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I. Introduction

The goal of Statistical Mechanics is to provide a theoretical explanation of the
thermodynamic behavior of the macroscopic systems. By the thermodynamic behavior
we mean, that the states of isolated systems, as time goes to infinity, approach
the equilibrium states (consisting of one or few homogeneous phases), and that

these equilibrium states may be specified by a small number of macroscopic para=-
meters. Since the link between statistical theory and thermodynamics lies in the
proper enumeration of the equilibrium states, the relevance of the classifica~

tion of those, is evident.

The conventional approach has been to consider finitely extended systems calcu-
late the equilibrium values of interesting physical quantities according to the
ensemble theory, and subsequently take a thermodynamic limit, N, V, goling to
infinity, keeping N/V finite., V is the volume of the system, and N is the num-
ber of particles in the system. The reason for taking the thermodynamic limit
is that only in that limit the intensive quantities have sharp values, with
zero fluctuations around the ensemble average, and therefore we are justified
in representing an actual physical system by an ensemble. Moreover, most of the
phenomena which are characteristic for large systems, such as cooperative be-
havior for instance, can be given a presice mathematical description only in

the limit of truly infinite systems.

As far as the equilibrium states are concerned we are in the following situ-
ation: in the case of finite systems the equilibrium states are given by stati-
onary ensembles - ensemble density in the classical case and the density matrix

in the quantum case.

Accofding to the ergodic hypothesis, there is a unique extremal stationary
ensemble of the isolated system, a microcanonical ensemble. If the system is
not isolated, one may introduce other statiomary ensembles (canonical, uniform)
which however share the common feature that the density function, p , is a

:t.)

function of the enmergy only ’, o= p (H)., In the thermodynamic limit the
differences between various ensembles, which are due to the different boundary

conditions, disappear.

We suppress here for simplicity the other constants of motion, which arise

from universal conservation laws. Compare discussion of that point in (1).



Given any of the mentioned stationary ensembles, p, we have the means of cal-

culating the expectation equilibrium values of the physical observables,

<A>$ = Ty (gA)

Taking a thermodynamic limit defines a positive, linear functional on the set
of localized observables of the system (as we can expect that Um { A7€v
exists, only if A 1is localized in some finite region). By defin?%ggn, this
positive, linear functional, called a limit Gibbs' state, 1s an equilibrium

state of an infinite system.

The necessity of taking always a thermodynamic limit makes attractive and use-
ful the idea of dealing from the beginning with the infinitely extended systems.
However, new technieques are needed for the description of a system with the
infinite number of the degrees of freedom, and those are provided by the alge—

braic theory.

The main purpose of this investigatiom is to classify equilibrium states of
infinite quantum systems, in the algebraic framework, without recourse to the
finite systems. It is in the spirit of the algebraic approach to consider a
simple model, associate an algebraic structure with it, and then to proceed to
the abstraction, asking whether the found structure is the most general, or
simplest possible or what additional conditions are required for that structure
to be unique, or whether the model can be extracted from the general structure.
We shall take this attitude here and concentrate on an example of an infinite
ideal Fermi gas. Thanks to the simplicity of that example we may carry through
our ideas in an exact way and we shall find the sufficient conditions for the

thermodynamic equilibrium states of the system.

This comndition — a certain stability property of the equilibrium state - replaces
the traditional assumption of ergodicity of the system. We talk about the
ergodicity of the system if there are no other relevant constants of motion
besides energy and the other universal constants. Since a system of noninter-—
acting particles is highly nonergodic, the example of the ideal gas illustrates
particularly strongly the role of the stability condition in the determination

of the equilibrium states. In the last section we shall discuss briefly the
connection of our result with the Kubo-Martin-Schwinger condition for a general

system.



In Section II we shall develop necessary algebraic methods, in Section III pro-
ceed to the description of an ideal Fermi gas in algebraic terms, in Section IV
discuss our concept of stability, in Section V giving the classification of

equilibrium states in our model.

iI. Algebraic Description of Infinite Systems- Observables, States, Dynamics

1. The fundamental notions in the mathematical description of the physical

systems are the observables and the states.

In the quantum mechanics of finite systems they are represented by self-adjoint
operators in Hilbert space, and the states by vectors or more generally by the
densitiy matrices in that Hilberg space. In the infinitely extended systems we
identify the observables with the self-adjoint elements of a suitably chosen

C:talgebra, and the states with the positive linear functionals on the algebra,

We would like to stress the importance and plausibility of this generalizationm.

