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Graphical rules for the diagonaliéation
of the Feynman - denominator

H. Trute

I7. Institut fiir Theoretische Fhysik,
Universitat Hamburg

Abstract: By choosing a suitable nonsingular
transformation on the external momenta of a
Feynman - parametric integrsl simple rules
can be given for the diagonalization of the
Feynman - denominator Vg in terms of the new
momenta. This diagonalization of Vg is the
basis for & discussion of massless field
theories in the framework of [3,4] .

The effect of the transformation on the

spin - polynomial Yf is considered too.



1. Introduction.

The perturbation - theoretical treatment of quantum
field theories via Feynman-parametric integrals
involves - at least implicitly - a discussion of the

function
6)-" [Vc, .t’(c:ﬂm‘ +L0] | d Ael
Ledfe) Za(,g 1 u’4>0
(iK' e1®
ILG = zz- T . W 5 2
& Lt Ve 2o (), gl
Ke§ 2 Pa-
a€q

In massive theories the main problem 1is a resclution
of singularities of UG;'that means a determination of
the number and order of (independent) zeros of Ug , and a
representation of Ug in the form Ug mJTé%)m'fog)
where tei = Trild) are independent variables, K; are
positive integers and E ( te) does not vanish in the
domain De . The union of all De has to cover the
whole space, ?_q'l-:{ ,#¢20 . Since Ug 18 an analytic
function of,( general theorems [b]assure the exlstence
of such a resoluticn. Indeed it can be given
explicitly in an elegant way [3] by introducing a
partial order of the varameterd in terms of whatl is
called labelled singularity family in [3]. This
construction moreover serves as a ground for a physical-
1y acceptable subtraction of the resuliting divergences
of the Feynman-parametric integrals. The function

[Vo-Zdemi+i017?  does not present any difficulties

[%3] . Due to the term deru im0, Led it is
g distribution in the external momenta (Pa)aeg, 2 Pa.=0
which is an entire function of A and smooth in “i§;
in the domain De .



In the massless case the situation changes considerably,
Now, due to the wvanishing of m, for all (or some) Ze L)
[ V- Zdemy ff,OJh produces singularities both in A

and &« (resp. te ). This is the reason why a general
discussion of massless theories in the framework of
analytic and dimensional renormslization [3,&}4]

has not been established till now - in spite of the
fact that there has been considerable interest in
massless theories in recent years caused by the
appearance of massless particles in field theories
with certain symmetries - chiral symmetries ang gauge
field theories,

However it turns out that in order to control the
singularities of [ V- Z—d,e'm: ifi,(.')])l in the massless
case a certain diagonalization of V, is sufficient [1]
i.e. to represent Vi as a sum;

131-1

| V(,’ z — (9:)1 , Ve U,

i1 Vi-q
where ?2’#(5,3) are certain linear combinations of the
external momenta. The resolution of the singularities
of Vi/%?z i=4fmw(3p1 gives a satisfactory basis
for a general discussion of massless theories along the
lines of [3,4] . In[1] this has been applied with great
success to the determination of the scaling behavior
of Feynman-amplitudes - even in Minkowski-region.

This paper describes a general procedure for the above
diagonalization. A mnfamilytﬁb of subsets of the set of
externgl vertices is introduced. Linear combinstions

QE f=4r”'|HF1 of the external momenta corresponding

to the elements ofvﬁﬁare cadsen, Vg is diagonal in

the new momenta ﬁ. The coefficients of @ﬁ)t have a



simple comnection to certain graphs G; obtained from

the original graph G. The effect of the transformation
(P‘-J“ﬁo—’ (‘L{:);Q,.., g1 on the spin - polynomial Yzf
for line 1 (of degree 1) is considsred too. The graphs Gg
again show up in a nafural way .

In a subseguent paper L[7] the result will be applied to
the analytic and dimensional renormalization of massless
theories. |

The suthor is greatly indebted to Prof. K. Pohlmeyer
whose idea of a diagonalization of Vg in massless field
theories started the investigation. The author wishes to
thank him for many discussions on the subject.

2. Notation

For convenience of the reader the basic definitions of
the theory of (Feynman-) graphs will be given. The notation
heavily relies on [2] and proofs may be found there.

A graph G = (L (a), v(G),%') is a triplet consisting
) set of lines ) (G),a (finite) set of
) and a mapping Y,
L) — v (6Ixvi6)

feo: £ — (Vi) Ypt))

‘ﬁ(é)/ ?{({) are the endpoints of the line 1€ £ ()
The graph-will be assumed tc be coriented jthat is
(a,,,az) f (az,ad) if %74 azev(G).

of o (finite
vertices v(G

R LRI 0 L BT AR ST 11 e



A subgraph He G is a graph H = (£ (H), v(H), %)

satistfying £ (1) ¢ L (¢), v(H) ¢ v(G) and - fol o

Let a be an element of v(G). The sets S{a) and L{a) are
introduced according to: '

Sta) = { Le(6)] 9. ()= a o 9y (¢):a}
Lia) = $LeL(6) ]| 9i(l) = pp(e) = o}

Twe distinct vertices a # b are said to be adjacent if
S(a)n s(n) # ¢

The graph is connected iff for each pair a$b of vertices

there i1s a seguence of vertices a = a',aa,...,ak: b such
that g4 and A J=0,..,k=-17 are adjacent.

