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Abstract: By choosing a suitable nonsingular
transformation on the externsl moments of a
Feynman -~ parametric integral simple rules
can be given for the diagonalization of the
Feynman - denominator Vb in terms of the new
moments. This diagonalization of V; is the
basis for a discussion of massless field
theories in the framework of [3,4J .

The effect of the transformation on the

spin - polynomial %f is considered too.



1. Introduction.

The perturbation - theoretical treatment of guantum
field theories via Feynman-parametric integrals
involveg - at least implicitly - a discussion of the

function
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In massive theories the main problem is a resolution
of singularities of Uﬁ;'that neans a determination of
the number and order of (independent) zeros of U, , and a
representation of Uy in the form Uy :ifré‘ﬁ)"‘" E(_Z.IG')
where fei = dri(d) are independent variables, K, are
positive integers and E ( f¢) does not vanish in the
domain Degr . The union of all DG’ has to cover the
whole space, Zo{bi ,de20 . Since Ug is an analytic
function of,{ general theorems [§]assure the existence
of such a resolution, Indeed it can be given
explicitly in an elegant way [3]1by introducing a
partial ordér of the parameterd in terms of what is
called labelled singularity family in [3]. This
construction moreover serves as a‘grouﬂd for a physical-
1y acceptable subtraction of the resulting divergences
of the Feynman- parametrlc integrals. The function
[Ve- Zq?m¢+ﬂo] does not present any difficulties
[31 . Due to the term ‘Zdz’ﬂu ; Mg>0, ey it is
a distribution in the external momenta (Pa)aeg, 2 pa =)
which is an entire function of A  and smooth 1n to:

in the domain Deg.



In the massless case the situation changes considerably.
Now, due to the vanishing of m, for all (or some) Le .f(é}
EV&' de}téOJ" produces singularities both in A

and « (resp. fe ). This is the reason why a general
discussion of massless theories in the framework of
anslytic and dimensional renormalization [3,L$q]

has not been established $ill now - in spite of the
fact that fthere has been considerable interest in
massless theories in recent years caused by the
appearance of massless particles in field theories
with certain symmetries - chiral symmetries and gauge

field theories.

However it turns out that in order to contrel the
singularities of ['VG—- Z"Q 'm; ii,()])l in the massless
case a certain diagonalization of V, is sufficient [1]
i.e. to represent V4 as a sum:
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where ?E’ﬁ(ﬂ,f) are certain linear combinations of the
external momenta, The resolution of the singularities
of  Vifyu.y e (911 gives a satisfactory basis
for a general discussion of massless theories along the
lines of [3,4] . In[1] this has been applied with great
success to the detefmination of the scaling behavior

of Feynman-amplitudes - even in Minkowski-region.

This paper describes a general procedure for the above
diagonalization, A mufamily«ﬁa of subsets of the set of
external vertices is introduced., Linear combinations

QE £=4rn-,mhi of the external momentsa corresponding

to the elements of M, are chiscn, Vg, is diagonal in

the new momenta ﬁ. The coefficients of @E)L have a



simple connection to certain graphs G, obtained from

the original graph G. The effect of the transformation
qhkgyl"o (q£)ﬁ4rvl£~4 on the spin - polynomial Yé
for line 1 (of degree 1) is considered too. The graphs G,
again show up in a natural way.

In a subseguent paper C?] the result will be applied %o
the analytic and dimensional renormalization of massliess

theoriss.

The author is greatly indebted to Prof. X. Pohlmeyer
whose idea of a diagonalization of Vg in massless field
theories started the investigation. The author wishes to

thank him for many discussions on the subject,

2. Notation

For convenience of the reader the basic definitions of
the theory of (Feynman-) graphs will be givén. The notation
heavily relies on [ 2] and proofs may be found there,

A graph G = (f(a), v(C), ¥ ) is a triplet consisting
of a (finite) set of lines X (G),a (finite) set of
vertices v(G) and a mapping Y, ‘

20— v 6xv(E)
foi {6 = (o, )

%(6)/ ?{({) are the endpoints of the line 16 L(a)
The graph will be assumed to be oriented s that is
Ua,az)f ua,gi)lfzaf %GV(GL



A subgraph He G is a graph H = (£ (H), v(H),¥,)
satisfying & (1) ¢l (¢), v(B)cv(G) and Py © ﬁ’i(ﬂ) .

