following realization of the universal covering group of

SOO(S,I): G consists of the elements g of SL(4,f) which obey the conditiocn

gE = Eg* (1.1)

where (

o .
E = with e = [0 7] (1.2)
10 *e -1 o
and * means complex conjugation.

If g is split into 2x2-matrices such that

g1 8
11 812
g = o (1.3)
| 821 B22
the condition (1.1) reads
* *
B11® T € 8y Bip € T 7E Byp
(1.4)
%* *
8518 = 7€ By 8rp € = Byye

"

It is readily verified that G is isomorphic to SUX4) [1] by virtue of
a suitable reai, orthogonal transformation. Furthermore, it can be shown that
there exists a homomorphism of G onto SOO(S,I) which has kernel
z, = {+e, -e} , this yielding the well known isomorphism

SUX4) / Z, = SOO(S,]). (1.5)

2. TFactorization of G

The set of conditions (1.4) on g 1is now used to obtain a parametriza-
tion for G, which will be valid for all elements of G with the exception of

a lower dimensional maﬁifold.



The elements g of G with subdeterminant ]‘g”| # O can uniquely be

factorized into

8 =8 8 B3 8 (2.1)

each factor constituing a subgroup Ga (a = 1,2,3,4) of G. They are explicitely

given by:
- [+ 0
m g (A J (2.2)
. \ . 1 2 3 4 .
The 2x2-matrix A is built up by a four-vector a = (a ,a ,a”,a } according to
1.2 . 4
-a —-ia ia +a
A= | .43 ) (2.3)
-ia +a a —-ia
Gl is an abelian, four-dimensional subgroup of G.
. Qﬂ o
(2) g, = - (2.4)
0@

with @&, Q. € SU(2).

L}

. 1
Because G2 is simply SU(2) @ SU(2) we use the notation Q= (&, a ).

-A/2
3) 8, = | 1 0 (2.5)
+A/2
0 e 1

with A e1R.

This subgroup is isomorphic to the multiplicative group of the positive real

numbers.
%) &= lo L (2.6)

The matrix C has the same form as has been given in (2.3), the four-vector a

replaced by c.



3. THe connection with the euclidean conformal group

Obviously, the elements of G] . G2 form a subgroup of G isomorphic to the
twofold covering group of the euclidean Poincaré group. That suggests to examine
the action of G on the translational part G1 of G, the elements of which we

now write

10
8, = |Ix 1 3.1
According to the results of Sect. 2 we can uniquely factorize g By for
| (g gx)]'ll # 0 into

gg =8, 8 (3.2)

where g'eG' = G2G3G4' Hence, we obtain

X' =gy * By, Xigy *+ 8, X (3.3)

The computation of (3.3) for the various subgroups Ga (a=1,2,3,4) is facilitated

by means of the identity

% (XIX t + X X +) = x.x, |

2 2™ 2 o (3-4)

the right hand side being the usual scalar product over Euclidean space M; the

result is:

(1) x"=x+ a
(2) x' = Ax (3.5)

(3) x' =¢e"x

(4 x' x-xzc/1-2x°c+x2c2.

In deriving Equation (2) of (3.5) we have used the covering map = of

SU(2) @ SU(2) onto the euclidean Lorentz group L = S0(4) given by

1 :
A“v -5 tr {"g ?fv d' (3.6)

where ¢ = (g5,-i1) and & =(o5,+i1)

k=192,3 k=},2,3.
From (3.5) we see that the elements of G with |g]1I # 0 act on ng'

in exactly the same way as the euclidean conformal group on elements x of M.



Thus we can identify the factors occuring in (2.1) as translations, Lorentz
transformations, dilatations, and special conformal transformations. For that
reason we shall use the notation

g = (a, wld,c) (3.7)

for the elements with |gI1| # 0.