Plausibility follows from the fact that in a finite system we may also consider
as a relevant structure a C=talgebra of bounded operators in a Hilbert space,
55 (}t). We argue that most observables can be described as bounded opera-
tors (or bounded functions of unbounded operators) acting in H » and therefore
should be identified with self-adjoint elements of GB(IKJ.
As for the states, given either as vectors, ¢ € ]{ s Or density matrices,
P (p> 0, Trp =1) in » their role is to assign to every observable

A of the system an expectation value, defining a positive, linear functional

on  B(Y)

KAV E w, (A)= (V¥ , A ) 2.1)
CAZ F wo(A)=Tr (pA) (2.2)

The mathematical equivalence of the two descriptions follows, since given a
*
state, w , on a C -algebra, C?l, one can always construct a Hilbert space

5;6 w , and a representation of (7Z by bounded operators acting in Jﬁ w ,



. . * ¥
T (0D , with a cyelic vector ) £ € w , such that the

expectation value of A in the state w is given by w (A) =(@, m(A)Q ).

In the finite case all physically meaningful representations (faithful) are

determined by vector or density matrix states and are unitarily quasi-equivalent.

In the case of infinite systems the C*ﬂalgebra of observables admit faithful
inequivalent representations. It has been shown in particular by Takesaki (2)
that the representations determined by equilibrium states at different tempera-
tures are disjoint (inequivalent). In other words there does not exist an irre-
ducible representation of Gl in a Hilbert space, such that all states are
either vector or density matrices in that space. Therefore in the case of infi-
nite systems we have to use algebraic description because there is no preferred

representation.

*
The C -—algebras suitable for the description of physical systems have to satisfy

certain general properties:

3 . , * oL
To each bounded volume Vc R” there is associated a C —algebra ) ’
satisfying
1) causality : VynvVy= @ - [C[(ﬁ) s CX.(VZ)J =0 (2.3)
2) isotony: V,e Va — oL, ¢ vy (2.4)
From 2) it follows that CX‘L = (//(j;(v ) is an algebra of local obser—
ve R

vables. .

. \ Cl, oL, * .
The completion 1nm norm = ( is then the C -algebra of all quasi-local
observables.

For the material of this subsection we refer to (3), (4).

In the following subsections we are going to describe the algebraic methods and
concepts necessary for the application to Statistical Mechanics. Most of the

*
content can be found in standard monographs on C -algebras (5), (6), (7), or in

*
) A vector Q€ J{w is called cyclic, if the set {vm(A)Q; A el

is dense in ?g) . A representation T, is

then called cyclic.



a treatise on algebraic theory in statistical physics (8), (9).

2., Algebras

Definition 2.1 OL is an algebra if it is a linear space and the product be-—
tween its elements is defined, so that A B € O , if A,3 € O(.
The usual laws of addition and mitltiplication hold here.

Let Ol be an algebra. An involution is a mapping OL » OU such that

* % X % * K *
(&) = A, (»A) =xA, (AB) =B A (2.5)

A* is called adjoint of A. If Af*= A, it is called self-adjoint. If AA* = A*A,
A is called a normal element.

An algebra Ol with involution is a f—algebra.

An algebra oL is a normed algebra if for every element A ¢ (], there is de-
finﬁd a norm of A, ||A}| , satisfying the usual propeities of the norm. If

LA ] = | [A]] , it is a =-normed algebra. If a -pormed algebra is com-—
plete with respect to its norm {(every Cauchy sequence A in ol , has a limit
A in (R-), it forms then a Banach *-algebra. "

* *
Definition 2.2 A C —-algebra is a Banach —algebra, for which

]2 (2.6)

[l a%a || = []a]

3. States and Representations

Definition 2.3  Any numerical functional, w , assigning a complex number,
w(A), to the algebraic element A € oL , Will be called a
state on Cﬂ, , if it satisfies
a) linearity: w(oA + B8 B} = aw (A) + Bw (B)
b) positivity: w(A*A) >0, Ac oL o

c) normalization:||w||= 1 = w(I)

Definition 2.4 A representation of O is a homomorphism a - m ()
of OL into the bounded operators acting in a Hilbert space
A representation is faithful if the mapping is isomorphic.

Two representations are equivalent if there is a unitary mapping U, from H 1

o K,



uwt (00 B = w2 (OL) (2.7)

A given representation defines many states:

every vector y € ¥, gives rise to a vector state

w,(A) = (¥, m@¥ I, A € Ot

every density matrix p on 'J’C, defines a normal state

wp(A)=Tr(oA) R A e Ol
If the representation is irreducible, states given by w, are pure states; a
state is called pure if it is an extremal point in the set of all states on ,

i.e. it is not possible to decompose w so that

W = Awg + (I-A)Ywpr , 0<2A < 1, wy ¢ uw

*k

Theorem 2.1 To every state « on a C —algebra, , there corresponds a cyeclic

representation vw(a), unique up to unitary equivalence,

w @ = (9, @Wa ), A e OU (2.8)

A representation is called cyclic if there is a vector & Eme such that
{vw(A)s‘z; A €0l} is dense in?(’(, W
This representation associated with a state w 1s given by the so—called GNS

construction (Gelfand-Neumark-Segal).