Let a be an element of v(G). The sets S(a) and L(a) are
introduced according to:

Stay = § Led(6)] g.(¢) < a oy (¢)7a}

Lia) = £ €eL(6) ] 9(L) = 9p(t) = 0}
Two distinct vertices a # b are said to be adjacent if
s(a)n 5(b) # 4

The graph is connected iff for each pair a:[:b of vertices
there is a sequence of vertices a = Bg 8,y ,...,ak: b such
that a; and B4y j=0,..,k-1 are adjacent,

4 4
Let k be a subset of v(G) containing more than one element;
lxI3 2. c(k) is the graph (& (), (v(G)~ XWwik§, Yo )
obtained by identifyving the vertices in k ,i.e.

[ (9@, 908) g2, pp08) 6 v K

fl= § (F(8), Ko) RO evnK | pr(f)ek Le (4
) P ek, Pp(e vNWK .k

(Ko, ko) poll), vrre) €K

If a € v{(G), then ak will denote the corresponding vertex

in G(k). One has k,= a¥ for all aek .

Let k'=fa,,... ,aH,§ pe a subset of v{(G) satisfying I{a: , . ,a:,”%&
Then G(klk') stands for the graph G(k)({aﬁ,.,a;}) obtained
from the graph G(k) by identifying the vertices a:, . ,a:,

Let 1, be a line 1;5&((%). The reduced graph G/1,

is the graph with line 1, being contracted,i.e.

¢/1, = (£(6/1,), v(6/1,),¥y, ) with
i((}/l,,) x(G)‘ilo}.!
v(G/1,) = (v(G)N f @) patlh) v fas)  aes {8l bt

i

and



(4 (0), $4(8))  petel ygtt) e 0 (6] Lp:th),py (4]
(¢ (2o, ¢p(0)) Pille)s yi(do) 4o
7o, & (‘f»‘(t),{a-) oy 0 1y (20 Le 2060\ Lo}

{a, ;ae) Peld) = YLl ¢el(e): yeit)

If L =41 ,..,1, 1 is a subset of £(G), then G/L is defined

to be (((G/l)/l M. /1,

et HecG be a 3ubgraph and sev (G) a vertex. Define

a humber

D (a,H) = |8 (a)a Y(EN + |L (a)n & (1))

A path P joining two distinct vertices a,b is a minimal
connected subgraph PcG satlsfyln?:o or 2 o * a,b

cev (G) = D (c,P) = 1 otherwise

P, (ab) is the set of all paths joining a and b.

A loop ¢ 4is a minimal nonempty connected subgraph (G
with aev (G)=D (a,c) = 0 or 2

Remark: From now on the graph G is always understood
to be a connected graph, The subgraphs may be
disconnected of course, Furthermore sometimes
s graph H will be identified with its set of
lines &£{I1) and vice versa a set of lines L ed(G)
will denote the graph L = (L, v (L),?L ) with

w(t)s {0 |LeLy v 0] 2el} .y (0 y,(8), el
A (1~ ) tree T, is a connected subgraph T, ¢ G

satisfying v (T, J= v (@) and including no loop. It
possesses the properties

2,1.1,: TFor any pair a # b ev (G) there is a unique
path P ¢ T, , P & I, (ab)

2.1.2,: IeT, implies T, I is a tree in G/1.

1; is the set of all trees in G.



A 2 - tree Ty is a tree Ty4,one line being omitted. If
l!,, ﬁ, arc disjoint subsets of v (G) a 2-tree Ty is said to
separate ’11 and h; if it connects all the vertices in each

set h, a:nd‘hz resp., without connecting A, and /’z .

A co - r-tree T' (r = 1,2) related to the r - tree
Ty is the subgraph obtained from the set X(G)\f({[‘ ).

Numbers o&ao and Jg(‘-‘g’;‘) called Feynman-parameter are
assigned to each line 1¢£(G).

Certain functions can be defined:

2 T
ud -n‘r £§T4 }4 ] T ‘léT
called resp, Ltree-product sum dnd co~tree-product sum

of the graph G, and similarly for ﬁ,,/z cv (G)

’"“(34“)
< > /5 W”'”L'J > T d,

% T lhilhy) & / Tie T (hlhy) €T

resp 2 - tree - product sum  and co- 2-tree-product sum

separating Iz, and bz '

Here the summation goes over all 2-trees T, €T, (h.[h,)
separating h,and A,.

Remark: The sum equals zero if /lh N /Zz%/ . In general the resp.
O~ and/g ~ dependences will be suppressed, Furthermore

vertices a,b,c... and the set ia,b,c } will be

identified,

Some properties of the W - functions are of use.