4. The principal series of representations of G

In this section we will construct the representations of the principal
series. To do this we must know the Iwasawa decomposition G = K A N of G with K
being the maximal compact, A an abelian and N a nilpotent subgroup [1]. In our

specific case, K is the unitary subgroup of G
+
={geCG| g g=el (4.1)

It is easy to prove that K 1is isomorphic to Sp(2). The remaining factors
occured already, A = G3 and N = Gﬁ.

The representations of the principal series are obtained as induced re-
presentations on the homogeneous space G/G', where G' = K' A N and K' being

the centralizer of A in K [16]. We have K' = G,, so that

' -
G' = G2 G3 G-ﬁ' (4.2)

The factor space G[G' is dlffeomorphlc to KJKJ However, we want to use the

compactified M as homogeneous space, this 1ead1ng to the decomposition (2 1}.

According to the general theory, the representations are induced by the
unitary and 1rreduc1b1e representatlons of G' which are trivial on N. The
complete system of representations of GzG3, which is just SU(2) @ SU(2) ®1R

can immediately be written down
Ny .
pg") = (M 1t (o, 4.3)

(zl,zz)( (zl)

L
where p is real and D a) =D (CL)@D( 2) a'")
is a unitary and irreducible representation of SU(2) @ SU(2) on the tensor product

1 3
¢2£ +1®¢ 2 Wlth i’l,zz =0,'2_’ ], 5’---0



- The representation space H consists of the functions
28 + 20+
6 : M -> ¢ 1]®¢ 2t (4.4)

infinitely differentiable on M including infinity. Finally, we may define the
representations of the principal series
ox'

¥x

1/2

Ulg) ¢(x) = D(g') ¢(x") (4.5)

with

-1

1- -1
g !

= v = .
x - Byx'8 X g X. (4.6)
and where we have to exclude the point at infinity. The representation is unita-

ry relative to the scalar product
. 4
(91269) = | 4,00 ¢, (0) d'x (4.7
and known to be irreducible, too [16,17].

To get a more explicit form of the transformation law (4.5), we use the

decomposition (2.1); the factors ‘ga(a= 1,2,3,4) yield:

(1) 1X(a) ¢(x) = ¢(x-a) (4.8)
@) vX@ex = 0% ) (@) sa7lw
3) 1M sx) = (M) M0

2 2.-A D(2

(4) Ux(c) d(x) = (1+2x c+x"c”) 1’22)(cx(x,c)) ¢(x+x2c/1+2xoc+x2c2)

In the last equation the SU(2) @ SU(2) element

a (x,¢) = (@' (x,0), @' (x,0)) (4-9)
is given by
' t 2 2
q'(x,c) = (L + XC)/1+2x-cH+x' ¢
*
a’'(x,¢) = (L +X C+) /1+2x-c+x2c2. (4.10)
Furthermore, we have defined A = 2 + i p and more accurately written

vX  with X being an abbreviation for the labels of the representation
of G’
X = (&)s0p3 4 =2+ 1p). (4.11)



After all, there remains to be shown that the integral (4.7) is actually

convergent for ¢EHX . This will be proved by the aid of the element
0 -1
8o = l4ic o (4.12)
of the maximal compact subgroup of G, which maps x into
g »x= A, x/x {(4.13)
where Ar is the time inversion. Obviously, this element is appropriate for

studying the behaviour of ¢ for large x. To compute the action of Ux(gm)

on ¢, we observe that @f{x,c) can be cast into the form

| +
afx,c) = A G (4.14)
2 2 2 ' K] .
where x' = x + x ¢/ 1+2%x-c+x'¢ and Gbx = (OLK, a, x) with
.1- i 1t ¥ -
&l = 1X = g . (4.15)
x (xz) 2 X
Then the final result is
=A 2.,% £.,%
gy 400 = B 0% (e ) pP 1t (e eax/x®) 4.16)
with Ob€=('9’+5) . From (4.16) we may derive the asymptotic behaviour
1
2.~ E‘(A*‘B") 2
|¢(x)|m c (x7) for x =+ = (4.17)

which yields the convergence of the integral (4.7) for arbitrary p inTR.

