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Abstract: We derive renormalization prescriptions for Yang-Mills type
theories with spontaneous symmetry breaking in the so called "unitary
gauge" yielding a mass shell high energy behaviour as good as that

of any manifestly renormalizable theory. Taking a smooth high energy
behaviour of the S-matrix as sole criterion we show, that the Slavnov
identities on the renormalization of the respective model in an
equivalent manifestly renormalizable gauge are unnecessary. Our

arguments apply only to models without massless particles,



I, Introduction

There exists up to now a variety of approaches towards the renorma-
lization of gauge field theories with spontaneous symmetry breaking

[ 1 |. All investigations based on one or another manifestly renor-
malizable gauge version of the respective model aim at the verifi-
cation of Slavnov identities [2:]for the renormalized Green's functions.
These identities establish relations between the remormalization

constants. Moreover they are supposed to render a proof for unitarity.

For the sake of an obvious conceptual simplification it seems desirable
to have renormalization rules at hand directly applicable to the
unitary gauge. Such rules will simplify also to some extent concrete
low order perturbation calculations. The main tool for setting up

the renormalization in the unitary tU—) gauge will be a simple proof

for the invariance of the S-matrix under point transformations of the
field variables [3} . The details of this proof tell us how to construct
from two Lagrangians related to each other through a point transformation
of their fields the corresponding sets of Green's functions giving rise
to the same S-matrix.

If one interpolates by a point transformation a renormalizable and

a formally nonrenormalizable Lagrangian - that is in our case a gauge
field model in the renormalizable (R~) and U-gauge respectively - one
has a great amount of freedom in specifying the off mass shell behaviour
of the formally nonrenormalizable theory. In other words, the
construction prescriptions emerging from the S-matrix equivalence
theorem leave a great deal of off-mass shell indetermenateness. This
fact has already been observed by Steinmann [4] in the context of the
renormalization of massive electrodynamics in the Proca gauge.
Steinmann's method consists in a recursive solution of the Glaser,
Lehmann, Zimmermann unitarity relations. Our arguments will be based

on the renormalization construction of Epstein and Glaser [5:}.

As our procedure relies heavily on mass shell equivalence, we can treat

rigorously only models without massless particles. We select as concorete
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examples for our discussion the abelian Higgs-model [6] and a
nonabelian simple SU(2)mode1[7J. The extension of our methods to
more complicated gauge field models (that is more sophisticated
gauge groups) including spinors is straightforward, A

In section II of the present paper we recapitulate the rules taken
over from [3] , which have to be obeyed in the renormalization of a.
point transformed Lagrangian in order to guarantee S-maﬁrix
invariance, SecEion IITI is devoted to a discussion of the abelian
Higgs-model., We demomstrate first the mass shell cancellations among
the contributions from the point transformed gauge fixjng term and
the point transformed Faddeev-Popov (F.P.) Lagrangian? Next we state
sufficient conditions to be imposed on the renormalization in the
R-gauge in order that after the point transformation, a manifestly
unitary theory emerges. It turns out that the conditions on the
Green's function in R-gauge are weaker than Slavnov identities:

)

It is possible to define a unitary theory with a smooth" mass sheill
behaviour starting from gauge noninvariant renormalization prescriptions
in R-gauge. Gauge invariance (i.e. Slavnov identities) is only needed

to relate the renormalization constants, that is, to minimalize the
number of independent parameters in the theory.

In section IV we describe the modifications necessary in comparison
with the abelian Higgs-model for the discussion of the nonabelian

SU{(2) model.

1)

The adjective smooth denotes here and in the following a mass shell
high energy behaviour as good as that of a renormalizable theory.

This is a generalization of the notion of tree graph unitarity

[8].