Remark 2.2.1. aev (G), ﬁ hyev (G)

Wik W(M/hf AL

2.2.2: by ba 34 v (G)

ST oW

KC%
hch
h, ¢ g\ K

Iﬁzd)



Similar formulas held for the functions with tilde,
The incidence matrix - ([a.:{_))g.ga.; is defined by
e (6}

+ 1 a = 93(¢)
[e:€]= {— 1 a :.g;r!u) e S(a)rL (o)
o} otherwise :
Let the matrix W(, be given by
WG -'( 2 [a:el Ay [aa: q)a;,a, ev(6)

Ledit)

If a is an arbitrary vertex,ﬂf;' ig the matrix
constructed from ﬂf’g by deleting the row and the column
belonging to a. [M¢] will denote the determinant of the
matrix 7% . [ﬂfo“](b‘lc) a 3 b,c is the co - factor
corresponding the minor [ﬁ(’a&]‘gb-lc) - the determinant
of the matrix obtained by deleting the rows a,b and
columns a,c in#, . [ W ]gb'b""’("will denote the
(a,b,”b;'~ | a ¢ c, ) minor of 4’}/’6 (a # b, bﬂ.’ C, %y 5 b4¢ b, ;

4
Ca # C ).

A number T(a,b) is assigned to cach pair (a,b) of vertices:

0O a=b»>
T(a,®) = 1 41 otherwise.

The following formulas are contained in [2] .

Remark: 2.3, Let a be a vertex of G. Then
y .
[+]
[ ] U, aevid)

Let a # b be vertices of G,

2,4, a(r(a&) : ([(f.{)f]) L‘bé v(6,b)) féf{&} satisfies

&b
L-Cab:e_-’: { Lo l] ¢ % u(é).\{q,‘bs
> 5 Ca:€]+ [b:2] (°F. o*bs b“ L¢ n?/p((")
T~ calb) (blb) o~ |
We - [W] U g an)

ab
. [ 6(:5) ] Cab ¢ v (G(ah)



Let a,b,c,d,e be arbitrary vertices of G.
2.6, A number G (b,c) =G(c,b)= +1 exists
(depending on a)
such that
rla,) a0 [T 2@, b rmie) e Cbe) [H]

o :
and
e (4¢)-6(c,d): 6(bd) bye,d e vC6)r{ay
2.7, The follgwing identity holds
T (a,b) T (@0) [mq:l( Ibz) WO(MM)’ wﬁ(adlbc)+ V"\‘}Cafbcd)

G
~cadebe) o~ (adlbce) o~ (albed)
= W W W

One distinguishes a certain subset g, of v{G)-called the
set of external vertices. If k, is a subset of Ee k!

will denote the set gﬁ\kﬁ . A vector-momentum -

pe € RY is assigned to each ag &, such thata;: bo 5 O
[

Thus (pa %jja is an element of RYML-Y, Moreover a

scalar product (p&- Py } will be assumed to exist on Ry .
(The subscript G may be omitted sometimes).

The function Vg 1is defined to be

I (KIKY , < 2

. 5 s
VQ U l.:(‘z,l('l Wc, (Q&KP )
£
Choose arbitrarily aF b e gy, 16 £(G) and Pe P {a b).

The path P will be taken to be oriented from a to b.
Then s number [P!{€] can be introduced by

0 L¢P
LP: 8] +1 f&P and the orientation of 1 and P
: coincide
-1 otherwise

l .
The spin—polynomial_)g (of degree 4 )for 1line 1 .is a
certain linear combination of external momenta

P Sl U,

6 s Peigtab)

¢
Becauvse of the conservation of momenta ag; pai 0 ya does
not depend on the peculiar choice a ¢ g, .




3. Two identities

In this secction two identities will be proved., They are
crucial for the general discussion in section 6. .

Proposition 3.1. Let a4y # a,, b, #b ) C4 #'c
some vertices of the graph G. Then

Wl il )\ Gralbac) |
byla @0 10,0)  (@aG{ly )
fW(,(Md zb,,) W(dszla;bJ[.W 1 11 1z(ij

u
L9TY Ubdy g Grhy aQqg Qiay Qb
“71 " 4 b ¢ ) (b ¢ z”),, Co 17

- 2z
i uG [Wc.'(am,,) 1 - Wotma,,)

Proof: It is sufficient to prove the identity for the
functions with tilde, By applying 2.7, {twice) and

2.2,1, the following formula can easily be derived, i)
7 (3e€2by) ¢4 by a1 leba i b !1C4s) A6
WG 1€ 03] ¢4 )_ A 16eb3 16, 4{ I’(Q«,h)&lai,h)lﬂ/ 1 rla,,t z)[M.J

"~ ( Lz Da | G4 bl;). N(C‘!b ’ 1 bij 1 ( , } (b“f)
W“ bulant W, o 'E[ai.b)[ﬂ%‘ﬂ[ﬂ/’q] vl T2ty [’wﬂf] _]

7 G

Applloation of 2.2.1. to the sum gives (3.1.1.):
(bqh’bt(t} (bd t!- b { ) QA
W W bzt z 2.. ) T(a-f,q’)'f(af,!) f.() [W J

