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Abstract: Two independent components of the non—diffractive part
of the structure functions are isolated, using the data from deep
Iinelastic eN scattering and some preliminary results from neutrino
experiments.

This enables us

(i) to resolve the problem of the apparent non-
scaling of the A-resonance in the Bloom—

Gllman sense and

(ii) to estimate D/F for the Reggeon coupling to

baryons in hadronic reactionms.
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1. Introduction

Recent experiments]) on neutrino (antimeutrino) — hadron scattering
have revealed the surprising fact that the diffractive contribution
(anti-quark contribution in the quark proton terminology) to the struc—
ture function is very small compared to the non-diffractive one in the
region of 0.2 £ x £ 1, where the former can practically be neglected.
This enables us to isolate the two independent components of the non-
diffractive part of the structure functions using the data for
sz(x) and an(x), which has to be corrected only in the region of
0 < x< 0.2, taking into account the contribution from the diffractive

part.

There are several ways of expressing the two independent components
of the non-diffractive part of the structure functions. The simplest one

2)

is probably to use the quark parton picture ~ and express them in terms
of the distribution functions for the valence u~ and d—quarkss). In the
light cone approacha) they can be expressed as the Fourier transforms

3

of F- and D-coupled matrix elements of bilocals™ . These functioms
(F(x) and D(x)) can in turn be related6), by using some arguments of
duality, to the contributions from the s-channel resonances belonging
to the normal parity trajectory (N(x)) and those belonging to the ab-
normal parity one (A(x)). We shall use the last separation of the two
independent components of the non—-diffractive part of the structure
functions in resolving the problem of the apparent non-scaling of the

7)

A-resonance in the Bloom=-Gilman ' sense. Namely we find that N{x) and

A(x) behave differently as a function of x (or x')* and if we compare

the contribution from the A-resonance with the abnormal parity component**
A(x) of the scaling function (instead of the whole VW, as is done in

Refs. 7 and 8) we find that the A-resonance scales as do the other two

prominent resonances (D]3 and F]S)'

SU(G)W—symmetry, which allows only for FT-type courling of the vector

=(1~ (—i-z)".

* We use the scaling variables x = ~q2/2pq and x'

#% The A-resonance belongs to the abnormal parity trajectory.




bilocals to the nucleons requires N(x)
famous SU(6)w resultz) of Fen(x)/FEP(x)

A(x) for all x, which gives the

%u Plotting N(X) and A(x) as a

function of =X, one explicitly sees how the SU(6)W—prediction is violated

for each values of x. For example, near x = 1 we find different threshold
behaviours for N(x) and A(x), which implies through the Drell“Yan—Westg)
relation different behaviour of the transition form factors of resonances
belonging to different trajectories. On the assumption that this different
x-dependence of the two components is the only effect of the SU(6)W-symme—
try bresking in deep inelastic scattering, we are able to predict the be-

haviour of the polarization assymmetry on nucleons as a function of x.

As 1s well known, SU(6)W is broken also in purely hadronic reactions
and it is interesting to see whether this can be explained in our picture
of SU(6)vaiolatiOn in the deep inelastic region. The parton picturelo)
enables us to estimate the D/F for the Reggeon coupling to baryons in pure-
1y hadronic reactions, using the empirical x-dependence of the two compo-
nents which explicitly violate SU(6)W. Thus we have a comsistent plcture of

SU (ﬁ)w—breakingf

In sect. 2, after briefly describing the notation for the structure
functions, we separate out the two cdmponents of the non-diffractive part
of the latter using the data for the proton and the neutron structure
functions. In sect. 3 we examine various consequences of the empirical xz-de-
pendence of the two components, which violate SU(6)Wfsymmetry. In sect. &
we apply this information to estime the D/F ratio for the Reggeon coupling

to baryons in purely hadronic reactions.

Finally, in sect. 5, we try to understand the origin of the different
x~dependence of the two components in the quark parton model. We end this

final section with a few remarks.