With (4.8) we come into contact with conformal quantum field theory: If
we continue x4 to imaginary values, that is, define ix4 = x° such that
S0(4) gets 800(3,1), we obtain the integrated form of the representation of

the conformal Lie algebra acting on fields over Minkowski space [18].



5. The supplementary series of representations of G

We proceed in analogy to the analysis for the universal covering of
800(3,1) [19,20] and try to generalize A 1in (4.8) to arbitrary complex values

§ and the scalar product (4.7) to
+
(¢}’¢2) = J 4’] (x]) K(XI’XZ) ¢2(x2) d X d Xy (5.1)

such that the resulting representation is unitary and irreducible. Thus, U¥X
mist leave invariant the bilinear form (5.1), which will serve to fix the de-
pendence of the kernel K(xl,xz) on (xl,xz). Furthermore, the integral (5.1)

must exist and be positive definite, which will yield the admissible range of §.

At first, we analyze the invariance condition on the kernel:

'e)) K(xl-a, xz—a) = K(xl,xz)

@ p*1* 2 (a) k(xR (T - r(xxy)
= (4= -A - X~ (4=8 (5.2)
3 O rex ), e O @ orx, uxy)
.(&) (xtlzlx?)_(a_é *) D(EI’RZ)(Q, ql'f") K(xl’xl) D(QI’EZ)(Q, Q,‘+,)+(X'2 Xz)—(4—5)
% X, 1772 X, X, 2 2
= K(xl,xz)
Choosing a = X%, in Equation (1) of (5.2), we see that K(x],xz) is a function
of X "X, only
K(xl,xz) = K(x]-xz,o) = 3 K(xl-xz). (5.3)
We take X, = 0, x, =x and define
] -~
K(x) = "'(—7)4 5 * K(x) _ (5.4)

to simplify Equatlon (4) of (5.2), this yleldlng

2y p*rtcay ko b2 (et =k ()
39 @ HT R = k) (5.5)
'y pFirt 2’(@ S R = D(QJ’ZZ)(@X)-? R (x)

where x' = x + x* ¢ L1+ 2 xee + xzcz.



The Equation(4') of (5.5) requires
E(x) = D(£1’22)(G;)' 1::
x" 0 (5.6)

with Kb being a constant, invertible matrix. To see whether Equation(2') of (5.5)

is satisfied by (5.6), we use

. , * 4
(@ @'y = (@, @N(a,apce’ a6
to transform (2') into
L £
« 0@ @0 (arn = 0P e @0" can, (5.8)
where we have set
I ¢ 2N 27,
Ko D172 (CL%) Ko' {5.9)
The condition (5.8) requires 9,]==22 and Ko is determined to be
i i i i
172 1 2
K =k § 8 (5.10)
o klk2 kz kl
Finally, Equation(3') of (5.5) shows that & must be real.
Collecting the results, we get: '
I £,%) 2,2
K{x) = 5 e DT 1* 2 (a,x) D1’ 27 () K
(x™) .
i - i Dk o= —h. (5.11)
Klllek sl s 2k Lppky = TRty
[} k . _
172 2 1 12,k2 = 22,...,+£2

with &§ = 6* and 21 =

At this stage, it is convenient to use another realizationm of DCRI’RZ)(Q/)
:1th ll = 22. This representation is equivalent to the %-fold tensor product
® A with 21 =%, = 2/2 acting on the completely symmetric, traceless tensors of

rank % over M [21]. We denote these representations by D(z)(A).