II. The invariance of the S-matrix under point transformations

For simplicity we consider in this section a Lagrangian with exclusively
scalar particles. The generalization of our procedure to vector particles

is straightforward. _
Let L and L' be two Lagrangians related through a point transformation

L =L (y, 3%y,
L) = L lgrh, plysh), @

= y . ’Vb }
(|0 { Lf)"' ) 1 N é denotes a collection of
scalar particle fields with possibly different masses m; and 4m=£'hg}

the corresponding collection of transformation functions, which are
supposed to have a formal power series expansion in the fields Lfi

MO _g-% . 0

(2)
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1t is'convenient to consider an interpolating Lagrangian
L, = L {y+2h, 3/,,(LF+?\4L))) 0 <A <A

and to construct the derivatives of theé£ﬁ4 Green's functions with respect
to the parameter A. To start with we try to make the S-matrix equivalence
of L and L' in tree graph approximation transparent. Witz

qfdxr”dxw { fr(iqm(ﬁ):?" . %w(xm):)3
we denote the set of all tree graphs (which are not vacuum to vacuum)
corresponding to the time ordered product of the normal ordered Fock space

operators: 1g,l..., | 94~:
The set of all tree graphs of the Lagrangian Jiﬂ is
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can be manipulated as follows:
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We insert (4) into equ. {(3). The terms with total derivatives in front

drop out. Of special interest is the contribution of
o 2
hi (Q+mi) @i to 3

2 t
i A dxa [T L) ...:,(-h;,)(f]’+m;)(f£()(2-):..,: Lytxn): ] =
Jix,, clxﬂ, EJ+'m")Lr
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The first term denotes the graphs not contributing to the mass shell,

of.w )

.L .
where (CJ+rn.) acts on an external line., The second term

represents all possibilities in which ([]-+Aﬂ?) acts on an. internal

propagator line thereby contracting it to a § ~function,

y s
Repeated indices are summned over.
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Writing iv'?\{L hL

I;\;L hy = - hy A i;f (E+mi)% " 2,”%

we can perform further contractions:

h- JJ‘M Glxn- {T( of-»?t(xd ih Ragn(Dmeg (Fk(x Lx(xn )%-‘
*bﬂhgd'xd d.)(n_ (-D""mh'.)‘f&(xg +

+ ,LWZZ_ fdy...c{xﬂ_z{ T(:i;\ (x4):... ’)P‘F Ly %(x
p=1

v v Z)‘ (x«n-?)-‘)}‘.t

(6)

Equ. (5) and (6) are the first steps in a rearrangement of tree graphs.
Continuing the procedure it is easy to see, that the sum of the contrac-

ted graphs, not trivially vanishing on the mass shell, add up to

geometric series
- A — t
J’c[g‘l ,,_dxw{T(:LA(x,,).'..i ’£351f’R A he gl,i C’“):-" :of,yi (Xw) :} (7)
and thereby cancel with the noncontracted graphs
X
fdxee &xn{T( T, (% %ﬁ‘ BN ORDI N

éff; - +'£1. (D*’Vln)jo
d. oL?k



By use of the Epstein-Glaser renormalization construction it was
shown in f 3] that the cancellation mechanism, as demonstra-
ted above for the tree graph approximation, works analogously in all
orders of perturbation theory. Namely, the S-matrix invariance is
guaranteed if one uses the free field equations of motion to define
the contributions of ﬂlmncjkfu to the Green's functions as being
equal to those emerging from °—(%1; A ka‘fg,) up to the terms
whose structure is given by the tree graph contractions (7) non
vanishing on mass shell.

The important point to note is that S-matrix invariance does not
impose restrictions on the construction of time ordered (T-) products
involving no constituent l‘ln[j‘f& . This fact is the reason for the
great deal of off-mass shell ambiguity as was mentioned in the intro-
duction. Apart from the axioms of renormalization [9] there are no
conditions to be matched in the construction of T-products invelving

no constituents }ﬁkﬁj?n but at least one other ﬂ dependent term of <252

as factor.