+ SU(6) predicts (D/F) = 0.
W Reggeon



2. The components of uwz(x)

5)

We start this section by fixing our notation™’. The scaling structure
functions which are measured in deep inelastic lepton-hadron séattering are
determined by the absorptive part of the current—hadron forward scattering

amplitude
b+ B8~»>a+ %, (D

where a and b (o and B) are the SU(3) quantum npumbers of the current

(the baryon target).

The parton model or the light cone approach suggests the absence of
exotic exchanges in the t-channel (éB*channel), which we assume. Hadronic
duality on the other hand would lead us to expect two components in the

amplitude of (1)

a) non-exotic s—channel contributions generated by non-exotic
t-channel exchanges,
b} diffractive contributions associated with Pomeron exchange.

This dllows us to express the structure functions in terms of three inde-—

3)

pendent funections

* Di(x) dacS (lhac )

ab _ .. cabe abe .
Fi,wéx) = (i1f + d )] [Fi(x) if o °

cB
{(2)

3 ] :
+ (5 Fi(X) - ? Di(X) + Si(X)) dOCOB (SCO] ]

where 1 = 1,2 or 3 and the functions F(x) and D{x) describe the component
(a) and S(x) describes (b). The normalization is such that the Gottfried

sunt rules read

I 1
1
i F.(x) dx == i Dy(x) dx =0 (3)

The structure functions of proton and neutron can be expressed as



ep, | _ _ 2 §
Fi (x) = 2Fi(x) G Di(x) +.9 Si(x)
_ (4)
en _ 4 _ 8 8
Fox) =3 F. (x) g D)+ g S; (=)

The functions F(x) and D(x), which are independent of each other,
correspond for example in the quark parton picture to the distribution func—

tions of the valence u- and d-quarks within the nucleon, while S(x) describes

the sea.

Instead of F and D, which are the t-channel quantities, we can also

specify the independent contributions in terms of s—channel quantum num-

6)

bers ’. In Regge theory the s-channel baryon resonances of meson—baryon

scattering are classified into the following two groups:

1) the normal parity resonances with

P + 5+

J s G s e ' (a—sequence)

1
2
JP = %f, %7, v (y—-sequence)

2) the abnormal parity resonances with

+ T+
JP = %-, %-, e (8-sequence)
P _1- 5-
J = 7 s %-, e {B-sequence),

which consist of exchange degenmerate trajectories accompanied by series of
daughter trajectories. Thus we can use for example the "normality" in spe-
cifying the two components, isolating the contributions from the s-channel
resonances belonging to pormal and abnormal parity trajectories. This is
achieved to some extent by using the so-called duality solutions for
meson~baryon scattering found some years agoll). These are the solutions
to the constraints of duality - i.e. non—existence of exotics in two chan-
pels which are dual to each other. We consider the two simplest solu-

tions consisting of the following exchange degenerate sequences:



A) 8 - (§jl) and (B) (19_+‘§) —1§3 with definite relations among

the couplings of resonances of each sequence to the M-B-system. They satis-
fy the constraints of duality separately. Surprisingly enough the solutions
(A) and (B) were found to reproduce approximately the observed SU(3)-pattern

of the sequences belonging to each group (1) and (2) in the following way:

normal parity trajectories : 8 -—-(8+1)

Y Sr— ,-....-.—Y

- n _ . -
abnormal '(,!.9."' QG '§"S
Another important property of these solutions is that the relative amount
of contributions from each group is controlled by the D/F ratio of the

12)

couplings -to baryons of the nonet exchanged in the t-channel. If we
denote by N(x) and A(x) the contributions from the whole¥ normal and ab-
normal parity trajectories respectively, we can express them in terms of

F(x) and D(x) as followsG’lz):

N{x) 3F(x) + D(x),
(5)

A(x)

il

3(F(X) - D(X))s

and in terms of these the structure functions of the nucleons are expressed

as.s

7P (x)

SN@ + 2 4@ + s,

(6)
Fen(x)

—;—N(x) + %— Alx) + -g- S(x).

Although the identification of the two solutioms (A) and (B) with (1) and
(2) is approximate, the decomposition of the non-diffractive part of the
structure functions into N(x) and A(x) is well defined and has no arbi-

guity and we shall use this decomposition in amnalysing the data.

