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Abstract

Integrability of cylinder functionals is investigated, for the Feynman-
type integral as definéd by It8. Several classes of integrable cylinder

functionals are specified. An inductive property of the integral is
established.



1. Introduction

In this note we establish the integrability of several classes of cylinder
functionals, for am integral of the Feynman-type. These functionals are cha-
racterized as certain analytic functions, or in terms of bounded measures or

distributions.

The subject of Feynman—type integrals (and their physical applications) was
reviewed recently in [1]. The results that follow are only a modest contribu-
tion. However, we feel that it is worthwhile to place them on record, since

still very little rigorous material on such integrals is available.

For convenience of the reader, we repeat here Ito's definition [2] of the in-
tegral. The integral is over an arbitrary (separable) Hilbert space ‘M, which

méy but need not be a space of paths.

Let T be an operator on W which is of trace class, strictly positive, and

symmetric. Let duT o be the Gaussian measure on J¢ with the covariance ope~
3

rator T and the mean vector o & M. Then the integral is defined by

] .
5 1<n,n>

. 1 '
I{f) = 1lim uh-g du (n) e f(n) (ta)
Teo CT ?ﬂ T,
where
i<n,n>
cp = 5 duT,O(n) e (1b)

The limit is to be taken by following the partially ordered set of the T's

(where T' > T"«> T' - T" > 0). The limit must also be independent of a.

Our present interest is in cylinder functionals f, satisfying f£(n) = £(Pn)
for some orthogonal, finite~dimensional projection P, For definiteness, we

will take
dim P = n, (2)
We will refer to PH as the base-space for f.

The contents of the paper is as follows. In Sec. 2 we establish a property of
the integral, which allows the enlargement of the space of integration. Section

3 contains the description of certain classes of integrable functions, while



some of the proofs are postponed to Sec. 4. Some explicit formulas bearing on
the decomposition of Gaussian measures are included in Appendix A. In Appendix
B we consider variants to the definition of ItG, and in Appendix C,some conmec=

tions with Tauberian theorems.

2. Enlargement of the Space of Integration

We will now examine the following question: Are the functions which are inte-
grable over R", or more generally over a Hilbert space ﬁfl, also integrable
over a larger space 3?513?{. The answer does not follow immediately from It3's

definition.
Qur result is the following inductive property.

Proposition 1. Consider two Hilbert spaces, gfl_i]{. Let £, be a functional

which is integrable over }ﬂ. Then f, extends to a functional f over H
by
f(n, +n,) = £,.(n;) né}(,né}fl (3a)
1 2 17199 1 1 2 1 »
and f 1is integrable over H. The respective integrals are equal,

I(f) = (£ - : : (3b)

Proof. We introduce the following quantities, whose meaning is obwvious:

H =M +H, = pH PR, (4a)
o = a o+ oa, no= nyp*n, (e, (4b)
T:H > H (trT <=, T > 0), (4c)
T, = PjTij‘}tj, io= 1, 2. (4d)

We next recall a theorem on decomposition of measures [3,4]. This thecrem also
applies to complex measures, if the total absolute variation is finite. For
the case at hand, it implies the existence of measures dlnl(nz), depending

on T and o, such that



X g A (ny). (5)

The measure An here is normalized so that
I

An]CRé) = 1 for Hop - almost all s {6)
‘;_'i“”z’”z>
and it includes the effect of the factors e and Cr /cT. Now, as
one takes lim(T-«) on the l.h.s., this entails lim(T]+m) onlthe r.h.s.,
and by hypothesis, the integral over ﬂﬂ then tends to a 1limit I(f), in-
dependently of @;+ The integrability over Hf follows.

Note that in case of a-distribution-theoretic integral over a finite-dimensional

k&, one can use eq. (5) to define the corresponding integral over Xq.

3. Integrability for Finite Dimensions

We will be concerned with the integrability of the following three classes of

complex-valued functions and distributions on R™.

(1) The first class consists of functions of the form
1
s It

£(x) = (21) 2 jg du(p) elPX, 7)

where u is a complex Borel measure on R" of bounded total absolute

- variation, (Cf. (2)).

(2) The second class consists of entire functions of order less than two,

i. e. satisfying

8(2)] < c  exp_|2]¥7F) ®)

for some constants Cs’ Ms’ and £ > O,



{(3) The third class consists of the following subclasses:

(3.2) The set of functions and distributions f of the form

fx) = 3™ n(x), (9a)
where (m) 1is an n-index quantity, h 1is continuous, and
|m\ < 1, |h(x) | < (1 + IxL)_n £(x) for some £ & L]. (9b)

(3.b) The set of functions f whose derivatives satisfy (A being the

Laplacian in n dimensions)
a-m¥ il o< a+ xDHY e (10a)
for some N, ME N and £ such that

N - M >521- and L€ L. | (10b)

We conjecture that our classes (3.a) and (3.b) contain the spaces UH{ and 0&

respectively (cf. e. g. [5]). However, for completeness we shall give an inde-

pendent argument establishing the integrability of these distributions.