The outline of the construction is following:

tee - J= {AcOl: w (A* AFO}. Jis a tefe ideat or O (T € O
XeJ} AeO‘[,-—> Axe’ j)

Consider a factor spaceOZ/j (equivalence classes module J ). If gA Ea/j’ denotes
the equivalence class of A, then EA = gB if A-B € J.

This factor space with a positive definite scalar product

*
(€, %;B) = w(A B)



is a pre-Hilbert space. Completion ofOl/J with respect to the norm induced by
that scalar product is a Hilbert space, d(, w. One may check that the definition
of the scalar product is independent of the choice of the representants A and
B in the equivalence classes. The ideal J is the.zero element in the factor

spaceX/]. We define a representation of OU in ¥y by
One can verify that it is really a representation, i.e.

1) ww(A) is bounded

2) ™, Preserves the algebraic structure
* *

D TLA) = (A

4} An equivalence class of the identify, £ is a eyclic vector in H w

I’

T, & =k, ae O
{WM(A) EI; A e®) is dense ingttu .

*
In the definition of a C —algebra we have required that it be closed in norm.
This means that using the norm, we introduce a metric in OL, defining the

distance by

d (A, B)=[{a -3B]| , A,B €0l

and the notion of convergence in this metric:

A% A it %igg_HAH-AH =0

The algebra is closed in norm if every Cauchy sequence ([‘An*Am[l < gy for
y = 0) has a limit in O .

In the algebra of bounded operators in a Hilbert space,ﬁB(?O, we may introduce

all n,m > N and ¢

also weak topology:

Ay 7 A if Lm (¥, A6 ) = (¥ ,A )Y, éeY



Definition 2.5 A weakly-closed —algebra of bounded operaters is a von Neumann
algebra.

We shall consider only algebras with the identity, I. Then:

The commutant of O is a set OLJ

The bicommutant of(x, OL”, is defined as a commutant of a commutant. Von Neumann
algebras satisfy Ol = O(/”

The center of the algebra is a set of elements in the algebra commuting with

every A ell, i.e.
3 = A" A U= {Aco: cA=AC, Ce&}

If a center of a von Neumann algebra is trivial, i.e. 5/ = { A I}

we call that algebra a factor.

Let 7(@) be a representation of OL in®@. @) is a normclosed subalgebra of
P . Wwe can enlarge 7(0) by adding all weak limit points of w(@):

F(L) —  JLE)y = T)”

Definition 2.6 The representation m( ) is called irreducible if

7 (o) = BCH)

Theorem 2.2 The cyclic representation 7({) determined by a state w 1is irre-
ducible if and only if w is pure.

Definition 2.7 7m0 is called a primary representation if 7(@)'' is a factor.
A state w which by the GNS construction gives rise to a factor

representation is called primary.

The last general concept we want to describe is the notion of states normal
with respect to each other (belonging to the same family). From every state, w,
we can construct a class of normal states of mw({@)'' i.e. states represented
by the density matrices. They are the normclosure of the set of states

{w, , 4 eOL} , where

W, (B) = —w (ABAY) , w(AN)> O
w (A A"
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4, Symmetry transformations

The symmetry transformations of space-time are represented in the algebraic

frame as automorphism groups of the algebra. The most interesting for us are

Space translatioms:

R® 53X = oty - A= o (A), & (0L)= CL
Gauge transformations:

0,2y 30— g - A= Xgl(A), xe()=A

Time evolution:

RYs 4= sy Ao oy (A) .« (00)=0L

b

which are strongly continuous, i.e. for instance for time evolution

Lm lta CAY- A =0 Ae O

The algebra,d, of quasi-local observables will be in general noncommutative.
However, on physical grounds we assume that the system @@, at) has an assympto-

tically abelian structure. This means that for any A, B €,

bm [ [ «u(d),B]] =0 (2.9)

t>®@

The motivation behind this assumption is that the measurements of two non
commuting local observables become more and more compatible, if they are per-

formed at different times and the time difference tends to infinity.

The physically most interesting states are the states invariant under the
transposed action of the automorphism groups. Without specifying the details,
let ag be an automorphism group of O, representing a symmetry group G of
a physical system:

We say that a state, w, 1is invariant under ag if

w(aa(/‘\)) = W (A) , Ae 0 (2.10)

We say that a state, w, is extremal invariant under ag if it is an extremal point

in the set of all ag-invariant states.
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The interesting characterization of the states is by their cluster property
with respect to the group of automorphisms which act in an asymptotically

abelian way:

1. Strong clustering

. (2.11)
lim,., | m(ag(A) B- m(ag(A)) w(BY| =0

2) Weak clustering
}li%"‘(l;‘nf dg ( wla (B - w(a (&)  w(®=0 (2.12)

The notion of weak clustering is defined only for amenable groups i.e. groups
possesing invariant means. The previously mentioned primary states are strongly
clustering with respect to any asymptotically abelian group, whereas the ex-

tremal invariance is equivalent to the weak clustering of the state. Gompare (10).