* By trajectories we mean not only the parents but also all the
daughter trajectories belonging to them.



Taking into account that the diffractive part (S(x) in our notatiomn)
can be neglected in the region of 0.2 £ x £ | we can make a plot of Nz(x)
and Az(x) using the data]3) for F;p(x) and an(x), which we show in Fig. 1.
Already here we see a clear difference in x—dependence of the two compo-
nents N(x) and A(x). In Fig. 2 we show the curves which were corrected in
the region 0 < x < .2 taking into account the contribution from the dif-
fractive part taken from preliminary results]) of neutrino (antineutrino)-
protoﬁ— scattering. We would like to stress here that although we got im—
portant informatiom from the neutrino experiments, the data we used to
obtain N(x) and A(x) as functions of x were essentially from deep in-

elastic eN scattering.

To end this section we would like to emphasize that in building the
s—channel picture of deep inelastic scattering we tried to avoid using the
classification in terms of SU(6)-representations]4) because, as we saw,
the latter scheme is completely broken in deep inelastic region. Instead
we have used the classifications in terms of the baryon Regge-trajectories,
which unlike the SU(6)-scheme, enableé us to develop the arguments in a
completely relativistic way. However, one has to be careful in using the
idea that the contribation from the resonances belong to a definite tra-
jectory (including déughters), because after all in the scaling region
we are dealing with a continuum, which might of course be a superposition

of many resonances.

3. SU(6)W breaking in deep inelastic scattering

a. BloomGilman scaling of A-resonance

The interesting idea of scaling s-channel resonances in inelastic

electron-nucleon scattering was suggested some time ago by Bloom and Gil-

7)

man'’. They observed that the prominent resonance bumps can be averaged

by the scaling structure function sz(x') or in other words contributions
from resonances to sz(x') are a constant fraction of the latter. This can
be seen more clearly if we take the ratio of the height of the resonances

7,8)

. . . . 2
to the scaling functiomn plotted for a given x' as a function of ¢
g > g



(see Fig. 3). Although approximate constancy of the ratio is seen for the
second (D13) and the third (FIS) resonances, the ratio of the first re-
sonance (P33) to the scaling curve falls as —q2 increases, thus showing the

non—-scaling behaviour of the latter,

We show that this non-scaling of the first resomance (in the Bloom
Gilmaﬁ sense) is only apparent and we have to take 1into account the existen—
ce of two components in the non—diffractive part of scaling functions which
behave differently as a function of x. Namely we have to compare the contri-
bution from the first resonance P33(1232), JP = %f with the abnormal pa-
rity compomnent Az(x') ofPthe scaling function, while the contribu;ion§¥%rom

and from the third [F15(1688), J =5 |

the second (D ,(1520), J° = Ea
resonances must be compared with M, (x"). This is donel3) in Fig. 4. As is

2

—

seen, scaling of all three resonances is quite satisfactory . Thus we con-
clude that all the three prominent resonances do scale in the BloomGilman

sense.

b. Tfansition form factors of resonances belonging to different

———u== =, _ —_ . ——— e . e U

The most direct consequence of the different behaviours of N(x) and
A(x) can be seen in the threshold region of large x. Namely we can see

in Fig. | that as x » 1 A(x) dies out faster compared with N(x) which im-

plies through the eq. (6) a famous behaviourl3) of

Fo (%)

ep
F2 (%)

> as x- 1, (7)

1
4

This can be stated more quantitatively in terms of the transition form

factors of resonances belonging to different trajectories6’16).

.Bloom~Gilman duality7) implies a close connection between the thres-

hold behaviour of the structure function and the behaviour of the transi-—

¥ Points below Q2 < 0.5 (GeV)2 (for A-resonance) and Q2 S 0.8 (GeV)2 (for
the 2nd and 3rd resonances) should not be taken too seriously because

of possible sea corrections, which would slightly raise the points,



tion form factor of resonances in the s—channel. Namely, if we write the

threshold behaviour of the structure function as

F,(x") « (1-x)? (8)
for x' = 1 and thelpower—behaviour of the transition form factor as

6(qh) - (=gH" 9
for large wvalues of —qz, we have the relation

a =.2n~1, (10)

o) D

which was originally found by Drell and Yan1 and West™ " in composite mo—

dels.