To determine the analogue of (5.11) in this realization, we must know

T(e(x,c)) = A(x,c). (5.12)
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This is done with the help of (3.6), the result is

A(x,c) = g(x) 8(X+x2c/l+2x'C+x202) (5.13)

where

g,,(¥) = 8, 2 BV, (5.14)
P4

2]

We remark that g(x) is not contained in Lo’ n(a%) is the product of g(x) and
the reflection with respect to the second axis. However, the representation

D<2)(A) of Lo can be extended to a representation of the complete

Lorentz group. This property of D(z)(A) will be used in the sequel.

Repeating the arguments used to derive (5.11), we get

- Hpson HpVieeny

K (x) 271 SRETED)

g~ 1 1 HaV
= k(x) —5— ,_ -T-Z {g(x) g(x) 2m) -traces }
2) 4-5 Q! nesg
(= (5.15)
where S with elements r is the permutation group of £ objects. We slightly
changed the notation in (5.15) in writing more specifically kX for K because

of the invariance property

X X X X
with x = (2;6) being defined by

L=08 6 =4-8. (3.17)
The last requirement we have to fulfill is that the invariant bilinear

form

(¢],¢2)X = J ¢T(x1) Kx(xl,xz) ¢2(x2) d“x] d"x2 (5.18)

be finite and positive., For this integral to be convergent, it is obviously
necessary that_& > 2. To give a sufficient answer, we use Fourier transforma-

tion because Kx(xl,xz) is a function of X,7x, only. The Fourier transform

- 4  —ipx

¢(p) = [ d'xe ¢ (x) (5.19)
of ¢(x) exists owing to & > 2 and the asymptotic behaviour (4.17). The compu—

tation of _ _
-~ 4 _I
KX(p) = f d'x e "P* gX(x) (5.20)
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will be reduced to [22]

_ 2 ey [ oqb . -
o2y™8 - m° 1(2-9) J d'p  ipx ,2)=2+¢

' 5.21
228 (o) (2m” (5.21)
which in turn may be used to show that
¥Xp) » cp)?® for p » 0 (5.22)

and leads to the restriction & < 4. Hence, § must lie in the interval 2 < § < 4.

If (5.18) is expressed in terms of the Fourier transforms we get

4

6.0, = | L2 s Kie) 0o (5.23)
(2m)

Thus, the positivity condition amounts to the requirement that

Hpeeely Vyeeevy > 0

L

=X
ey &P 2y ey (5.24)
]
for a nonzero, completely symmetric and traceless tensor z of rank 2. This con—
dition is trivially fulfilled for £ = 0, if the constant k(0,4-8)
appearing in (5.15) is chosen to be real and positive. For & = 1 it yields

because of

iM% T(s-2) x:

k4 e (3, 4-0) 57

2

2-8 PP

)TNGB (822 1 (5.25)
r(5-6) " p

that § < 3 and k(1,4-8) > 0 , This condition is equally valid for g = 2, as
cen be shown by a somewhat lengthy computation, and is indeed known to hold
true for all & # O [4].

We state the final results: If & is restricted to the interval

2 <8 <4 for £ =0

2 <8§<3 for L #0 (5.26)

the representation (4.8) with x (2,6) and 2] =4, = ¢/2 is unitary with

2
respect to the scalar product (5.18), where the kernel is given by (5.15). These
representations are said to belong the supplementary series. We assert, but

do not prove that they are irreducible. At the integer points y = (£;8=3)

the exceptional series occurs.
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The kernelKX(xl,xz) is the inverse dressed propagator of conformal in-
variant euclidean quantum field theory. The two—point function for a field with
" half-integer spin can be obtained by taking an appropriate direct sum of re-

presentations (4.3). But these representations are not irreducible.

6. Equivalence of representations of G

The series of representations derived in Sections 4.and 5.are known to

exhaust the irreducible and unitary representations of G [4]. These representa-

tions are, however, not all inequivalent.