Let k be a subset of v(G) containing more than one elementj
[X12 2. 6(k) is the graph (& (6),{v(a)~ Xk}, Yorxy )
obtained by identifying the vertices in k ,i.e.

(.14, 174 () (v, vp(e) e G\ K

ufm)(e): (fo(£), Ke)  QilO e v(eNK | pp(f)ek {64"@/}
CO ) Pl ek, Pp(lle v(GWK .k
( Koy ko) Pill), vp0) €K

If a &€ v(G), then a® will denote the corresponding vertex
in G{k}. One has k,= = a¥ for 211 aex .

Let k‘:{éﬁ,...,a 8§ be a subset of v(G) satisfying |{a‘,.,a fi2 2.
Then G(klk') stands for the grapn G(k)( {a .,ar}) obtalned
from the graph G(k) by identifying the vertlces @:,., ;
Let 1, be a line laeéﬁ(G). The reduced graph G/1,

is the graph with line 1, being contracted,i.e.

6/1, = (£(6/1,), v(6/1,),¥y, ) with
L (e/1,) = £en 11,}
v(G/2,) = (v(G)s {f(0) pa(llh]viao} |, aeefg:lly) pit)t

It

and



(9 (0), 43 0)  po(8) yplt) € v (61 {pitde), g (6}
(0. ) (oo YLO)  Fills): pill) 0
er/(,} ( (f;{(),{q.) ¢g (2) )’f(") Le gCG}\i(}

(a, ;ae) P (l) < pell, Y418 fe(6o)

=11 ,--»1,8 is a subset of ¢(¢), then G/L is defined

to ve  (((C/L) /LN /- |

Let H ¢ G be a subgraph and aev (G) a vertex. Define

g humber

D (2,E) = |8 (a)n (B + IT (2)n 2 (8]

A path P joining two distinct vertices a,b is a minimal
connected subgraph Pel Satlsfylni:o or 2 c #'a,b

cev (¢)= D (c,P) = 1 otherwise

P, (ab) is the set of all paths joining a and D.

A loop C is a minimal nonempty connected subgraph CcG
with aev (G)=D (a,c) = 0 or 2

Remark: From now on the graph G is always understood
to be a connected graph. The subgraphs may be
disconnected of course. Furthermore sometimes
a graph H will be identified with its set of
lines £(H) arnd vice versa a set of lines L e G)
will denote the graph L = (D, v (L),ﬂ_) with

w(L): el [Le Ly v gl | €ell ; o (0 f(0), Lel
A (4- ) tree T, is a connected subgraph Ty ¢ G

satisfying v (T1 V= v (G) and including no loop. It
possesses the properties

2.1.1.: Tor any pair a ¢ b ev (G) there is a unique
path P ¢ T, , P & B (ab)

2.1.2,: IeT implies T,~1I is a tree in G/I.

1; is the set of all trees in G.



A 2 - tree Ty is a tree T4,one line being omitted. If

h are disjoint subsets of v (G) a 2-tree T, is said to
separate hieand Ry if it connects all the vertices in each
ot h1and'M resp-’VWithOUt connecting h,and ﬁz'

A co - r-tree T, (r = 1,2) related to the r - .tree
Ty 18 the subgraph obtained from the set I(G)\f(Tf).

Numbers &30 and );@q;v called Feynman-parameter are
assigned to each line leZ(G).

Certain functions can be defined:

Us=S T L u(,-L'ﬂ'ﬂQ

'T",‘.T .‘ET,. 12 ZGT
called resp, tree—product sum and co-tree-product sum

of the graph G, and similarly for 4., 4, ¢ v (G)
{‘dﬁ ) [h
:E: jg% /&‘ / ilhs ). > _ T, de
TeT{n.;h,) e Ty (hifh,) €T’

resp, 2 - tree - product sum  and co- 2-tree-product sum
separating h,and hz°

Here the summation goes over all 2-trees I,eT, (h,/hz)
separating h,and hzo

Remark: The sum equals zero if A, 2 %/ . In general the resp.
4~ and S ~ dependences will be suppressed. Furthermore

vertices a,b,c... and the set ia,b,o ..} will De

identified.

Some properties of the W - functions are of use.