We end this chapter with a remark about the role of positive definiteness
in the Epstein-Glaser renormalization method. The main achievement of
this method is a rigorous proof of unitarity for Lagrangian field
theories in manifestly positive definite Hilbert spaces. However the
construction itself, that is, the recursive definition of distribution
valued T-products as well as the proof for the existence of adiabatic
limits (see [SJ ) does not refer to positive definiteness. The Epstein-
Glaser construction recipes can be therefore equally well applied to a
nonhermitean Lagrangian (which has of course no direct physical inter—
pretation) with possibly wrong spin-statistic assignment in order to
build up Green's functions fullfilling formal cutting rules and
causality constraints. By imposing suitable normalization conditions

on the two point functions one assures the existence of the adiabatic
limit of the Green's functions and the existence of their "mass shell”
restrictions. The quotation marks are put in order to indicate the formal

meaning of a mass shell in this context,



Green's functions of Lagrangians — nonhermitean and/or with wrong
spin — statistics assignment - are taken in the following as an
intermediate mathematical remedy. They will be related to Green's
functions of physically interpretable models with an underlying

positive definite Hilbert space.



III. The abelian Higgs-model

a) Preliminaries

The Lagrangian of the abelian Higgs-model in t' Hooft's R-gauge after

translation of the physical scalar field is

Lo = = 5 (Fu) + 5[(Qu-ieAy) (e was)f‘
2 2

..__"'%'_ %1_1“__%(5?-4.{1)_ sz(g

Cd (AR e M) 4 Yt - Mnfl

Vis the translation parameter,(fand S denote the F.P and the longi-

tudinal ghost resp. .

To pass over from (1) to the U-gauge formulation of the model one
has to apply on the scalar particle Z and the scalar longitudinal ghost S

a point transformation
|
4

L5
(L§+'¥+1r)=€“' (’%”*'U’) (2)

Following the lines of chap, Il we use also the interpolating point

transformation

¥ = SATI)\("‘“"“ (%y+ V) — £ ')}
Z %3+A(003%2‘(ZA+’1?’)‘(23+V)))
E'Aao.;})) £A=O=%) 5}___.,1:3]) E’Aci’%{ (2a)

]
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We set:

da = La (Au, 3(52,%5), 2 (5,5, %2))
La=o = "CR, . -
Ly = Aot AL ®

c[udenotes the U~gauge Lagrangian with a Stiickelberg-split [ld] 2):

y : J
D{U = —% (F}w)z+-2: Ib/,,_'i +4€(Aﬁ*'%4§)(2+1r)|2'-

Mmooy o mt .y ot 4 4 w 2
*‘g%"ﬁ%--—’% Z(A#A +M§),

8y* (3a)

AL comes out as the result of the point transformation (2) on the F.P,
ghost part and the gauge fixing term of LR (the latter without the term

quadratic in the fields )

AL = = (3 A+ MEYM (5n 2 (14v) = §) -
—%1(M%(z+v)-§)z+ a/,{,(.F*c)}LLF -

= M leol? - Meaf)*( Co %,-(zw*)— v)ﬁo (3b)

To prepare the ground for the subsequent discussion we make the following

remark:

2) For the U-gauge fields %A"f )§?.=4 we omit the index A .

- 11 -
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The Lagrangians (1) and (3) are first of all synonymous with the
corresponding sets of tree graphs. Using the B.P.H.Z, renormalization
framework we would have to specify a set of counter terms with
coefficients worked out as power series in the Planck constant h,
However, as we rely on the Epstein-Glaser construction, we start from
the Lagrangians (1) and (3) as they stand. That is, m and M are to
be considered as the physical masses of the particlesB) and UV and e
are taken as fixed parameters marking the starting point of the
inductive Epstein-Glaser construction4). It will turn out that the
choice of normalization of the R-gauge CGreen's functions in higher
orders of perturbation theory is to a large extent arbitrary

(within a minimal subtraction scheme), if we only require for the
U-gauge theory interpolated from the R-gauge version a smcoth mass
shell high energy behaviour (besides causality and unitarity). We will
state below the normalization conditions to be observed in oxder to

keep contact with the results of other authors [}j.

TII. b Mass shell cancellation of AL contributions

The interpolation by the point transformation (2a) from (1) to (3) does not
lead directly to the desirved result because of the disturbing termAL.
We have to show that the Green's functions involving vertices of AL cancel

out on the mass shell.