From the analysis of the previous section we can expect that

a, > ags (11)

which implies that the resonances belonging to the abnormal parity trajec-—
. 2 . .
tory die out faster as —q -+ » , compared with those of normal parity. We

can estimate the approximate values of a for each trajectories as

a, = 4 and ay = 3. (12)

This gives the following values for the powers of tramsition form

factors of resonances of each group:
n, = 2.5 and 1n,, = 2. (13)

The latter is compatible with the dipole behaviour of the nucleon form



+ . 8 ..
factor. For the former we have some evidence ) that the transition form
factor of the A-resonance has a bigger power compared with the nucleon
form factor and also the transition form factors of the second and the

third resonances.

c. Structure functions of polarized nucleons

We saw in the previous section how SU(6)W—symmetry, which requires

N(x) = A(x), (14)

is violated for all x except x z-%.
On the other hand we know that SU(6)w gives predictions for the struc-
. . 2 . .
ture functions of polarized targets ). Namely the polarization asymmetry

for the nucleons is predicted to be

ol

A (x) = and A (x) =0, (15)
D n

where A(x) can be expressed as

:F-] (x)

F](x) ? (16)

A(x) =

where we definelfl(x) by

- 1
F](x) = ( va(x) + Mv?g(x)) (17)
4™

in terms of the spin-dependent structure functions of Kuti and Weiskopfz).

Similarly to eq. (6) we can express F?p,en(x) in terms of ﬁ&(x) and‘zl(x)

+ Determination of the form factor powers is not unambigous, because it
is affected, at present q2, by the choice of the scaling mass. If we
take uZ = 0,71 (GeV)2 (we parametrise the form factors by (1—3§J_n) as for
the nucleon and use the fit of R.C.E. Davenish and D.H. Lyth %Phys. Rev,
D5 (1972) 47) to determine the power,we get approximately n, = 2.2, If on

the other hand u2=(1.236)2 (scaling form factor idea) then n,~ 3 (F. Close).

Aﬂ
We thank F. Close for an informative correspondence on this point.



also defined as in eq. (5). Thus the asymmetries of nucleons can be ex-

pressed as

N(x) + 3A(x)
N(x) + 3A(x)

2N(x) + A(x)

R F A® (18)

Ap(x) = and An(x) =

As is seen in Figs. 1 and 2, near  x * %-we have a point at which the
SU(6)W-prediction eq. (14) 1is satisfied.

Let us assume (1) that the SU(6)W—predictions for asymmetries eq. (15)
are also valid at this particular point and (2) that for-% <x €1 N(x)
and A(x) follow the same pattern of SU(6)W-breaking. Namely we assume a
simple proportionmality between N(x) and N(x) (A(x) and A(x)). These are

enough to express the asymmetries in terms of N(x) and A(x):

1
_ 2N(x) - mA(x) _N() - A(x)
A = wo T i ™ AT T A® (19)

The first assumption we need in order to fix the absolute values of N(x)
and A(x). The second assumption is not unreasonable because for large x
the s-channel picture is reliable and the breaking of SU(6)W is totally
determined by the properties of s—channel resonances belonging to normal

and abnormal parity trajectories which determine also N(x) and A(X).

. . . . i
However, we cannot extend this assumption into the region 0 < x £'§

because of the following two reasons:

1) for small x the t—chamnel exchange becomes important and the
different meson trajectories (f-Az) and (Al—D) controlling
respectively F(x) and F(x), require different x-dependences
for these functionsf Namely FZ(X) ~ /E'and‘fz(x) ~ x for x-> O;

2) if we extend the second assumption to the whole region of x, we

can calculate by using the Bjorken sum rule17)

ga

% It is quite amusing to note that this point corresponds in the quark par-
ton picture to the situation where each of the three valemce quarks carries
an equal fraction of the momentum (ignoring the qq sea and gluon contri-
butions). Namely all the three quarks are on the same footing at this par-—
ticular point and this might be the reason why the 56-plet (totally symme=

tric) assignment of SU(6) is. wvalid here.