Remark 2.2,1: aev (G), A, hoev (G) aihie)
~ ~ . 4
Wra(l"‘l): W(nfa/‘J WG( ]

2.2.2: b,y hay gev (G)

(\‘"(hcl'h» (K’ vK)
- S W

ch
h4C K
h, K




gimilar formulas hold for the functions with tilde.
The incidence matrix Mg= {fﬂdu)l-!(ﬁ) ig defined by
o évin)

+ 1 a = Y44
[a:l])= {_ 1 2, :Jf(,) Le S{a)\ L (o)
o otherwise ‘
Let the matrix ’#/,6 he given by
W, (2 [l [a: —
G ({éfﬂﬁ) ) h,d; épéﬁ}

If =z is an arbitrary verﬁex,ﬁﬂ; is the matrix
constructed fI@H17W2 by deleting the row and the column
belonging to a. [ﬁPZ]'will denote the determinant of the
matrix H0? . fﬂV;](b'C) a # b,c is the co - factor
corresponding the minor [ﬂ”:]ﬁblc)-the determinant

of the matrix obtained by deleting the rows a,b and
colums z,c in, . _L Wa‘lgb'b"'“("will denote the
(a,ba,]?,_ ] a,c”cz) minor of W(' (a % Doy By Gl b, £ 0,
Ca # Cy)e

A number T{a,b) is assigned to each pair {(a,b) of vertices:

O a = b
T(a,b) = {

+1 otherwise.
The following formulas are contained in [2] .

Remark: 2.73. " Let a be a vertex of G. Then

[ ] U, aevis)

Let & ¥ b be vertices of G.

2.4, a&(at} : ([c‘f.’f]) A% v (66,b))) Le 1) satisfies

b . &b

ab, 97 _ L] ¢ 61,((,).\{0_,”

ok L{L’a:t]ffu} IS SO P ()
2.5,

~ calb) . (blb) o~
W LW Uy

ab
[y ] e vican)

H



Let a,b,c,d,e be arbitrary vertices of G..

2.6, A number G'(b,c) =G6(c,b)= 1 exists
(depending on &)
such that
zle,)tta,0) [# ] z@ b z0.0) ¢ Cbe) [H°]
ansf-i(J,c)-G(ctd,): G (b,d) bye,d e v(6)r{al
2.7, The following identity holds
T(a,6) T (a,¢) L—,ﬂ{;n}(blc) w(albt,) wa(adlbc)+ V’oﬁ(alb:d)
~ cade]be) "*-(adfbceJ ~ (albed)
= W;, t G WG
One distinguishes a certain subset g, of v(G)~called the
set of external vertices. If kg, is a subset of ge k!
will denote the set ga\k6 . A vector-momentum -
Pe €& RY is assigned to each ag g, such that Z p. =
Thus (pa Jaeg, is an element of R””L 7 Mb}eover &
scalar product (p, - 1 ) will be assumed to exist on RY .

(The subscript G may be omitted sometimes).

The function Vg is defined to be

(KIKD = 2

Vc, W (Z' P“’)
ug {K K'} eeK

K«
Choose arbltrarily aF b e gg, le&g(G) and Pe B (a b).
The path P will be taken to be oriented from a to b.
Then a number [P:€] can be introduced by

5 o 24 P
LR +1 f&P an the crientation of 1 and P
coincide
-1 otherw1se

-C .
The spin-polynomial ); (of degree 4 )for line 1 is a
certain linear combination of externz]l moments

Z p > el Uoy

e gnfes  Peifeh)

¢
Because of the conservation of momenta ag: pai YG does
not depend on the peculiar choice a ¢ g g




5. Two identities.

In this section two identities will be proved. They are

crucial for the general discussion in section 6. .

Proposition 3.1. Let ay #a,, v, b, , C4 # ¢

some vertices of the graph G. Then
W u.lm[ ch Wlb ¢p) Baaibic) ] _

abfal: cbta @610 0) | (@1G(8a )
[.w(l‘.l :,,, a1y zb]l-wf z:waaztj

aa ' ik a .
(b:u; q" ’b 1 QA;) (b ] u,,,bam; a‘lﬁ

- uﬁ [Wc.(am,) W‘-(‘"“t)

Proof: It is sufficient to prove the identity for the

functions with tilde, By applying 2.7.{(twice) and

2.2.1, the following formula can easily be der%Yed
{byleq)

- . &y (bqfft
WG(M €abal €4 by) _ :a’ bzl b‘;_ t(%b.;ﬁ[&g, €) ’. m.] - (& ‘“(‘)[M J _}

“"(f-zb..’a‘nhbd ~ (Crbafartsby) ar1{dylca) a thly)
WG wc, = 'L'(a:,b )[T(nd, (1)[4’/' ] e Tla 1)['”” ] J

Application of 2.2.1. to the sum gives (3.1.1.):

Cbytajbatal - bq | bg la a (o [}-)
< - (('a ‘ ’b ‘ J" 2‘(4,?) T(‘%,-{}'E(Qq,l’ f.() [WQJ