We next presuppose an extension of Ito's definition to distributions over R".

The elements of Ah (below) are obviously integrable in this extended sense.

It is convenient for us to refer to the space ﬂ}ﬁg (R") of k]. This space is

invariant under Fourier transformation, and includes the Gaussian functions

_2 | .
e HXBX) 6 Re B 5 0, Its dual J};% is larger than &'

_ and contains in
particular the preceding classes.

Eggigig}gp_g;_Let ‘An be the class of distributions f in 43153(Rn)'

1
n -§<X,Bx>
1im 5 d'x e f(x)
B+1

for which

(11a)

exists. The nxn-matrices B are restricted by the conditions

B = B, BB*¥ = B*B, BRe B > 0. (11b)



We note two immediate properties of such matrices.

Lemma 3. Let A satisfy (11b). Then A can be diagonalized by a real ortho-

gonal matrix, Furthermore, A 1is invertible, and A“I also satisfies (11b).

Our basic result is the following.
Proposition 4. The classes (1) ~ (3) (for a given n) are included in “h'

In order to establish the inclusion for class (1), we can utilize the pre-
ceding lemma and adapt the proof of theorem 2 of [2]. (In view of the finite
dimensionality, an elementary direct proof can also be given.) The proof for

the classes (2) and (3) is outlined in the subsequent sectiom.

We next note:

Proposition 5. The following subset ;Ag of u‘n is invariant under Fourier

transformation:
-As = {f:f£, f"‘eutn}. (12)

. . o
Proof. Without loss of generality we may assume that f'é‘Ah is real. Now

1 1 1 -1
-1 -E{X,BK> _“z'n n -'§<p:B P>
(ag §axze0e? 7o (@m? (& p s e )
_%ﬂ n 1 -1 (132)
= (2m) _Sd p £(p) exp(-TP,Bcompl_conj. p>).
The constant ag is defined by the conditions that £ = ] must integrate to
one. The limits B + -i and B;]C + -1 are equivalent, in view of the pre-
ceding lemma. Furthermore, lim ap = (Zwi)n/z, and therefore, if fé?aig,
B+-i
_1<p,Bp> ‘
. - 2
lim aB1 gﬁn p £(p) e {13b)
B-+—1i
exists¥®,

® Note that this proof depends on allowing, in the dafinition of ;Aﬁ, more

general matrices than A -~ i with A real.



The preceding propositions tell us in particular that the Fourier transforms of
classes (1 = (3) (ef. [6]) belong to g‘h. From the proofs in the following
section one can furthermore see that some limiting cases are also included.

Consider, e. g., the sequence of entire functions
m . .
g, (x) =5 dp (1 + p2y 1 tRUmiox g (14a)
—~1

It 1s easy to show that

lim g & ‘Ai . ' ' (14b)
<<

4. Proofs of Integrability

The proof of proposition 4 for classes {2) and (3) is quite direct, and we ounly

indicate the main points.

First of all, we note that the normalizing factor a

B
proposition S)is proportional to {(det B) 1/2, hence depends continuously on

(as in the proof of

B if B is non-singular, and, therefore, need not be taken explicitly into

account.

For class (2), we utilize lemma 3 and transform the coordinates xk with an
orthogonal matrix U, so as to diagonalize B. For the eigenvalues of B

(assumed near -i), we take

A, - im, with 1 >0 and w, = 1 < 1L (15)

k

Consider now the Cartesian product of sect ors in c", where the =z satisfy

{(for ¥k and for some O < « < 1)

0<ImzN<kR zK or 0> Imz5>«RezX. (16)
In these sectors we have the estimate
i -1
Iexp(-§<z,(UBU yz>) g(z)| <
0 oempled 12 5 g2 aw (2|27 . (17)
— £ 2 1 + k2 min e

(Note that <z,(")z> remains bilinear.)