III. The Infinite Free Fermi System

I. Algebra of Observables and Dynamics

An infinite system of non-interacting fermions can be idealized as a CAR -
Canonical Anticommutation Relatioms - algebra,m.. This algebra is defined as
the uniform closure of the algebra generated by Q(«E),O(.G)", where a{),

a L-S—_)* , are the annihilators and creators for one particle with the wave
functionf. They are defined as mappings from the test functions space (space

. . 2
of all square integrable functions, £ (Kg)) to the operators O.(«E) ,

L*(R®) 2 & — als)

linear in ~§ , and satisfying CAR

{a($), a(qh

0 = {alg), alg)) G0
{a®’, a(@}

(§.9) , §.9¢e L&)

i
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where { , } denotes the anticommutator, ( , ) is the scalar product in

the test function space L2 (R? ) R

(§(0), 9(0) = { $(x) q(x) d’«
and o (§) = (f0) alx)d®’x , a(§)*= ($00" a(x)* o
are the smeared values of the local fields

{a (X7 a(y)) = s(x-y) (3.2)
From the CAR it follows that Q(f) and Q(3)* are bounded, in fact

fo (9] = aH)*[ = | £ 3.3)

where [[{| is the L% -norm of the test function —E. . The local algebras
*
a(v) are defined as the norm closures of the —algebras generated by all OC&) »

a(§)¥, with support (&) in V.

Because of the anticommutation relations the local algebras, (L (V), do not
satisfy causality condition. Therefore Ol is not an algebra of quasi-local

observables. One can, however, define even and gauge—invariant subalgebras ofa, :

*
OLe - subalgebra generated by even polynomials in @ and L
@lg = subalgebra generated by polynomials with equal number of Q

¥ .,
and O in each term.

We have the following relations among them

Otgcaec@(

e can choose either a¢ or 61 as the relevant algebra of observables.
The time evolution is described by the action of orautomorphism on the gene—
rators O.G):

o (a(8)) = a(s,) 3.4)
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where &t is the solution of the Schrédinger equation for a free single particle,
with the initial conditiom -go = ‘f . In the momentum space we may write

symbolically . _ - »
oy (Q°(R) = e @t a(p) (3.5)

where ¢ () is the energy of a single particle and Claﬂ*is the creator of a

particle with momentum p.
2, States

Since every element in (1 can be uniformely approximated by the algebraic
expressions in terms of a(}), a(4)¥ with 'f & JL*(R¥Jwith compact support,
a state, w , on O due to linearity and continuity is uniquely determined by
the expectation values of any finite products of &)6 and O.*’s . These

are so—called n-point functions

. (a({n)*,,. Q(gm)): W m ({4 3,“) (3.6)

or in terms of the ditributions
w (Q*(Pn)--- Q(me)) = Wam (94-,--- (_Lrn) (3.7)

There is a special class of states deserving our attention - the quasifree
states ~ which are defined as even statesjﬁvanishing on any odd element in a ),
with vanishing truncated functioms, an , for alln , m , with n + m)> 2.

The truncated n-peoint functions {correlation functions) are defined by

Wam (§a- g) = Z 0 Wy, (i Giad- Wig (8. 954) 3-8

where the sum is taken over all partitions of (f,,,...,f..,g,,,..,%n) into disjoint
subsets, including the identity partition. c(w)=(—1)k, where k is the number

of permutations needed to rearrange the elements (-S‘,..., 3") in the order in
which they appear in the partitions.

Wam~ functions of a quasi-free state cann all be expressed in terms of 2-point

functions and if in addition the state is gauge invariant *) then W, =W, =0,and

¥#) A gauge invariant state is a state invariant under the action

A

of the group a, , 0 <8 £ 21, o, ()= expiB)A(), §ed(R),

9
w (ag A =u @, :

B * ¥
It follows that the expectation values of any monomial Q,-- Qu - "Om

for n £ m, vanish.
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Wom = det{WM (£, SJ-)} (3.9)
For a thorough discussion of a CAR-algebra and its states we refer to the

thesis of R.T. Powers ( 11 ).

A homogeneous ( translationally invariant ) gauge invariant quasi-free state is

given uniquely by its 2-point functions of the form

o(a(p)¥a(g)) = W(p &)= 8(p-g)¢(£) (3.10)

where p is any function satisfying (< o(p) < 1.

Any such state is automatically stationary
. Pl__ X
s \/\/ (-P)Q,f): —'—Eng— N(Q )q_)‘t) = (0 y (3.10a)

and furthermore as shown by Dell'Antonio (12 ) it is primary.