W

Here the summation goes over the palrs
«,p) {Cbncd, (byley) wnfh €apetd
(b"r(’v} ! (bq,(i) il f.() = -1

By choosing b= a %.1.1. shows. (3.1.2}:

1°? 2
 CGy ] Ry la) - fa¢sla Q4 CﬂgICz)
We S W, rla2a) T (a4, L2) [/ﬂ/) ]

G : = a,,{81]¢q)
(o.f,n ) [ ]

A gimilar formula holds with Cy = bifcl = Dby

b2= a

Inserting these identities and using 2.6. the l.h.
side of the identity can be written as

L 4hs. =(‘§j £qp T@44) T (a0, f) e(«;ﬁ){ ("1,

cazfey)

[41/’“]“,”

[’”{} (“tld)[ﬂ/h} “tl})}
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Now,Jacobi's Theorem [§] states: "Let A = (2 )
i,k =1,-- , nbea nxn matrix and i4.< i,
Ey,{K, . Then the following formuls is valid:

[A](mx-;[A]culka)_ [A](uzlx,)[A7(tffK;) [A] [-A]“‘l"?.[tfkr.) i

Without any loss of generality it may be assumed that
Q
the rows and columns offwz Tare ordered such that those
corresponding to a, , &4 are placed in front of those related
0 &, B . It should be noted that in 1.h.s. only those
terms contribute with «,8 # a, yay. Thus Jacobi's
Theorem proves
Gx

Chs s [HET 2t o) Tlord) 30, 3) 00, 0T ) [#. Js

(«,3)
Now 3.1.1, applied to the bracket of the r.h.side of the

. R . ﬂ“l a4“|
identity in 3.1, gives: o q?*‘ (« f} )
18;

+.hs = u(, Z f.;} 5'( e )l‘mz) T(a. W au.) T(Q‘ ﬂ ) ﬂ/(;(a,u,)]o

If the order of lines (s.a.) Lﬂf%o is transferred to
ayrt
7%2 it is easily seen that Ay, @10,
10y (ql ,} )

(azdfa, )

LCFY P

Otky 14, a«d, 1l ﬁfd; Gety 4
618 20y ) Tl ) e ]
= o (48) Tland) T (e, f) Tay,a) sy, J) [ﬂ@,q']f%”a”)}

This and 2.3, immediately prove proposition 3.1. .

Proposition 3.2, Let a # b be two vertices and 1 eaf(G)
g line. Denote by a, »a, the endpoints
of 1. Then the identity holds:

Z [PlIUg, - Bl aibe) w,ex1be g
PeRab) de
Remark: This is a modification of a Tormuls

in  [2,3] .
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Proof: It is sufficient to prove

e ——

pa 5 fP"]Z 'ﬁ;}x =)4L'°-2-’”{Z ﬁfx - Z %}R}

?
Pell(eb) T 1;/;4 helilaadbts) 70T famlbay)

On both sides of the'equality the summation goes over
disjoint sets - each term contritutes juSt once, Thus
it hag to be shown that each term of l.h.s. Is included

in r.h.s. and vice wversa.

Let (P, T:)) be an element of l.h.s.. P is a path
connecting a and b and containing 1. Tz is a tree in

G/P. Thus Tfv P is a tree T, in G and T\ 1 is a 2-tree

in G. Let Tq and Tg resp.,déncte the connected components of
Ty~1 with a ev (Ta) and bev (Tp). Then one and

only one of the following statements is true

(a) a,ev (Tq) and a,ev (Tp)

(b) a4sev (T,) and a, eV (Ty )
(a) implies T, ~.1é T, (aa4] baz) and [P:1]=[ex: ]
while (b) implies T,nfe Ty(@e,[bas), [P:47: [ac €)=~ [a (]
Therefore each term of 1l.h.s. contributes to r.h.s.-
(uniguely) with the right sign.

Let T, be a 2-tree in G separating (sa, ) and (2, b).
Then T, vl is a tree which includes a unigue path 2
joining a and v. iel/p is a tree in G/P. If P is
oriented from a to b it follows [P:17 =(a,: 1]. Thus
all the terms in the first sum of r.h.s. afe
contained in l.h.s. The same argument applies to the
second sum,

Q.E.D.
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4, Example

In order to give +the idea of the diagonalization without
the burden of technicalities the results will be
illustrated with the following simple graph.

(Pi-|P5,P¢.) fkv's Pat Ppr Pc= 0

Uy = dads ¢ (dete)(ds+dly)

Ve - -ﬂl[ Aedidy Pa v+ drdy dy Pyt (drtdi) ez dy p ]
¢

Define momenta ?,,: Pey  fa=pPatPc, 94=par Ps t Pc =0

and the sets ¢ c.g£={¢},,ga={¢,¢}} R = {a, b}

It should be noted that these sets are nonoverlapping and

are (totally) ordered by inclusion such that ~ apart from

h - cach set possesses g unigue predecessor. The predecessor
of each set includes just one vertex more than the union

of 1ts successors. Both the sets and the new moments can

be labelled by these unioue vertices. The order

of the sets defines an order of the externsl vertices in

2 natural way.