]
To study this question, we look for a bounded operator K of HX into HX such

¥
that K intertwines the action of U%(g) and UX (g) for arbitrary g in G
¥
UX (g) K = K UX(g). (6.1)

The kernel K(x,x') of K with

$'(x") = (K$)(x) = { K(x',x) ¢(x) a*x (6.2)
thus has to satisfy
X (g) ¢'(x") = J R(x',x) UX(g) ¢(x) ax. (6.3)

The computation proceeds along the lines of Sect. 5. We only state the

results:
L

X and 0% exists if X' = X

An intertwining operator for the representations U

with
PO S — —_—
(21,22) = (22,21) A =4 - 4, (6.4)

The kernel K(x',x) = K{(x'-x) has the form

K(x) = (ﬁ;’—_—ﬂ D(EI’RZ)(Q,X) D('Q'I’Q'Z)(O,E) K, (6.5)
x)
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. . . + i ,k = —2’ ’ll.,+24
where 1112 11 12 1 2 1
K =k & § 1.,k = =8, 000,18
k * ] H
0 kK, 2k 2’7 2

We note that, if necessary, the kernel has to be appropriately regularized [22].

1
2

The operator K is invertible, this statement yielding that the follow-
ing representations are equivalent

uX(g) = t¥(g) 6.6)

X =(232,38) X = (Ry,834-0).

However, we do not give the proof that 'K is invertible and will treat with
some detail only the case of the principal and supplementary series with
Ly = 22 = 3,/2. As has been explained in Section 5, we may change to an equi-

valent representation acting on completely symmetric, traceless tensors over M

such that the kernel takes the form

- Hy vl VieesV
X i 2 1 % v 1 )
K™ (%) = k() - {g(x)
(x2)4 A T HESR

FVnn) HoVr(1)

g(x)

-traces }

(6.7)

Making the substitution 8§ + & in (5.13), we observe that the resulting ex-—
pression is identical with (6.7). Thus the kernel (6.7) plays a twofold role
for the representations of the supplementary series as intertwining kernel and
as kernel for the scalar product (5.18). The kernel for the principal series
of representations may be obtained from the kermel of the supplementary series

by analytic continuation in 8.
As can immediately be shown, KX and K* must obey the relation
J Kx(x-x") KX (x""-x") d4x" = 1 54(x—x'), (6.8)

which imposes a restriction on the constant k(i) in (6.7). The value of this
constant may be guessed by treating the low dimensional cases, e.g. for =2

one must use

v HaV AY]

v
]g(X) 2

2, HiHaViVa 1 H
k' A)(X) = k(2,0) —— 5 { 8(x)
2.8 2
(x) .
1 M2 viVa2
5 8 g Te

u Rn
: 2,800) | Zgtx) 2 - (6.9)
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A possible choice, which is compatible with the results of Section 5, is

- - -1
KGO =7 Fegeesd 1 (5-1) 8(6+1)... (s+-D)} (6.10)

s

- Thus, for ¥ ir the principal series the representations with x=(2;2+ip)
and §=(2;2—ip) are equivalent. For x in the supplementary series we get new
representations, because 5 takes the values 0 < § < 2 for & = O and
1 <8 <2 for & # O. Hence, the admissible range of & for the supplementary

series is:

0<38d<4 for 2 =0

(5 # 2) (6.11)
1 <& <3 for £ # 0.

If § < 2 the kernel (6.7) must be regularized such that the integral (5.18) is

convergent.

7. Clebsch-Gordan coefficients for the tensor product of representations of

the supplementary series

In this concluding section we make some qualitative remarks about
Clebsch~Gordan kernels of two representations of the supplementary series, which
play the role of three-point functions in conformal invariant euclidean quan-—
tum field theory.

The problem we want to solve is the decomposition of the tensor product

Ul(g) QDEF(g) acting on ¢12(x1,x2) into irreducible components. We will restrict.
ourselves to the spinless case, X =(0;¢;) and Xy = (038,) | the general
case can be dealt with in an analogous way. The decomposition of the Kronecker
product is implemented by a kermel Cx(xl,xz;x3) such that

4

where dx means summation over (21,22) and integration over A.
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We have to specify which series of representations of G contribute to the
integral (7.1): From the analogous problem for the universal covering group
of 800(3,1) we know that only representations of the principal series occur [23].