If p(E) is a Fermi distribution, this quasi-free state describes statistical
equilibrium state of an infinite ideal Fermi gas. This poses the question why
the other stationary, primary, quasi-free states, with different ome-particle
momentum distribution p(p) are not equilibrium states.

It is well recognized fact in standard statistical mechanics and it is always
pointed out, in somewhat vague words, that one should imagine adding of some
impurities to the noninteracting system, to provide the mechanism for the ad-
justment of the moments of the particles to the equilibrium distribution. How
this mechanism could be implemented in a precise way in the infinite systems
was however not known.

We have found that Fermi distributions are simgled out among all primary,
stationary states by the requirement of sfability under local perturbations of
the dynamics (which we shall describe in the next section).

We propose thus the following definition
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*
A state, w, on a C — algebra, Ol, representing a physical system, is a

statistical equilibrium state, if

1) « is stationay, i.e. invariant under time evolution
v (ay (A)) = u (A), Ae O
2) w is primary

3) w is stable under local perturbations of the dynamics

We shall analyse the consequences of these requirements in section V. The next
section will be devoted to the precise definition of local perturbations of

the dynamics and the notion of stability.

IV. Stability

1. Perturbations of the dynamics

Consider a C* -algebra, Cn, of bounded operators. Let o, be a strongly conti-
nuous, one-parameter group of automorphisms of Ol . And let w be an oy~
invariant state on CL .

By the GNS prescription we construct a cyclic representation of Ol , = (Qy,

with a cyclic vector Q, such that

w (A = ( 2, vPa) ,

Since w is o, —invariant, it follows that o, can be unitarily implemented in
the representation 7

" (ay (A) = U T @ 4.1

with UtQ =Q ,

by defining the action of Ut on a dense set of vectors by
U, A @ = 7 {ae (A )0 (4.2)
Let us denote the infinitezimal generator of Ut by H :

d iHt (4.3)

BE= (1350 dip t

H is of course a global operator, not in general affiliated WithC% .

It is also not the physical energy operator, since the latter defined as a



space integral of the energy density
3
E =/dxe (x)
has infinite fluctuations which are subtracted out in the construction of H
(H=7 a% (r (e (x) -7 (e (x)' ), see (13),
From now on to simplify the notation , we shall omit the representation

symbol, m , writing simply A instead = ( A ) etec.

let h=rh" e Ol. For any such h, we define a perturbed automorphism of OO ,
in the following way ( 14 )

h) (h) (h) %
o, (a) = Lo, A Xy, (4.4)

(h) » + 3
where )(t satisfies the following

1) Xﬁ(h) e Ol

. (n) (h) (h) -
2 3 ii = . o, (b)) X, =] 4
t
3 h) 2
) XE : Z (-1)" jd‘tn"'g dtyoty, (h)--- oty (h)
is a unique solutlon of 2) and satlsflgg the so—called cocycle property
(h) (h) (h)
4’) Xt-’-S = X‘E d"t (Xs (4'6)

-4
5 X0 (X7 4.

The infinitezimal generator H defined by

LHE

- ) , (HE
H= - i g (X e™) o - X, oulb)e s X, He'
i-0

is

H = H-h

(4.8)
2. Perturbation of the state and the stability condition

We discuss now the effect of the above described local perturbations on the
state of the system. We assume that the state w , is not only invariant under
o, , but also primary. It implies in particular the vanishing of the temporal
correlation functions for time going to infinity
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| weB o W) - w @ w® | 3,0 (4.9)
and, a forteriori
Jlip e S 0B (A) - w@ 9@ Mt =0 (4.10)

This latter property, equivalent to the state being extremal imvariant in time
must be demanded on physical grounds, because it means that time averages of
the localized observables

. 1 +T
Hogr e, ® e

have sharp values in the state w .

From (4.9) follows the important property that any weak limit of at(A)
for a1l A € O, is a multiple of the identity, w(A)I.

This can be seen as follows

For ¢ , ¥ , any vectors in H » A, B, C in Cﬂ,,
}%xpﬂ (o () V) = l%]{l_{nm(ﬂB @ (a)cla)
}%T%M(B Ott (A) ©) =}%Irz+mw (Ott {A) BC)

]

w (A) w (BC)

il

i.e. w T%%g@(at Ay ) = w (A) I (4.11)

We are prepared now to discuss the central idea in our approach, namely the
stability of the state under local perturbations of the dynamics.

Let w be an at - invariant state, w( at(A) } = w (A), and let 1a£ Ah)

be an automorphism of OU obtained from @, in the manner described in sub-
section 1. by the local perturbation Ah(hed, » a real number, which we

introduce in order to be able to control the strength of ther perturbation ).

. . + \
We say that w is stable if for any h = h in Cﬂ., there exist an at(Ah) -

) (Ah)

invariant state, uw , such that w is weakly differentiable with respect

to A, at the origin, with the derivative

" (h) _d m(lh) (4.12)
4 da X L =H

a normal form in the representation.