Here the summatlon goes over the pairs
cb”Cd), (b1t} M;ﬁ i-():f'j

< {
: 'ﬁ Chay ) ) (by,ce) W Eqp = -4
By choosing by= a,, by= a, 3.1.1. shows. (3.1.2):

o CRiblaats) ~caqesla ay C"‘il‘a-)
W, T has i) T(a4,(2) [,"] a4 (02l )
- T (0-1,f4) #,']

A similsar formula holds with cy = b,“cgL = b, .
Inserting these identities and using 2,6. the 1.h,
gside of the identity can be writiten as

2 A Z f.(},T(df,ﬁ’)T(ai,,g) G(d;ﬁ){ (W‘hj

(4] 4)

(«418)

(a2/4y)

A
[#0 0 P
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Now, Jacobi's Theorem [5] states: "Let A = (a,;K )
i,K=1,-- , nbea nxnmatrix and 144 1g
K,’(:K2 . Then the following formula is valid:

[A],,‘MW[A]:MRU— [‘A]“’”K‘)[A]“”K") (AT [AlL

Without any loss of generality it may be assumed that

( mlm;) i

the rows and columns of1wzq'are ordered such that those
corresponding to a4, a, are placed in front of those related
to o, ﬁ . It should be noted that in 1l.h.s. only those

terms contribute with 4,8 # a, ya,. Thus Jacobi's
Theorem proves

Lhs - [4{/“] Z £y G(8) T(214) (a1, )T (%, 07T (a,,8) [fff/ a‘]

Now 3.101.app11ed to the bracket of the r.h.side of the
N - . N a!.l qi‘.]
identity in 3.1, gives: Qe ’} )

t+.h5. = U(, Z 5&) 6K ‘Mt qnl;) T{ax W tm.) ’[(a,, i}am [M(a,a,)]

If the order of lines (s.a,) lﬂ?%o is transferred to
/f;{c:c:.;) it is easily seen that a8 Qra,
Qiﬁl (c{ ‘,/g )

g[dmh Qi‘h) mdg ‘hlz) T( 244y /SQN;_) [Mm’a”]
) ”"‘fﬂ)““w’f(‘h}) o) ilar,§) [H] 52014

This and 2.3, immediately prove proposition 5.1, .

(a24]228)

Proposition 3.2, Let a # b be two veritices and 1 eaf(G)
a line, Denote by a, ,a, the endpoints
of 1. Then the identity holds:

Z [Pl - Nﬁ”[ (4 bas) W(lebao7
PeRtab) e
Remark: This is a modification of g formula

in  [2,3].
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Proof: 1% is sufficient to prove

PR LY PRVENL D A Y
2

T
Pe ¥ (ab) T% ];/P"'* ¢l laasfbes) 7, 6T, (am/bay)

On both sides of the equality the summation goes over
disjoint sets - each term contributes juSt once, Thus
it has to be shown that each term of 1.h.s. is included

in r.h.s., and vice versa.

Let (P, Tj>) be an element of l.h.s.. P is a path
connecting a and b and containing 1. Tz is a tree in

6/P. Thus Tfv P is a tree T, in G and T\ 1 is a 2-tree

in ¢. Let Tq and Ty resp.,denote the connected components of
ﬁxlvﬁﬂlaev(%)zmd bev (Ty). Then one and

only one of the following statements is true

(a) adeV(Ta)amiazev(Tb)

(b) a,ev (T,) and a, ¢v (Ty)
(a) implies T,~1e€e T, (aa, | baz) and [P:1]= [e:{]
while (b) implies T,\fe¢ T:(a,az,bh)’[p,”:[a...g]h[a,,,:t]
Therefore each term of 1l.h.s. contributes to r.h.,s.-
(uniquely) with the right sign.

Let T, be a 2-tree in G separating (aa, ) and (a, b).
Then T, v 1 is a tree which includes a unique path P
joining a and b, hvl/p is a tree in G/P, If P is
oriented from a to b it follows [P:1] =(a,: 1]. Thus
all the terms in the first sum of r.h.s. afe
contained in 1l,h.s. The same argument applies to the
second sum,

Q.E.D.
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4, Example

In order to give the idea of the diagonalization without
the burden of technicalities the results will be
illustrated with the following simple graph.