| ]

—_— ] —_—
g,=3 J (?‘;P<x> - F‘i“(x) dx = J (N o) = 3 A (x) dx

o o ‘ (20)

1
= ((N (x) + 3 A (x)) dx = 2
I 9 M 3
9]
which is the well known SU(&)w-result (here we used eq. 3). Thus the con-
tribution to the integral in eq. (20) must be much smaller in the region
of 0 £ x S-%, where actually the dominant contribution comes from (see

Fig. 2).

The predicted asymmetries for proton and neutron are shown in Fig. 5.
As x » | both asymmetries tend to unity, which is consistent with the pre-
dictions made in Ref. 4 and in Ref. 14 based upon the quark parton nicture.
A similar expression for the polarization asymmetry has been obtained re-

8)

cently by F. Close1 using a different broken SU(6)W scheme., His pre-

dictions are, however, suppressed by a factor %’gA compared with ours.

4, SU(6)w breaking in hadronic reactions

In this section we would like to discuss the problem of SU(6)W~breaking
in hadronic reactions and particularly its consistency with the breaking
pattern found in deep inelastic region. The parton picture for high energy

0)

hadronic reactions as described by Feynmanl enables us to relate the he-
havicur of N(x) and A(x) for small x to ‘the properties of Reggeon couplings
to baryons in hadronic reactions. We assume in this section that the parton
distributions appearing in Feynman's description of hadronic reactions are
in fact those measured in deep inelastic scattering. This clearly goes be-

yvond the parton model description of deep imelastic scattering itself.

in order to describe hadronic processes we need the functions N(x) and
A{x) for small x, where the contribution from the diffractive part 1s non-
negligible. However, it is clearly seen in Figs. 1 and 2 that in this re-
gion, unlike the case of large x, A(x) Adominates over N(x) and this pro-

perty leads to a consistent pattern of SU(6)w—breaking in badronic reactions.



First we note that in the language of the quark-parton model the func-
tions N](x) and Al(x) would correspond to the distribution functiongp

. . e . 1
of a parton in the infinite momentum frame defined as follows6’ 5):

Nl(x): distribution of a valence quark within the nucleon,
when the remainder (two spectator quarks with possible
gluons and quark—antiquark pairs) is in I=0 state

{the antisymmetric state in SU(3)~indices);

Al(x): the same as above when the remainder is in I=1 state

(symmetric state).

This can most easily be seen if we remember that there is no decuplet
(singlet) in the s-channel when the spectator diquark system is in an anti-
symmetric (symmetric) state and that the normal parity series (the abnormal

parity series) consists of 8-8—1 (8-10-8) representations.

Let us consider an exclusive scattering of a hadron, say a meson, on
the nucleon. In the parton picturelo); the hadronic Regge exchange reaction
is considered to occur via the exchange of wee partons, i.e. partons with
very small x. Because the small x-behaviour of the parton distribution has
to join the wee x-behaviour of ~ x™® (g is the intercept of the Regge
trajectory and is approximately equal to ~ 0.5) in a continious fashion,
we car get information on the latter from the knowledge of the formerkx.

Namely, 1if we write

NZ(X) ~ nx 21)

A2(X) ~ ax'w-I for x> 0 ,

the D/F of the Reggeon coupling to baryons can be obtained by

L’ 3(F-DY

=2

Regge

¥ The normalization is such that [Nj(x)dx = [fAj(x)dx =%. So the total num
ber of wvalence quarks within the nucleon is 3 (see eq. (3)).

*¥ Note that the parton distribution within the scattered hadron does not
affect the D/F ratio.



...]3_

It is quite difficult to extract from the data the real behaviour
of Nz(x) and Az(x) for small x, because of the non—negligible contribution

from the diffractive part. However, we can definitely see in Fig. 1 that
a>n . o (23)

which implies the negative D/F for the Reggeon coupling, compatible with

experiment.