Hence we can rotate the paths of integration to the lines Im 2K =« Re zk,

and there is no contribution coming from the boundaries (at infinity),

The resulting integral is seen to be invariant under rotations in the new hy~

perplane, and therefore we obtain the equality
-5<x,Bx>
n 2 ‘ n 1 ) - '
d'x e g{x) = d x expG-E(l + 1k)“ <x,Bx>)g ({1 + ix)x). (18)

The bounded convergence theorem then allows the passage to the limit B -+ -i.
We now come to the class (3) and its subclasses. For (3.a), one first shows by
induction that

l 1
—-=<x,Ax> ~=<x,Bx>
2™ (e 2 —et Tl s e x|l

where A and B must satisfy (1l1b).
Here Clml is independent of x, A, and B, provided

~1 -1

la’ - ill<e<t  and  ||B' - ill<e<. (19b)

The expression (9) for £ and integrations by parts lead to the estimate

-l<x,Ax> -l<x,Bx>

ljd“x(e ? -’ el < [la7h -7 Cll gd“xe(x), (20)

which proves the integrability.

For the class (3.b), one starts with the equation

1
—=<x,Bx>

-0Vl = e ? (21a)
whose solution is
1 -1
. “TP:B 2k
hg(x) = (const.)Jdn P ePX _& N . {(21b)
(1 + p?)

Integration by parts and the estimate (10) wyield



j 0 -%<X,Ax> —%<X,Bx>
x (e - e ) £(x)| <
< Sdnx(l + xz)M ]hﬁ(x) - hg(x)| £(x). _ (22)

Since the multiplication of }héA)(x) - hg(x)i by (1 + xz)M can be reduced
to a differentiation in momentum space, one can utilize the estimate (20). The

remainder of the proof is straightforward.

For the classes OE and Oﬁ, we note that the integral in the limit B = -i
. . . ; . . . i<.,.>
1s already defined in the sense of distribution theory, since e % 1S
in both OE and in Oh. In order to prove convergence as specified in the de-
finition of 'An’ it suffices therefore to verify that, for V¢ € 3,
1 1 .
-5<»B.> 7 i<, o>
lim e b = e b, (23)
Br-1i -

is

the relevant topology being that of.@ . The verification of (23) is straight-
forward, and this yields the convergence of integrals for f € Uﬁ. The case

f € Ob follows by applying Fourier transformation.
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Appendix A, Explicit Form of the Decomposition of the Measure u

T
Let us assume for simplicity that
. or ) € pah, (A.1)
and let us introduce the notation
T, = (2. T e, PRI, (4.2)
0] ] N

where ~~ denotes the Friedrichs extension. This is the extension appropriate

for the preblem, since T ! and related operators enter primarily in quadratic
forms. In general, if A > O, then such a form is defined on D(Al/z), and
only AY satisfies [7,8]
~ 1/2.-
D(A) € DY) < p(@!'’4H). (A.3)
-1

These inclusions and the striect positivity of T imply that the (outer)
inverse in (A.2) is well-~defined.
If we now start with the relation (where x,y are real and % 0)

(xP, -yB) T (xP -yPB) > O (A.4a)
or equivalently

2 -1 2 -1 -1
(x= + wy) P1 T P] +(y° + xvy) P2 T P2 > xy T, (A.4b)

then we can reverse the inequality by taking inverses {9]. We then easily get,
for 0<w<1,

0 < (1 -w T0]+wT < T. (A.5)

o2

It follows in particular that the Toj are of trace class, and that they are

the covariance operators of measures on E%.
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For brevity in writing we now take o« =0 in eq. (1), we assume an (arbitrary)

. . 1<
function F for the integrand, we drop the factors e 2 * nj’nj> and we

utilize invariant generalized measures [10]. Then the form of the decompo-
sition is
-1
--2—<n"_[‘ n>
P(n) e F(n) = (A.6)
1 -1 1 !
27" Tor Ny "7

-1
T n.> <T 1 Na>
2 17 (. 7 My t02 M2 1012
(2,0 e f2,00p) e F(n,+n,).

-1
Let us take for P, the generalized measure whose weight is e 2 “NpaTgp Mp”

and for F, a functional not depending on Nos which can then be put in front
of the second integral. This integral then yields

1 -1 -1
exp 7 <N, T T, T n> = :e(n). (A.7)

In view of (6), we conclude that in the present (simplified) case,
1 ’%‘”rT—é np” <! Ll
- o
C”‘n](”z) = (e(n)) Pylny) e _ e . (A.8)

If we now integrate

F(n, +n,) = exp i<n B>, (4.9)
1 -1
) . 'E<"?1’T1 "Zl> . .
we see that ‘Dl must have the weight e s to which contribute
eC?l) and the exponential involving T;}. We conclude, from an examination of

the Fourier transforms of the measures (recall that the operators are assumed

real and symmetric) that

-1 -1 -1 -1, p .
o= T - (T T, T )!‘}fl. (A.10)

In the finite-dimensional case we c¢an get another relation by comparing the

normalizing factors of the integrals of (A.6):

det T = det T1 det T02' (A.11)
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Appendix B, TIntegrability for Alternate Definitions of the Integral

Various definitions of Feynman-type integrals were suggested in recent years.
One particular kind of definition has apparently not appeared im print, and
this is the direct adaptation of the constructions of the canonical integral
over a Hilbert space. We have in mind here such constructions as that of

Friedrichs and Shapiro []],12] and that of Segal.
The following definitions come close to the presentation in [ 12].