¢3 '
G:=: e (P‘-ipb,Pc) ¢ R Pa?ﬂbrpc=o

v
o )
" ’ P Ug s dids (et eay)

Ve ﬂi[ didvdy Pa' t drdy dy Pyt Uit ) dydy pi ]
¢

Define momenta ?;2 Pes  Ga =PatpPes 34=Pat Po 1 Pe =0

and the sets ¢ ¢ £,:{ct, Rq:{a,c} , Ay =10, b ¢}

It should be noted that these sets are nonoverlapping and

are {totally)erdered by inclusion such that - apart from

k- each set possesses a unique predecessor. The predecessor
of each set includes Jjust one vertex more than the union

of 1its successors. Both the sets and the new momenta can

be labelled by these unique vertices. The order

of the sets defines an order of the external vertices in

a natural way.

Remark:4,1. The transformation (PnPthzpﬁo-—)(ﬁc,ﬁa,?b)
is & nonsingular linear mapping on the space

of external momenta,

In terms of the new momenta one has
UV = 43 (adi drdet ady)9; + gy 9a + 2 9d e {~dydeos

o
Remark: 4.2.1, The coefficient of?t ecuals MﬂfC{ %

the co - 2-tree preoduct sum separating ¢ and

. A , P *
its predecessor © = a; the coefficient of 4a

equals Wzaw), the co-2-tree product sum

separating a and its predecessor AR ; the
N (Caild) w(c&‘l?a.)
cO WYy =114

coefficient of‘l?u?g is esaual
This is a simple example of 6.1..



13

Straightforward calculation proves the identity
. Aoy (dy¢ 2
vo_ 11(3'lv) [q ] ] o3 dy 2

‘3'4V Ay tdy #e

W(ata.) w(adac) Wmi‘lﬁﬁ) 1
BETH [?“ # WD ¢ ] t Ve
V&co.a) : bocogiar .
Ugad)
Remark: 4.5.1. wégl&) = UG(&&) is the co-tree product

sum of the graph obtained by identifying

the vertices a and 2 =01
Pe

P N b
&1 2
4,%5,2, The second term in the equalities is
equal to the V-function of the graph Glad)

( s, 4.3.1.)
4.5.3. Ut (adled) is the co -tree product

sum of the graph ¢ (@ dcd ). All
the {external ) vertices are identified

in this graph

Pc
SPAPRL
Pa Pb

4 4

4.%3.4. The transformation (pg, Pys Pe )
1 i §
(2¢s Gqr O ) ’ ’ .
with e = Gey ) = ap 5 Ga = da = o= e
is a nonsingular linear mapping of
R® onto R . It depends continously

-—
T Ps:0

on & in the range di20 ,i = 1,2,5,4.
In terms of the new momenta (7' ,alq )

VG can be written as follows
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V . Usad) 12 Zlo(aalcé‘!
6 - A ?a + l ?
l6d)
This is the desired diagonalization for this example,
The generalization of these remarks is given in 6.2, 6.3,

_ 3
Consider the spin-polynomial 7; for line 3,

3 1 ¢
Y, DN [~ (hadas didy + dgdy) pa + (Rat dy )y Py |

n

_c; [- (dadyt dedyt dgdy) e t didy §a |

Remark: 4.4. The coefficient of momentum qg
(4 = c,a)is equal to

2 [P3] uﬁ/
Peltau) f

This result will be extended in 6.4, to

some line of an arbitrary graph

A simple calculation shows the effect of the transformation

(qa,qc)—)(qa,qé)ony:
= | e

g [ % o 9] - oo 4

S ety A

= Z [ 3] 90. + G

leﬂ(aa) Ue (8o
y : . [P:3] U’Ma’a} r
Clda) (qu (o) P -4,
Gtda) Uead)

Remark: 4.5.1. The coefficient of q& ig equal to that
of qa,.

4.5.2, The second term in the equation is the
spin-polynomial of line 3 in the graph G(a®)
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obtained by identifying the vertices a and 2 =1b in G,
This result will be generalized in 6.5, and 6,6,

5. Choice of momenta

A familyaﬁb of subsets h of 9" the set of the external
vertices - is called a momenta (m-) -family if it satis-

fies ﬂ ﬂ
4¢ Nty oar
O Aok doa Aok o

(ﬂ) ¢# G ) ¢ ‘G —_ o
hoi Fehe = 4 g‘%ﬁ)¢€]6
() Y Re o and WRR)-{hiche | 423,
[Rl< JUR| +4 |
W ot (gl may

(4) ;96 ¥ masumal

Remarks: 5.1.1. (o) implies that }96 is a family of

nonoverlapping subsets h‘ja . The
clements of M can partially be
ordered by inclusion.

5.1.2. (§) corresponds to the fact that due
to momentum conservation the sets
Ac 9a and ﬂa\ﬂ are eguivalent in

some Sense.
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5.1.3.