Although not without ambiguity, we have extracted the diffractive
contribution using the neutrino data and subtracted it from Nz(x) and

] . —o+
Az(x) (Fig. 2). Extrapolating the resulting functions using n x a+l and

—a+] . .
respectively,we get

n

= . 0.65 (28
a .
. which gives through the relation (22) the following value for D/F

(D/F)poppe = = 0-36 (25)

"which is in reasonable agreement with what is measured in Regge phenome-

nologylg),

F ~ =0.,2 . - 0.
(n/ )eXp 0.2 0.5 (26)
Clearly, better neutrino data for small x is necessary to check the conjec-—

ture that deep inelastic parton distributions can be used also for certain

features of hadronic reactions.

# The result strongly depends.on how much of the diffraction we have to
substract in the region of small x. We used the preliminary neutrino data,
which includes big errors. Considering the extreme cases D/F can be con-
strained at least by the following bounds:

- 0.6 = D/F £ 0,
We can also evaluate D/F using various fits proposed for the structure
functions. For example, V. Barger and R.J.N. Philipps (University of
Wisconsin, C00-881-390 (1973)) gives D/F= — 0.07.R.Mc-Elhaney and S.F. Tuan
(Phys. Rev. 2§(1973)2267) give D/F = —,24,



5. Discussions and Conclusions

Accepting the empirical behaviour of N(x) and A(x) as functions of
X, which violates the prediction of SU(6)W in a definite fashion, we tried
to construct a consistent picture of SU(6)w—breaking in deep inelastic
scattering as well as in hadronic reactions. The question then arises whether
we can understand the observed behaviour of N(x) and A(x) as a function of x.
This we would like to try using the usual three quark pictures for the bar—

yons.

As is clear, it is most convenient for our purposes to consider a
nucleon to consist of a quark (which is hit by the virutal photon) and a
spectator diquark. By the latter we imply a quasi-bound system of two
quarks with specific quantum numbers. Let us now compare the energy of the

two diquarks with isospin 1 and 0, other conditions being equal.

We know from our experience with the three quark systems, which are
of course the familiar baryons, that the states with symmetric configu-
rations concerning their internal quantum numbers like isospin or SU(3)
(and not spin or SU(6)) lie higher+ in energy compared with those having
less symmetry so far as the quark contets of the systems are the same (i.e.
we have to avoid a complication coming from mass difference due to jy—quarks).

Thus we are lead to expect that
E > E (27)

Even the existence of the deuteron (I=0) as a bound state and the non
existence of a two-nucleon system with I=1 also suggests a similar rule,
Eq. (27) provides us with a good reason why the distribution function A(x),
where the diquark system is in I=1 state is pushed towards small x compa-

red to the function N(x) as is seen in Figs. 1 and 2.

Let us finally add a speculative remark concerning the problem of
possible deviations from scaling. It is natural to expect that the effect of

a  breakdown of scaling, if any, would be different for the components

+ +
+ compare e.g. E(%—) and A(%—) or A and the nucleon.



_]5._

20)

¥{x) and A(x). The observed rise with q2 at small x and fall at large
x suggest rise for A(x) and fall for N(x) with increasing qz. Thus it
would be interesting to analyse the effect of scaling breakdown sepa-

rately for each components.
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Figure captions

10 8 10 8 .
1. Plots of 5 A2 +-§ S and 5 N2 + §-S as a function of x,.
2. "Eye-ball"” fits to the data in Fig. 1. (We use the abbreviation
8 o =
= § = sea.)
2 10 10 . ok
Additionally: sea, 3 sea, -3 A, and 3 hz as a functicn of x.

337 D13 and F15 resonsnces

to the VW, plotted for a given x' as a function of qz. (Ref. 8

and DESY-points of Ref. 15)
4. The ratic of the height of the A-resonance to the vWé(A) E-% A2

3. The ratio of the heights of the P

and the heights of the D13 and F]5 resonances to the

vwz(N) E é-Nz plotted for a given x' as a function of q2.

3. Predictions for polarization asymmetries on proton and

neutron targets.
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