Lef us compute w_:h) . By the invariance of the state (DC)h), we have
W ) (AW -
_4 0 C)\h)(o(tC?‘ (A)) : w( (%to(t (A—)) = O (4.13)
at
From the definition of o(to‘h) we find
. d ah) (AW (Ah) * )
L g (A)= di (Xt oty (A) X+ =
CAN) om) ¥ uh) dou-(ﬁr) (xh) ow¥
= )(t O(t( hA)X + X 4 O(-[;() )X‘h
. (Ah) -
c oMV CA) = A Th A3 [H, A]
(4.14)

Substituting into (4.13),

W (A lhal) ¢ (LH A)-

The first order perturbation in b » gives then

W ( [ hr A]) = CJ/)_CHJ ([ H; A]) (4.15)

(k)

We put now A > o, (A) and find

S CIH, e (1) = o (Ch, os (AY])
w,'ch) (adﬁ, ol (A)) = vw ([ b, dt'CA)]) (4.16)
Integrating both sides of (4.16),

o ., _ °
(@ (daem) = i [ 0 (Th, o (AT d
)

and taking the limit T + * ®» | leads to

O (A - tm w," (o W)= ¢ (o (Th, ateca))dt

lr
T-'D a oo
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Due to the vanishing of the temporal correlation functions , we have found,

that, (4.11) ,

w=lim ( a*(A)) = w (AT,
o
On the other hand from the normalization of the state we find
[41)) (h {h}
w (I = 1 = w(I) + w 1)(1) > w, (1) =0 (4.17)
Thus ,
Ch} h)
linw P (a,@a) = o @e @ = 0 (4.18)
b 3 4
Tt

The first order correction to the state is then given , for any A € Ol ,

by the formula
o

w, P (A) = [ w (Lh o (A)])dt 4.19).

1 oo

The two alternative expressions for w give us the stability condition for

4
the unperturbed state

+

W
QO

w (Ch e (A)])dt = O 4.20).

8\_/‘\

V. Classification of Equilibrium States for Free Fermi System

In this section we discuss the implications of the stability condition (4.20)
for the infinite system of non—interacting Fermi particles.

We put

h = a*(ﬁ)a(ta‘) , A = Of('{,.) of(g..)a(ﬁfn)o(f,.’s, n+m even (5.1)

We shall use the momentum representation , so that

¥ ¥ ¥ (3
a’(q) = (' (g) 9@y dq e
To simplify the calculation, we shift in (4.20) the action of a, from A

to h , what is allowed, because w is o, -invariant.

The time translate of h 1is given by
» !
oy (h) = & (%t)a(%t)

Working out the commutator [ o, (h) , A ] gives
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[0 (ge)a(gy)s (£ al (£) 500540 a(5.9] =
3, 60" (o 90 [T 0 (gal(5) & (5)

k=4 ¢ Fl
S 0 (9o £) 1 @ () a (§)a(g()
L=4 Oy

e (5.2)

The stability condition then takes the form :

2 c(€(q)-€(qD)t
{ dt (d’q [d*q' ¢ ( ¥
-0

h

x {g (-4)““4 {K 3)3(5})3 (‘1) w(a (q)q(g Yafs})+

i
S 03E(99'(@) N @Gaia@)i= 0
~ i+ (5.3)

The time integration may be performed, yielding & (¢ (g)-¢ (g").

Let us choose

n

Supp (g' ) A ¢ &/:2 supp (£) ) = @ (5.4)
m

Supp (9 )N ( &/-4 supp (£,/) ) = @ (5.5),

Supp(g ) means: support of the function8 ; and introduce the abbreviation

F(a)= 9(9) {9 "(q)4q)3(eq)e@)dgs.0

Then the relation (5.3) becomes
¥
w(a’(Fa (fa).... a(£))= 0 (5.7)

which holds under the conditions (5.4) and (5.5).
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However we see that the conditions (5.4 - 5.6) impose no other restrictions an

the functions F , £, ,..... , {,,,,{: serens —E,:, besides the following
supp (F) n {0} = @
m !
Supp (F) n ( 34 Supp (£, ) ) = @
n c
and (uu=.z, supp (£, ) ) n s @ (5.8)
where S denotes the surface of a sphere around the origin with radius R,
min | q | £ R £ max | q| .For, under these circumstances,
QeSupp(f) qe Supp(F)
?(q) = [é(e(q) £q)q @) §Ae)d g # O in supe
for some allowed choice ofg s .f‘ , and therefore % c? F , exists and

satisfies (5.5). The last condition (5.8) is not really restrictive because we
can always choose the supports of the functions f; small enough.