(Y ) indicates that each he& /M, can be labelled
by a unique vertex 86 & yi.e., by the unigue -
vertex a € h not contained in any h, ém(&'}h)

501-4- 3&'6%6
Assume 44 f‘&(, Let hy,..,hy be the maximal elements
of M, satisfying:
h“:n hj=¢ y AP, 1,)=1,.0,k
Now (8 ) implies ;h‘;qaga .Thus there exists a vertex as g
K
with a¢ ¢ h;. Define ho to be the union Uhv {al. The

family 460{‘3“*%6 satisfies (0{),(/9), (f) - thus
contradicting (d). This shows % 6&6 .

In view of 5,1,3. it suffices to prove: "To each
aé gG corresponds a (necessaril.y unique) element
he%a such that ap = a". Assume that ag g, does not
possess this property. Then, 4qén, and (V) imply
the existence of a unique smallest h, €1, satisfying

ach, and (hgh =7hf,§6 )
If é,ad 30098y BTC the elements of h,, the assumption
gives |K|32 . Define the sets h ={a} yh, = {a, ,aaf,
hK:{ By s ,axi . The family M,v “'."': Bt fulfils
(4);(}),(3’) - contradicting (d).

5.1.6.
Remarks 5.1.3, _and 5.1.5. prove the existence of a

one-to-one correspondence between the external
vertices and the elements of &6 such that:

ae g, is related to heﬂé iff aeh and a{ h,

ke A
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Moreover each a = a, , hea%a sh # g, 5 Dpossesses a

unique predecessor a’ﬁ such that:

A
h; h & /VHG and h is minimal .

It is the pair (a& yap ), A 5‘%“\{3“} that plays a dominant
rfle in the dlagonallzatlon of V, (see below).

Let (Pahlé . be the external momenta of G. Define

new momenta

=2 Pm y b é‘%a

Aeh

Remark: 5.1.6. shows that the,transformation

(Padoege = (Inehyy , 2 P
is a nonsingular linear transformation of R
bigl-y
R .

mi ¥

onto

The momenta Pa,txega can be expressed in terms of the

new monmenta

T —

Pa = 795 - 21__ h
bedi(h, M) Hhs
Here it is ap = a and

/ﬁi(ig 1) fRie e ho- Ry Aeko

Convehtion ' should mean a certain element with
the property Qs #36 . '

.

Let k¥ Dbe a nonempty proper subset of gband define the

families

a(ﬁalk)ﬂhéﬁal agek, ag ¢kj

(BulKIR) = §Ro6h) ag gk, ap 6K, ho ch, hs monimal}
. {eﬂ(? .

Remerk: 5.2,1.

By the maximality condition imposed on
by & zﬁ(ﬁﬁ“(l&) all the predecessors

2 af - . i in h,
aﬁszzu ; al of 5, are contained in
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5.2.,2. It is easily seen that;

k = {4+ U4,
Kokt RisBLih)
5.2.3. The sets {A-ufy } , he /k@@dk) are

SCIKIRD
mutually disjoint,

The same is true for the sets 3(-”{!}2] ,,ﬁ.éﬂm‘]o“{),

5.2,4. A simple argument shows:

U &b (helkIR) = A (helk')
Ao AL URAR)

5.2.5. The following formula is wvalid:

Zper > { -

.|
véK 4 ¢ A (MelX) Aw.‘&(-lklhﬁ

For, in view of the remarks 2.2, 2.3 one has

D D

K Reftthalk) ah@hy

Thus 1t is sufficient to consider the equality

po = > i?h@— ya %}

a € hy(vha) a’e inlvha) =
hedinny  heegewm  Aedilplha)

Let @ e hy(Vhi) be such that D2 hedhy.

Due to the construction of & (- |K/h) & unique
L] L] 4 A

vertex ag  exists with Y ,a,['fqﬁ/ﬁq ) .Thus

the vector ?Aa appears Jjust twice - with

different sign however, Therefore, only the

98- 2. 9y,

terms

survive.

5.2.6, Application of 5.2.5, 5.2.4, 5.2.3.
yields the identity:

ZP“=Z 9&‘2 24

aeK AetihlK) A ARl K')
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Notation

Let ap, be a certain external vertex A, e ﬂﬂo‘ {ja}
Ro

For each vertex a € v{G) a™ will denote the vertex
in the graph G ( o4, aﬁ, ) which results from the vertex
a in the graph G. The external momenta in G‘(a& aﬁ )
-] 0
will be chosen as follows,
Pm ¢ = Pa Qa -# aﬁﬂ
’ ‘ 46 ‘0
Pare = Pag, * Pex, 27 : oy = af
The family ’&}060-4 a3) is defined to be the set of all
’ [
subsets:!