Remark:4.1. The transformation (ps PoiPe)spe:0 = (3¢, 3a, %)
i1s a nonsingular linear mapping on the space

of external momenta,

In terms of the new momenta sne has
ub'vﬁ : o3 (dide+ drdy t dJ.J!)?.: + Hgdy ?; td ?‘iQ‘ £"<1'/‘-"'3§

cie
Remark: 4.2.1. The coefficient of?} eqguals Mﬂf ’ i

the co - 2-tree product sum separating ¢ and

its predecessor ¢ = &, the coefficient of q:
eguals Wcjb)l the co-2-tree product sum
separating a and its predecassor Q = b ; ths
coefficient of 19a'9¢ is eqgual to Wtf““'a‘) Wit

This is a simple example of 6,1, .
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Straightforward calculation proves the identity

V - .ud; (.1344,) [ ) o3 dy 2
¢ q l(;qu ? .] ?‘

oAy 1 dy
Wbcam) | wmq&‘:?) wm‘c‘l&c) 2
2 — - &
Ue [?“ t e wcua‘) ] t VG(a.ﬂ.)
V&( o= llacaa.'cz) v
aaqg 2
) u&caé‘)

Eemark: 4.35.7. W(al“)

sum of the graph obtained by identifying

= UG(a&) is the co-tree product

the vertices a and 2 -1

Pe
ACAL
Pa N Pb
ofs oy,
4.%.2, The second fterm in the egualities 1s
equal to the V-function of the graph Glad)
(5. 4.3.7.)
4.5.3. UG (adled) is the co ~tree product
sum of the graph G (ad]cd Y. A1l

the (external) vertices are identified
in this graph

Pe
4 dy
Pa Py

Ay 4

4.5.4. The transformation (g, Py» Pe )

[ i
(2¢s Qq» Tp !

. : ] f o
with gl = ey dp = Up » Ga = da - ;;%7; 2
is a nonsingular linear mapping cof

—y
ZpPaz0

r® onto RI . Iv depends continously
on & in the range 2,1 =1 2,,,4
In terms of the new momenta (- c yGle )

VG can be written =zs follows
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V - Uacaq) ?‘ 4 UG(a&‘lcé‘) ?.L
¢ U Usaty '°

This is the desired diasgonalization for this example.
The generalization of these remarks is given in 6.2, 6.3,

3
Consider the spin-polynomial 7; for line 3.

3 14 ’
Y, - I [ (dadot didy + dydy) pa + (4t dy ) oty Py ]

1
I [- Cledat didit dsdy) 9+ didy 9o ]

Remark: 4.4. The coefficient of momentum q(
(& = c,a)is equal to

2 [P31 Uy
Pelidu ’

This result will be extended in 6.4, tc

some line of an arbitrary graph

A simple calculation shows the effect of the transformation

(ag s ag )= Caa,a ) on ¥/

3 1
yorhﬂt[?"‘ q{,,c,(,?_] 3,“, $c

1}
M
'-j
-
Ly
]
-
~o
-+
©.
-+
\<
(1 9]

Remark: 4.5.1. The coefficient of g4 is egual to that

of ga.

4.5.2, The second term in the equation is the
spin-polynomial of line 3 in the graph G(a@&)
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This result will be generalized in 6.5. and 6.6.

obtained by identifying the vertices a and 2 =1 in G.

5. Choice of momenta

A familyléﬁcﬁ?subsets h of 36-'ﬂwsset of the external

vertices - is .called s momenta (m-) -family if it satis-
fies
B /ﬂq‘plz
or
(«) 'g-ilgl € }30 =7 { L YEP W
. &4ﬂﬁz=¢

(3) ¢¢ 4 < lcv = >
fei Fehe = go(Uh) ¢ 4,
((Y) J’f 3"'%6 amd m(ﬁéi&)={£1‘ﬁg£fﬂ4fg} , Mo

[R]=[UR&, |
| ’/g‘em")l H (éiﬁﬁ)lwa{ THCRLIA):p )

(d) iga “ masumal

Remarks: 5.1.1. (o) implies that Jba is & family of
nonoverlapping subsets h‘ja . The
elements Of‘ﬁ@ can partially be
ordered by inclusion.

5.1,2. (#) corresponds to the fact that due
to momentum congervation the sets
A e ﬁa and ﬂa\ﬂ,are equivalent in

some Sehnse.
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5.1.3.

(y') indicates that each he M, can be labelled
by a unigue vertex ap6 8¢ si.2. by the unique -
vertex a & h not contained in any hdé-mm(g Ih).