This means that

Wam $asees fns ﬁ.’,...,-g,i.) = VT faseeesgns fseres ) =0

whenever

m
]
Supp (44) n ( &}:4 Supp (fy)) = @ , Supp (f4)n ‘{03 = @ and
supports of the functions rf « , k=2,3,...,n, are small enough.
In other words , the distributions

¥

W Kaseroskatka,ooikm) = @ ( @Q(k)oo.. A (k) must have
’

point supports 1in at least one of the momentum variables k ,or (k4 - ko),

where EF& is any of kKu,ev.y ko

Since the index 1 was chosen arbitrary, we may repeat the same argument for

all indices 2,3,...,n, concluding that W, must be of the form

]
l Eaperssknik ke = 1.6 (ki-kp) s (kIFCGy. 0k,
ey '
However we will show that actually w has to be gauge-invariant, i.e.
wnm=0for nt m y
Consider for instance W, (£, , ) =w (0¥ ( foa ( 4200
Since W is bounded we must have
lw (o] ({no. (£} < || €l || |64 | for any 44, {a€ oL

¥ »
Let us compute w (Q ({4)0. (f;))

0 (B (L0a (£ = &% @y $10k) 5SROV, kaskd
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but 1f Woyo( ke, k2) = 8§ (k) & (ka)F( ki,ka), then
¥ ¥
v (o (£ (£) = £, £IF(©,0),
which clearly is not bounded for all z§4 s ’?2. € L2*(R®). Therefore
W.,w( a5 £) =0 (5.9)
(same argument may be applied to any non-gauge invariant expectation value).

Let us summarize: an o -invariant state s Stable under local perturbations

must be

1) gauge invariant

’ L
2) w.zn( Ed,oo-,}&n;ki,--.,k:‘) = Z"P (_])Pé (_15-_4_ E&z-..ﬁ (E"u Eﬂ)ﬂF(“lS'”..’E“)
(5010).
The same formula holds for the truncated functions. Thus for n > 1, W T mist

<N
I3 - . I .
have point support in more than one momentum variable ( k;- Ec_‘) However in

that case for some pair of indices ( i,j ) W, , (time dependent) will not va-
nish as ( t, - tj) +> o ,contradiecting the primariness of the state.

To see this , consider for instance the 4-point function.

T I P ! ' / 7
In W, (kakaskek) = {6 (ko= k)8 (kam ko) = 8 (k- ks (ke kol

T » x )
AP ke, k0 - FOROF( kP = w ' (@ (ka9 a @ a®)
. € k —;' ‘ t-“ . f
let us take the time translates @ (‘)&*(54), c 60;)(&:) , with (t - t,)
going to infinity and the other factors kept constant. Due to the presence of
§ (k,~ E:,) § (ko _L_c_;) , the first term is time translationally invariant
and the second will vanish , when smeared out with the smooth test functioms,

so the whole expression will vanish.

T . . .
Therefore W&n must be identically zero for n> 1 i.e.

n
3) F(Ckayeooyka) = 1 F(ky, that is  must be a gauge invariant,quasi-

V=4
free state. It follows that  is uniquely determined by its 2-point function

W (p,a) = o (a’(plda(gN =5 (pqo (@
(5.1
where p (p) 1s a positive function( because the state has to satisfy positivity
condition).
p (p) 1is the one-particle momentum distribution. In order to investigate the

form of p (p) we put in (4.20)

' s 3 1
A= 80K, kaske, kDA k) a” (k) a (k) o (ky) d k,d%k, a7k, d%k,
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¥ ¥
ho=/ h (q1,42,p2,21) A (@) & (@) A () A (p1) d°a,d%q.d%p,d%pa
and obtain
S a%ky..d%pA( kyskos ko, kiDh( g1, 23p2,p1) § (e (k1) + & (ko) -e (kp) -

e &) ) e ([a* &) af@) a®d) a k) . a¥@) af a () a @]

(5.12)
Using the quasi-free property of w ,
¥ * / N *
w( @ k) akdalk) a k) a(g) alp)a (po) o (p1)) =
— P ¥ ) ’- ¥ - '
Pal.r'.nésl) Ln,fu( akya (p)) Wi k) a (g (5.13)
where
w (&) a(@))=6 &i-ple @
w (o Eha@)=6 (k- gdU-p (@) (5.14)

L] . . +* f
The second term in the commutator we obtain interchanging q «» k., p >k

This inserted to (5.12), choosing the support of the function h in the

variable ps. disjoint from that of A in the variable k, , gives

3 3 3 ¢ ! ' i ! '
;dx, Ak, dk! SR OA (R, ke ki, kD b (R, ke Ko KD X
§ (e () + e (ke) =& (o) = ') ) {0 (kD) o (k) (1-p(ka)) (1mp (k)
—o (k) o (ke (1 =0 (k1)) C1-p (k)P =0 (5.15)

To satisfy this condition for essentially arbitrary functions A(kska, E;E;)
and h (kqka, E;E;), the expression in the curly bracket must vanish on the
energy shell.