‘50
A 1a'&°éj°fﬁx,a?.) | aek, atagfc Je e, )

A ¢ '&]G\ {»ﬁo!‘

Remark: 5,3.1. }jﬁ(a'&o af, ) is a m-family in the
graph G (aA ag, ). Thus the above remarks
’

concerning 4, remain valid for '&5(0-3 af )"
It should be noted thaf for T

Ao Ao /\.30
Ae }gé(ag,af,) A= X .
5.%.2. The momenta ?{‘0 / 1"&_65(4&&ﬂeatisi‘y;

Qabe- g Aok (4]

5.3.2, Let a%¢  be an element of 3(,(;1‘ ag,) -

A - : 27 Ao
The above construction applies to Qg , Az in G(Qhoaﬁo)-
The vertices in G (a&, aﬁ,'Q.ﬁ.. Q’RJ will be

genoted by a"’ 1 a being the corresponding

7
vertex in G,

This procedure can be carried on until all the

external vertices are identified.
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6. Results

The notation is as in the sections 1. and 5.,

Statement 6.1.

ub VG Z q (QAFQ&)

o [ i)
oﬂﬁ ﬂ:e’ﬂ

Remark 6.1.1. This formula describes the effect of

the transformation

(Paia;ﬂ — (?ﬁ)ﬁéﬂj on the Vg - function,

Proof: Insertion of 5.2.6, in the definition of Vg

shows;
CKIKD ¢
Uk > WS g > )
f:”;,? helhilK) Lo (1K)

K
Let a number £y p Dbe defined by:
Ehahtz -1 Qh”(lh‘ék amd ah4:ahz&K ’R‘iﬂb
1
0 othorwine el

. K
Prom the definition of /(}Z(}’:,H{) and f;“h,_ it follows
immediately that:

Uetes, 2 (a95) > g WS

"8 ‘Fy {K K'i 1
K<da
CKIKY (16
Z (?h Ih ) _S_ W Z W E
ha R K> an,, 4, Kviam.ahz
K 2 5‘%,:%,} {aﬁd & hl

By use of Remark 2.2.2. the Statement is proved at

once,
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Statement 6.2, Iet &L % g, be some element 0f’66

Then an identity holds: ‘
CHBIRE) 14l

. _Uopag) Z _
VC' T Us Tes W(auam .

1*h
1&6 G

VG(ahag)

Proof: Let A denote the first term on the r,h., side of
the above 1dentity. Then 6.1, gives:

(ah a COheQhy 128,88, 111 @ 2R, I0RGS,)
L VWW“’ Z(?m ‘?ht); h)[ W W, h "]

& buhth
can 8,107 07,) 1 (@ Ak, 19RR,)
—[(. h hh*Wa 1][/31_.7,31]
Application of the crucial proposﬂnon 3.1, ShOWS 4
(a,, ah Jaz. A ;% ) (“m am!% th)
Vs A+ WZ(?A,% i - W
£, M 4 G (@ 24) G (az af)

Remarks 5.3, 1 ,5 3.2, together with 6.1. now applied to the
graph G(ah aff) prove 6.2, . {It should be noted that

@ ]eh) -
W GLQ;;Q'I}) (see?2.5.))
Statement 6.3. Let the elements of &g hg, i=1,.., [gl

h’w = g be ordered in some fashion indicated by the indices 1.
Define G(ah aR ) to be the graph G and Vii4 to be the functlon

e fiie h h hl h; t Ay h-f -1 el
( ‘4 hi-1 k! hr—: ’Q hy--hi- 1 a’: b!) [ ‘lahJ lah h,l )

3
VVG (ﬁhq Qﬂd [ '[Q,hi_.‘ Qi\i-i) & (afu q‘?l,ql ‘) ah,;-l. qu:-i )

Then the following formula is valid: 3,

‘Uua,..ar.l -| ah; af; ) [?h . Z?h | Wi‘j

-..,_1 uﬁf‘lh.qh, Iah 9. ) 4> Ju(,(ah‘-;....;amaﬂi)
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Successive application of 6.2. and use of 5.3.3., prove:

the statement in a trivial manner,

This formula is the desired diagonalization of VQ . ‘If new

momenta

C W.," | |
Yo * Jho b 2 Ty i 4 I

>0 UG(%‘ i-]-ag;)

are introduced, V, is equal to

G

G

[3/- 1
: U(’(QMQEW""QMQE‘;J (?’h')L

ix1 U

Gﬁlh;l-n-{'aﬁ&q-)

Remark 6,3.1. The transformation qp = Dy, si=t, .0y g -1,
&

is a nonsingular linear mapping of R onto RYAY
and depends continously on the Feynman-parameter of in the

range de2x 0 ,lef(ﬁ),

6.%3.2., The coefficient of (qd, ¥ is equal to the
&
quotient of the U-functions corresponding to the graphs