5-1-4‘- goé%é
Assune 36#&6- Let hy,..,h, be the maximal clements
of M, satisfying:

h; n hj:gf L ie i, 1,3=1,..,k

Now (8 ) 1mplles u ; 8, -Thus there exists a vertex ae gG
with aé U h, Define he to be the unlOﬁ.L/th {a}.

family ‘6&"{3 }*,%6 satisfies (o), Qﬂ (j) - thus
contradicting (J\) This shows 36 éﬂé .

5.1.5. ”ﬂ"" [9]

In view of 5.71.3. it suffices to prove: "To each

a€ g corresponds a (necessarily unique) element
heM, such that ag = a". Assume that ag gq does not
possess this property. Then, 4eeH, and Q’) imply

the existence of a unique smallest h, € ¢ Satisfying

seh, and (hghp:?hfga)

1f a, 18y s e e By, BTE the elements of h,, the assumption
gives JKI32 . Define the sete h ={a} ,h,=13, ,.azf ,
hy=42a,,..,a,k. The family }?Gu { - Bt fulfils

(4),(3),(f) - contradicting (d).

5.1.6.
Remarks 5.7.3%. and 5.1.,5., prove the existence of a
one-to-one correspondence between the external
vertices and the elements of‘/%é such that:

ae g, is related to héﬂﬁ iff aeh and a{ b,

#4,¢ uu?, iA)
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Morecover each a = a, , he»%a , % g, » Dbossesses a
unigue predecessor %ﬁ such that:

A
h;llefﬁo and h is minimal .

It is the pair (a& ;g L.ﬁ 64&&\{35} that plays a dominant
rBle in the diagonalization of V, (see below).

Let (Pahlt . be the extermnal momenta of G. Define
new momenta _
a4 =2 Pa ; b "&6
Qch

Remark: 5.1.6. shows that the transformation

(pa)esge = (Inneh, , Z pe 0

: . . S ey yi§1-4
is a nomsingular linear transformation of R

onto RWN~V.

The momenta Pa,aeja can be expressed in terms of the

Pa= 98 - 2 - a4
‘4"/“(',&”.) ‘} *
Here 1t is ap = a and

A (RlR) = {Rae Rl Lo kY Le s

Convehtioa: 24 should mean a certain element with
the property Qg #36 . '

new momenta

g

Let k be a nonempty proper subset of gaand define the

families

a(x],,lx):{helja} agek, ag ¢k}

G (RuKIR) - Thoehol ag 4k, ap 6k, bech, ho monimal}
: {éﬂfﬁsm)

Remark: 5.2.1.

By the maximality condition imposed on

hy € oﬁ(ﬁa“ﬂ‘“ all the predecessors

8‘2 'Q;’:\ S ag cf ag, are contained in h.
4 4
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5.2.,2. It is easily seen that;

‘ aml,m“‘ U4, |

£165( IKiR)
2.3, Th t N
5 ¢ sets {&3{2;?&“} , he ﬂ(ﬁc“‘) are

mutually disjoint.

The same is true for the sets 5(-“{[}1) ,,ﬁ,éﬂ”ﬂelk).

5.2.4. A simple argument shows:

U O (hdklb) = L thalk')
GAN%JK) ﬁ ‘4

5.2,5. The following formula is valid:

2 pe -
aekK /ﬁ%dk){ % A%ﬁlm)%'}

For, in view of the remarks 2,2, 2.3, one has

zpa=z 2 P

vh
ek Redhak) @« h\i.egt-mth)

Thus it is sufficient to consider the equality

pe = > fa- > gl

a e h(vhs) 6 ¢ fn(vhi) =
:lqeﬂ(-ll(lh) A, eHLIKIR) Ao fh "’0'}&)

Let & e hAv(Uhy) be such that 12 ko> Ry,
Due to the construction of $(-{K(h) 2 unigue
vertex ag  exists with ‘ﬁq ¢ ,&(-fao[f‘ ) .Thus
the vector $4u appears just twice - with

different sign however., Therefore, only the

Ia-

terms

s,

survive.

5.2.6. Application of 5.2.5, 5.2.4, 5.2.3.
yields the identity:

P> - S g

aeK 2 e,mfgm) Le A bl K')



Notation

Let ag, Dbe a certain external vertex Ao € %o‘ {jd .
R,

Tor each vertex a € v(G) a™® will denote the vertex
in the graph G ( a4, 2%, ) which results from the vertex
a in the graph G. The external momenta in G (a A, aﬁa)
will be chosen as follows.