We have then the relation

1= (ko 1= p (ks 1 -0 (ky 1-p (k)
o (ka) o (k) o (k') o (kL) (5.16)
or, with = o (K) ' ’
R(k) =ln——————— , R (k) + R (ko) = R (k) + R (ka)
p (k)

whenever € (ko) + ¢ (ko) =€ (E;) + e QEL) (5.17)
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Thﬁs
R(k)=a+Be (k) ,
a , 8 - constants.
For the one-particle momentum distribution p(k)}, we find then
I

o (k) =
1 + exp (a+Be(k) ) (5.18)

The last problem we want to investigate in this section is the behavior of an
equilibrium state under more general kind of perturbations. Since we have
chosen the even part of the CAR algebra as an algebra of observables, we may
consider a system in which the particle number is not conserved, allowing,

for instance, creation of pairs of particles. We could think for example about
a neutrino-antineutrino system, in which the difference N, - N 1is conserved,
but pairs (V ,-5) can be created or destroyed.

In our idealized example we consider the particle identical with its antipar-
ticle. As we have already found, an equilibrium state will be gauge - invariant,
quasi-free, with one-particle momentum distribution of Fermi type.

We expect that the stability under non-gauge invariant perturbations will re-
strict the state furthermore or that there does not exist any primary state

on Cna, stable under such general perturbations. With the same technique as

above, putting in (4.20)
A= CL*(’?A) O«—*({"‘) . h= Q (ga) (1(%]:.)

and using the properties of w : {5.11), (5.12), (5.14), (5.15),

we find the following : e

fula, sy @) at =

o -"00
Se i(e(ga) + e(qy) t dtfdsq‘ dsql (1 - 0(g4) -0 (ga)) =
-]

U@ Galaw $0 @ £ @0 - fl@o L5 @ =o

which we rewrite in the form :

T .
Lmfet (@) * 2@ € 4ep 42 £ 0%, ¥ (gi,a0 (10 (@0plg) =0 (5.19)

l'!'o_-r
where

F e w = 9,00 g 0@ {576 £a - 4@y £ )

is an integrable function.
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It may be seen that this is equivalent to the bracket (1-p (g4) - p(q.a) ) =0

Thus the stability condition is satisfied if and only if

1 -2p (0) =0 (5.20)

Comparing with (5.18) we see that this means that a = 0.

The conclusion is therefore that an equilibrium state w, of the infinite free
Fermi system, if it is supposed to be stable also under non-gauge invariant per-—
turbations, is given uniquely by one-particle momentum distribution ,

1

p (p) = (5.21)
1 + exp (Be(p))

{.e. the Fermi distribution with vanishing chemical potential. We are then in a
situation similar to the black body radiatiom, in the sense, that an equilibrium

state is characterized by only one thermodynamic parameter, 3.

VI. General Consequences of the Stability Condition

The stability condition (4.20), is not limited to free systems but can be
applied without any change to general infinite quantum systems.

In recent years it has become customary to characterize equilibrium states of
infinite systems by the so—called Kubo-Martin-Schwinger (KMS) condition. The
origin of this is the observation that Gibbs' states of finitely extended
systems enjoy certain analyticity properties (15). In fact, one has as a conse~
quence of the invariance of the trace under cyclic permutations of 1its argu-

ments, the following theorem:

Let F(t) = w (B a,(A)), G(t) = w (0 (A)B) where A, B are (6.1)
bounded operators acting on a Hilbert space, w(A) = Tr(pA)
o = const exp (=B (H- uN )).

There exists an analytic function G(z), uniformely
bounded in the strip 0 < Im z < 8, such that F(t) is the
boundary value of F(z) on the real axis (similar state-
ments hold for G(z) in the strip -8 < Imz < 0 ), and

F (¢t + iB) = G(t) (6.2)
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In terms of Fourier transforms, this relation between the functions F and G,
becomes

A A

F (E) = exp (B E) G (E) (6.3)

It happens that this property is preserved in the thermodynamic limit and
therefore can be taken as an independent definition of the equilibrium states
of infinite systems (16). For the discussion of the conditiom (6.3) in the

thermodynamic limit we refer to (13).

Seeking for a description of the equilibrium states of infinite systems in
simple physical terms, we have applied in referemce (17) the stability requi-
rement to states of general infinite quantum systems. It has been found there
that for a system ( Ol , o, ) with an asymptotically abelian structure, any
primary, stationary state, with absclutely integrable temporal correlation
functions, which satisfies (4.20), is either a ground state (temperature

zero) or it is a KMS state for some value of B.

The gratifying result was, that the whole information contained in (6.3),
followed already from the condition (4.20), if one assumed a sufficiently

fast rate of decrease of the temporal correlation functions.
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