/1 s '
G(ay, af,! ....]ah’:ah}) j=i,1-1 . G(ah' agq[....[ahl a&)
is obtained 3? identifying Eye vertices
= Raeq haherq .
Q}u' MGL a"/g\-t £ 4:“'; 4
* A A . ] v _
in G(ai,gﬂﬂ""lahb1aﬁcd)' Each coefficient is a con

tinous function of o« in the same range as above.
6.3.%., The numerator of the coefficient of (q}hlbi )L
is the U-function of the graph G{g). All the external
vertices are identified in this graph. G(g) can replace
the graph Gee in [1] . The singularity-families 1ﬁn0f

[1] can be constructed out of G(g).The unique external
vertex g, of G(g) plays the role of the vertex vy of

[1] ard the notion " a subgraph Hc¢ G° is irreducible

in view of infinity " of [1] corresponds to the notion
"a subgraph H(g)c G(g) is g,-irreducible s8] " ., The

graphs G(g) and G, are equivalent in view of the con_
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struction of({;yﬁb) of [1], The partial ordering of the
Feynman-parameter ne, ﬁé&gh)lnduced by the famllleség;}ﬂn/
gives a simultaneous resolution of singularities for all

functions {JGMﬁfI“"I-Qf.) je= 1,..,’ }
¢

The following statements describe the effect of the trans-

formations

Pecge — (9 ek — @), g,

or the spin- polyﬂomzal of an arbitrary 11ne

Statement 6.4. Leti 16&6(G) be an arbitrary line. Then the

following formula 1s valid:

>/ u %Z [FZJZG/P

’ﬂ‘(’pﬁ(’ Pel; (o} )

Proof: The momenta q i (- 6 ! % g, » can be independently
prescribed, Thus it suffices to consider some term he% Haﬁ
and to impose the condition qh4* 0 ,h éﬁ iﬁk The con_
struction of.ﬁﬁ implies:

Po+ 9y, P9y o P O Fheforidaid

In this case the gpin-polynomial for line 1 is egqual %o

o mm > [T Uy,

Pé f(agah)

] Ptllle |
u ;’;‘Ug (L Q.E.D.

Statement 6.5. Let h % g, be some element of/?G . Then
ey

(a aplap,a ag e, a
i [7471L6 ?* g J‘uhhh) X 18,0 ) {
6 Z Ip [ th Z '“ @hjag) T
G Pep R (a70,) *::h ¢ WG | 6layaf,)

Egoof: Define B to te the first term of the r.h. side and let
bﬂ,bz be the endpoints of line 1. Combination of the

propositions 3,2, and 6,4, gives:
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VY
AT ¥ Cb,:4 (aky )y |\ 0f
Ue- o= BU+ £ 5 g, W?wg) [W(“hmﬂ)[w boy.b) Gumbzmzm]_

[Wcaubuam mhbnahbuj[wf“h«“hM"‘h’ _‘“*1“31&5'4%)]

6 G
1. _ 4 ]
5.1. shows Z I (of, ot ok af ) | (Qk 0} Jay, a’gd)}
y:. B +4; q,, Vo WS TR {Wﬁfﬂhﬂﬂ) ~ blagap)

Comparison of 5.3%.1,, 5.3.2. and 3.2, 6.4. - now applied
to the graph G (ap QR )- establishes the statement if

the equality 2
b d1f~1 = [be:t1 {1}

can be proved.

First, congider the case in which fb“bz}= {ah,ags.
ThlS implies that the bracket { } vanishes as well as
[h,l] [bgf]+fb4 {] .Thus the equality holds for this
special configuration of b4,b3,ahJ ap . In all other
cases it may be assumed that by¢ fay,af} - Then
[ﬁf;£]==[bz:{] (see 2.4.). Therefore the equality is

valid,
QR.E.D.

Statement 6.6, Let hy i = 1,—,”61 and qp ~ be defined
as in 6.4, Successive application of 6.5. to the sequence

of graphs
G, G (agap )y, O (ah,au..‘.%m: G (g) yields
the identity.

71 g?ﬁ L E’P [P” UG(% Hake.y)
e UG[a,”.l—--l-af,“._i) { 4 % K

/ 'E fh ~hi- 1) ,

“h.H % )
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Remark:

The similarity between 6.6, and 6.4. should be noted.
It is the sequence of graphs '

G, G(ah a’;\ ) I G(a,h‘| aﬂ‘[ ]a,w?ﬁwth

4

which characterizes both formula. The U - functions
of these graphs contain all the information needed
to give g satisfactory treatment of the analytic
and dimensional rénormalization of massless field

theories along lines similar to [3,4] .
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