Pa,“ * Pa at ag,
4. 4. A
Pate = Pag, * Pus, @ : 2= af
The family ”36[0-& a3) is defined to be the set of all
] r
subsets:

‘ﬁﬂ L] .
A7 ot ¢ Joagaq) | ack, arapfc Je e e, )

e »3]6\ { 4o}

Remark: 5.3.1. jj(s(ﬂ-&. aj,) ig a m-family in the
graph G (a’" ag, ). Thus the above remarks
concerning .m, remain valid for ’?G[a" ’f, )
It should be noted that for

,‘0 /\0 Ajg
Ae 'paﬁ(ag.aj,) /gl‘ = K .
5.%3.2. The momenta $&‘° ' “l.é.éﬁla(,qfatisﬁff

Gabe-gu Reho b

Re :
5.3.3. Let 2’ be an elemeéent of 80(‘11.@2,)‘

The sbove construction applies to ax: p Qi\:il’l G(“hoaﬁ,)-
The vertices in G (ala aﬁ'la& q,A‘) will be

denoted by a"“a" s being the corresponding

7
vertex in G.

This procedure can be carried on until all the
external vertices are identified.
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6. Results

The notation is as in the sections 1. and 5..

Statement 6.1.

Ug-Ve - Z 9% WAl
Jl, A2

? Q, lag ag)
qh Qh: W h hz he h‘_
., Rl € ln(.

Remark 6.1.1. This formula describes the effect of

(an, aﬁzlag‘ ahb)
6

the transfeormation

(P ‘)Tapiqc —_— (?ﬁ)ﬂéﬁ on the Vg - function,

Proof: Insertion of 5.2.6. in the definition of Ve

shows:
(KIKD 2
Ut S W[5 g0 S )
Kclgu &ea(ﬁcmi A (1K)

4
Let a number fh.h, be defined by:

1 Ay, , a d a3, ,ap. ek’
K 1 hy hlé K am h ,ah,_f' K%ja
{h,ht =y =1 Q08 ek amd i, ap, €K lielj

O  ofhurwine =22

. K
From the definition of /%(&QIK) and  €pyny, it follows
immediately that:

“"'V“g% (%“1) Z £h WGCKIK)

ok 17 KKt "
K<Ge
(KIKD CKIK)
- > (?h."ih‘){ __5_ W, - Z W(’ i
gq,ﬁzélﬂ(. K')iqhnahz} K’{Qh“aﬁz}
K>{ag, a3 k' {ak, ,ap,}

By use of Remark Z.2.2. the statement is proved at

once.,
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Statement 6.2. Tet L f gg be some element of*ﬁa
Then an identity holds:

(% %, laf af, (¢h 47, | apa
V. - lLefa;,ag)[ Z?‘l A h) Wc_ Aan,)

Usg T W
hc&ﬁ G :

\étaha,;)

Proof: Let A dencte the first term on the r.h. zside of
the above 1dent1ty Then 6.71. gives:

TR (U0 Qi 0,4, ) 1) O LR 0R04)
V A W(ahlag) L(qh«%;); . h)[w o h’h_ W(. o h]

G hhhg_*h,

[‘ cqhdh‘laham)W(Qhah,,lﬁhah.,)] [,X 3 ]

Application of the crucial prop081tlon 3.1, shows

2 A
(ﬂh' a}f; IQ“ ah ) W(Qh‘ a‘hz }aha[ Q’tg)

N A WZ(% ) —

'ﬂl,hz# & G(a.h_Qh_)
X
Remarks 5.3.1.,5.35.2. together with 6.1. now applied to the

graph G(ah_aﬁ) prove 6.2.. (It should be noted that

G (az 23)

(@ fa})
ME GLanQ ) (_004.5.))
Statement 6.3, Let the elements of h ; i=1, ]gGI

h = g, be ordered in some fashinn 1nd1caued by the indices 1.
B = =6

Define Glap, aﬁ,) "O be ’Gh@ graph ¢ ond Wig o be the function
34 hi-g ht_ h-n ha-:) [" “hi-tg Re- hm.l Ry h.t 1 .—1)
(% I ha ha

J |
WG (ah‘aﬁ.‘ ’""Iah,:-i Qﬁi-t) & (ah.l qacl“ -l ah_,:-]. Qaki.)

Then the following formula is valid:

vc= Rel=1 UG(ﬁh:flﬂJ'"l%Laht [ Z?h

ez uﬁ(“h.qﬁq"""hh[_lq 4> u(:(alu ey .af.)

3
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Proof: BSuccessive application of 6.2, and use of 5.3%.3. prove:-
the statement in a trivial manner.

This formula is the desired diagonalization of VG . 'If new
momenta

i * Toc t 2

))b uG

(&, I--4;)

are introcduced, V is egual to

E Ua(ah‘ah, -{ag;07 ) (?[h-)L

=1 thf )

-1

Remark 6.5.1., The transformation G p — q%ﬂ yi=1,.., EU -1,
is a nonsingular linear mapping of RYATY onto R
and depends continously on the Feynman-parameter L] in the

range doeg20 Le.‘f(ﬁ)

6.3.2, The coefficient of (qé, Y is equal to the
quotient of the U-functions corresponding to the graphs

A A s s

G(ap, 2t,! ....jah’._a;,_}) j=ii-1 . G(ahf a;g‘[....[ahz a&)
is obtained by identlfylng the vertices
he—he-g - Rgeq Z .
th amoL a"“ c,f,...’4

L4

in G(a{‘e%J- ""ahb1°ﬁ44)' Bach coefficient is a con-
tirous function of « in the same range as above.