We shall assume this to hold true in our case.

The decomposition (7.1) must accomplish

U (8) @ Uy(g) by,(x ,x%)) = { dx I CX(xy %y 32 VKR 0K (xy) d¥xy »  (7.2)

which serves to determine the explicit form of the kermel:

X, v — = ok .
(1) C (xl 3,X, a,x3 a) C (XI’XZ’X3)

(2) c§(A"xl,A“x2;A“‘x3) - ci(xl,xz;;3> 0172 (g 7.3

& @ e 2 K, ek se MmOy i) ()

) (xf/x;2>_slcx§/x;2)_62 Ci(X{,Xé;X§)=Ci(xl,x2;x3)D(21’22)(6L(x3,CD(X§/x;2)AHA
wvhere X; = X *+ xgc/l+2xi-c+xic2 i=1,2,3.

We use Equation (1) to define

X - . = X - — .
C (XI-XZ,XZ XB)- =C (xl X3,X2 XS:O) (7-4)

and, furthermore, set

- .—6 _6 -
Kixpx) = 1 L, Kexy) 7.5)

so that the remaining Equations of (7.3) take the simple form
-~ -~ (2 ,2 )
_l —_
@y U0 ) = e 0 U @)

-4+A+61+52 = - T
CIINCE cXe” "k e "xy) = €Nk hxy)

(7.6)

(4" CX(X},X‘Z) = Cx(xl,xz)
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-~

Equation (4') requires CX(xl,xz) to be invariant with respect to special con-

formal transformations. Because

x
1 2
2 7 (7.7
1 *2
X X 2
172 _\2 2 2 (7.8)
and { —5 5 )] (x] XZ) / X" x,
1%
are the only invariant expressions which can be formed out of X, and x,, we get
that
-7 - X X
X _ X _ 2 2 A
c (K],XZ) = C{((x, Kz)) / X, Xy 3 T T T3 ) (7.9)
1%

-

The dependence of CX on x]/xl2 - XZ/XZZ must be used to build up the tensor
character of the kernel.

Now we investigate Equation (2') of (7.6): Obviously, the sum 21+22 must
be an integer. For these representations it is known how to construct the repre-
sentation space with the help of temsor productsof M [21]. Thus, only those
representations of the principal series contribute to (7.1) which satisfy
L. = 22, because on 2-fold tensor product of xl/xI2 - x2/x22 is already symme-

]
tric so that the antisymmetrization with respect to two indices yields zero.

-

Hence, we obtain that CX(XI,Xz) looks as follows:

‘ H 1
-~ Hywoold - x X X X
X My %2, 22 1 %2 1 %2 8
C™(x5%,.) =c ((X] xy) /xl x,7) { (;7 -;5) ---(;E- ;5) traces }
1 2 | 2 {(7.10)

The determination of the scalar factor in (7.10) is easily done with the re-
maining Equation (3') of (7.6),

]
- 7 (—24+%+1p+8 +8.)
- 2
Cx((xl_x2)2/x]2x22) = c(X) [xlzxzz/(x]-xz)zl b2 (7.11)

To write down the final result it is convenient to introduce the abbreviation

- X X

. 13 23
X = x7x (Gk=1,2,3) x = —= - =5~ (7.12)
13 *23
so that ; by
C (x],xz;x3) = (7.13)
1 _ N l N . 1 _ ) _
- 2 5 ( 2+,Q,+1p+5]+52) 2 5 (~2+2+1p 6]+52) 2 _2..( 2"'51"‘10"'6] 62)

Ll]“ H

{5 - X L traces .
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This kernel has the following invariance property

U, (8) ®U,(g) O U (g) CX(x,xy3%q) = CM(x 4%,5%,). (7.14)
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