We anticipate here one condition to be imposed on T - products
T(Ziu(m)? :Uﬂu.(xn):) )

1

T2 Lot d (F)' =4 Qu5)¥ - F(3e)"
ML
2 M 2+(A’MA)-M7‘A;,

1,
Ly
'i'—?: E + 2

3 In the case of the R-gauge Lagrangian II.! we don't insist on a

rigorous particle interpretation,

4)

In B.P.H.Z. terminology our procedure is a hard quantization.
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In the normal product expansion of expressions like (4) éﬂ,§ and A}.L

have to occur in the Wick ordered operator parts only in the combi-

nation B/u,""" (A},' - A’Ff )

—

T(Lu(xa): o da (k)=

= 5 (M) ) B TP () T By k)

ao{, [‘:S = all Wick contractions

Td'{" denote the vacuum expectation values of the T-products of the
respective submonomials of CIu. .
The factorization property (5) is an obvious necessity in view of the
fact that it is the field B’L, which corresponds to the physical vector
particle. The Stiickelberg split of B* into A* and éﬁE is an
auxiliary remedy.
Assume that all T-products of type (4) fullfilling the requirement (5)
have already been constructed, We go on to define T-products involving

Blx)= (3 A% 4M3)( - M) (din = (14v)-§) o AL

as factor

T e TG L) i fe )i Bl ) ©

The construction of the expressions (6) proceeds by induction in n,
Assume that T-products of type (6) with less than (n+l) points have already
been defined., In order to comstruct the (n+l)-point product (6) along

Epstein and Glaser's lines we consider first

.y R — 131
D™ (%o X Xna) = 2 LTI, xaa), T (301 C4) (7

UUU’= {x‘l“' X,,.,‘g
InT= ¢

I+ 6 S 3 -
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TCT %) = TOGLaba)r t (X)) BOay): ),

T(I) = TCLagy L (xg,)0),
(X, xi b= 3, Cxjpnn Xge) = J

T denotes antichronological ordering.
A proper definition of the (n+1) point product is obtained by'Splittingl
(see [5] ) Dn+], that is, one looks for a retarded product Rn+1(x1..

X ) whose support is contained in

ix {7(4 'n-M.ie Rq('n“) (X{~ Fmga) >O (\( XM,,»/O 1,<11+4}

¥ ¢
n!

such that the support of (Dn+| + Rn+]) is in V' = -V, {The support of

pt! is contained in viuv is up to this point we followed the Epstein-
Glaser recipes).
The T-product (6) is then given by
13
wtq == !
T™ 2 R (XX Xnaa) =2 T(I)T(TI, %)) ®
Juldl= { % %]
Jndl= ¢
NI

Note that the second term on the right hand side of (8) as well as Dn+]

is already defined under the assumptions made above.

Taking into account the factorization property (5) and the identity

(o T(AR MBI (Ag - 5"5 Yy Vo >

=<o(aﬁA/“+M§)(x)(A;. )ﬁ ) (y) >+=O 5.)

5) The free field propagators resp. Wightman functions to be used can

be read off from the quadratic terms in (1) or (3):

(LT CARGIAY () »F < - ) ddpe -iptx-g)

(am)" pi-M>+ ce

QtC.
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(n)

it is easy to see that the following induction hypothesis for T

. s . +
is consistent and that it can be reproduced for T ]: The factor

(Ay,A*‘+.P4'§ ) appears in the normal product expansion of the
operatoxr expressions (6), (7), (8) always in the Wick ordered operator
parts. All terms in which (3%~A‘” 4’”’? ) is contracted into an

internal propagator or Wightman function line vanish identically.

Next we inspect T-products involving two factors
B=(duA* +ME) M (s S(aev)-5)

Exploiting the permissible ambiguities in the construction of the
retarded functions we achieve the following net result: In the normal

product expansion of

T CLatis Lo xn): B Knaa )t B(Xomsa): ) )

appear besides terms:

(3 A2+ M)

expressions of the form

(‘4'- )CS-(X»AM‘ X-\'H-Z) T( IU'(X»:): '--:Zu(x’n\: : Ml(w%' (af-hu')— §):()“"H)) (1o

and terms' with ghost loop structure“(to he explained below).