_ ! L
6.%3.3. The numerator of the coefficient of (q‘h!F1 )
is the U-function of the graph G(g). All the external
vertices are identified in this graph. G(g) can replace
oo OF

[1] can be constructed out of G(g).The unique externsl

the graph Gee in [1] . The singularity-families

vertex gq of G(g) plays the rBle of the vertex vy of
[1] and the notion " g subgraph He¢ G® is irreducible
in view of infinity " of [1] corresponds +to the notion
"e subgraph H(g)c G(g) is g,-irreducible [81 " ., 7ne

graphs G(g) and G are equivalent in view of the con
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struction oféz; ﬁb) of [1]. The partial ordering of the
Feynman-parameter Xy, £c£°&)1nduced by the famllles(%ﬁg m/
gives a simultaneous resclution of singularities for all

functions U('(alu'l‘""‘ a_i‘) d=1, ’ ’
¢-1

The folliowing statements describe the effect of the trans-

formations

Cﬂﬂaegﬁ — (qh)hG%G'-ﬁ> (qd}hé%o)

orn the spine-polynocmial of an arbitrary line.

Statement 6.4. Let 16 £(¢) be an arbitrary line. Then the
following formula is valid:

>/ ua ?h Z [F 5] UG/P

Aeho  Pelagay)

Proof: The moments Y N P % gg » can be independently

prescribed. Thus it suffices to consider some term hé& 3&1
and to impose the condition qh4: 0 :h4éﬁ€{ﬁt- The con_
struction ofJﬁﬁ implies:

cqh, P9 0 PO ¥ boefor 19,048

In this case the spin-polynomial for line 1 1s equal To

C’ "LLG Z [P{] 6/? : Pah

Pelflagay)
; [PE]
u“ Pe 2 (9ay) UL Q.E.D.

Statement 6.5. Tet h f ¢ be some element ofJ?G . Then
(%‘lh.“lm%) @l 1a5,0,)

)2 Z [P£] ur./ f?h* Z %, T 6 } +}£{

¢ PeBagay) ke “ot)

Proof: Define B to te the first term of the r.h. side and let
bqsbz te the endpoints of line 1. Cumbilnation of the

propositions 3.2. and 6.4, gives:
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¢ a
uﬁ'x. = Buﬁ + o-‘f{- Zﬁ iW(“hl%)[w(%*bllmhqb) :Qhabzlﬁhzhn) _

[ Wc“ubzlaﬂbn fﬂhb»lﬂhb’)][ - hla&.ah) _(a;.,qr,;q,,;;aﬁj
- | W, Y ;

%.1. shows

] 4 2 b 4
Vi-B +a Z op 80 {Wra%ﬂuatab (e, 95, |y, am}
6 qx 4 -

WER ) Nean) Glagag)

Comparison of 5.%.1., 5.3.2. and 3.2, 6.4. - now applied
to the graph G (ap Qf )- establishes the statement if
the equality

Lo fT{~} = [b:e1{]

can be proved.

First, consider the case in which §ba,ba} = {ep 03} .

Thls implies that the brackes { } vanishes as well as
[b2 L] = [ba: €7+ [ L] .Thus the equality holds for this
special configuration of b4,bz,ah4.ag . In all other

cases it may be assumed that bzﬂ'{ah,aﬂ} . Then
[bg;t]:szl:{] (see 2.4.). Therefore the eguality is
valid.

Q.E.D.

Statement 6.6. Let hy i = 1'_’m°, and gy  be defined
as in 6.4. Successgive application of 6.5. to the sequence
of graphs
¢, 6 (agap s & (apaiffap )= G (g) yields
1 19/-1
the 1dent1ty 'P

YG 2?&* u { ~ [PE] Uﬁfdm"
= Sload Fa. ) I]?(nﬁ\ \i-q h. ~hi- 1)

604yt l;)

1a%:.,) g
=3
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Remark:

The similarity between 6.6. and 6.4. should be noted.
1t is the segquence of graphs '

G, G(ah‘ ag") e eo ey G(ah,' aﬂ‘l ..... I_a}.ﬁsl.a;ngé)_i'

which characterizes both formula. The U - functions
of these graphs contain all the information needed
to give a satisfactory treatment of the analytic
and dimensional rénormalization of massless field
theories along lines similar to [3,4] .
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A subgraph H(g) of G(g) is called ge—irreducible
if it satisfies:

a) TFor each 1€ £(G(g)) the graph G(g)/{f(G)\{ﬁ)
is connected.

b) For each ve V(G(g))\{gos the graph
(v(elen v, L(alg))n S(V)’T"fv] )

L siv)

is connected.
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