Let {Pm} be a family of‘increasing orthogonal projections satisfying

dim Pm = m, Pm+1 > Pm’ lim Pm = 1. (B.1)
mee
Let =x € }ﬁ and let u denote the values of me, 50 that u ranges over

R". Let us set

1 o %(i—e)<u,u>

I (f) = S\d u e (P x). {B.2)
Plim,e (2m (i-e))™/? m

For the present discussion, we define Feynman integrability over R™ as the

existence of the limit e 4 0. This is an {apparently) weaker condition than
) . . . . . « .

Ito's. For an infinite dimensional space, we have to take the limits m - « .

€ v+ 0, and there are three natural ways to do this:

(a) lim(m3<), then lim(e+0),
(b) lim(e+0), then lim(ms=),

{(c) pick ¢ > 0, let ¢ = o/m, and take lim(mee),

One must require, moreover, that the value of the limit(s) be independent of

the family {Pm} and, in case (c), also of the choice of o.

Each of the three alternatives (a) - (c) defines an integral. Each definition
is new, and all might be mutually inequivalent. The integrability of cylinder
functionals can be investigated by adapting the discussion of [12], pp.V-10-11.
We forego the details, except to point out (without proof) the following link

with our previous conclusions:

Lemma 6. If F, upon restriction to its base-space, is in ;An, then £ 1is

integrable in the sense of the definition (c).
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Appendix C, A Connection with Tauberian Theorems

In this appendix we state one result which provides another criterion for in-
tegrability. We were led to this while trying to exploit the Tauberian theorems,

as presented e. g. in [13].

In the Tauberian theorems one generally assumes for the integrand a bound like
|f(u)| < (const.) u_l. In the present context, such a restriction is incon-—
venient for applications, and is avoided in the following partial converse to
the usual theorems. We confine ourselves to the case of one diemsnion, and make

a simplifying assumption about f.

Proposition 7. Let the function £ be locally in L with a finite number of

______ 1°
changes of sign in a bounded interval. Then

X e g2
limg du f(u) = K 3 lim lim| due fw) = K. _ (c.1)
xro v g e¥0 % 0o

I.e., the existence of the first limit implies that of the limits inzthe r.h.s.
and the equality. In particular, if f(u) = 0 for u < 0, f e_a(.) €'L1 for

1/2 i(+)2

Ve > 0, and f = fo e , then the hypothesis in (C.1) implies that f£

)
is Feynman-integrable.

We remark that the implication (C.1) remains valid also when K = *«, and this

case was referred to in [1].

Let us consider successive contributions to the integral, corresponding to po-
sitive and to negative values of f, as u increases. The proposition will

then follow from the feollowing lemma.

Lemma 8. Let C F be numbers defined for j = 0,1,2,... and for 0 < g < §

(for some §), and satisfying

0<C .<1, C . < C 5 lim ¢ . = 1. (C.2)

G-!J oHrO U,J

Assume that one has convergence (in general, conditional) for the series

(C.3)
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Then one also has the (conditional) convergence and the limit,

s = c, a = C_ ., a t-.. lim 8% = s. (C.4)
? ’ at+0
Proof. Without loss of generality we may suppose that aj > 0, Vi, Let us set
n n
k k
s = 1 (=) as S, = %( ) Cyre A (C.5)

The lemma will follow easily from the bounds,

min {SO,...,SH} 2 .5, £ mex {SO,...,SU}, (C.6a)

or equivalently, from

min {SI’SB"" } < s and S j_max{So,S

’S2n+1 — a"2n+l a”2n 227 ¥on
(Such bounds should be applied to interior partial sums.)

We will prove only (C.6¢c), by induction. The case n = 0 1is immediate. From

the induction hypothesis and the inequality C . < C . we conclude
0,1+l — Ta,j
Soney S c&,0 35 7 Chp 2y * Co1 max{S, - SisevesSy 10~ 8,7
(c.7)
< s, +¢C r max{82 = SgseresSy o T So}

Furthermore,

Ca | max {voe}l = max{0,...], {(C.8)

3 R . .

and (C.6c) for 2n+2 follows from (C.7-8).

S, 1. (C.6b,c)
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