The centributions (10) to (9) arise, naively speaking, from the contrac-—

tion of two factors(%uﬂﬁt+b4§) into the same propagator line

, TUORAF +ME) ot YO AR HE) (K)o~ 8 Kes=Yaa) (D)

with no other internal line connecting the vertices xn+4 and Xn42 .
Terms in which a second line connects the vertices ¥ontq and xhﬁz
in (11) are striked out. This way of proceeding is justified by invoking

the permissible ambiguities of renormalization: terms with factors

(o TURA MDA MEN) DT e

in the inductive construction first at places where they only contribute

to the totally coinciding point of the respective T-product distribution.

_,,IS...
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Expressions of the form (10) can be defined such that they vanish

together with the T-products involving the Mz-terms of Acﬁ :

TUT ) d () EMI (s (4= )X (x,,,)0)

Finally we have to exemplify what we mean by ghost loop structure:

Consider the normal product expansion of the two point functions

(BB l): =reM (s £ iv)-12(x) @ M(cos 2 Gerv)-vlly):

(B E () + (12)

tF,P(x):s F.P.-(’lj,) = (~1): eM (%%(EJW)—U)(X)Q, M(cos %(uv)w)(‘j,):
o lf(*‘)‘-[?*(‘j)o>+ QLF*(X)‘-F(‘j)D* + e (13)

FP = L?* Me(cm —15-};(1'“")‘”)(?

The relative minus sign between the terms written out in (12) and (13)

comes from the Fermi quantization prescription for the F.P. ghosts,

It can be easily verified with the help of. the Epstein-Glaser method
that contributions to T-products with equal graphical structure -
the simplest example noted in (12) and (13) - can be defined to be
equal. The additional signature factor for the F.P. ghosts render the
cancellation among the terms with ghost loop structure (see equ. 12)

and the original F.P, ghost loop contributions.

By now it should be clear what strategy one has to follow in the inductive
construction of T-products with AL factors, in order to achieve their
mass shell cancellation. We confine ourselves to spell out the basic

ingredients giving the following (exhaustive) enumeration of situations

- 16 -



one encounters in the normal product expansion of T-products involving

A(L termsﬁ') :

d.) At least one factor (C)pA’u'"F Mg) appears in the Wick ordered
operator part. These terms drop out on the mass shell because of

transversality of the physical vector particle,

) Terms in which two factors (3}4 AR + M g) are contracted into the

same propagator line cancel all contributions derived directly from
2 .
M(AW\,M—(I-}'U’) i)
Y-) Expressions with contractions of (autA}L+-P1§ ) with fields of;Z-

vanish identically. The necessary and sufficient condition to achieve

this result is the factorization property (5).

§.) Al parts of T-products not listed under o )- X)with
(3}LA“+f4E)( W”( § (¥+1I Z) factors have ghost loop structure

and vanish together w1th the corresponding original F.P. ghost loop

contributions. The crucial points leading to this conclusion are first:

the Fermi quantization prescription for the F.,P. ghosts and second the

simple relation between the point transformed gauge fixing term

(i.e. that part which is linear in A (:l:4) y and the point transformed

F.P. ghost Lagrangian

E.P. =—c{>*Me(wa7 (24 v)= )

A( a/u,A:"" + ME)( - M)( A % (’§;+ft)’)— E)|2=4 are connected by

M %(—M(w%(zw)-@h —.Me(w’b‘i‘(“’”)w). (14

6.) We use for this purpose a somewhat abbreviated and therefore

'naive' language. It is easy to attain a standard satisfying all

pretensions of rigour by penetrating through a lengthy and straight-

forward discussion using at every step the Epstein-Glaser method.

_17_



III, ¢ Renormalization prescriptions in the unitary gauge

It is important for the subsequent discussion to note which parts of
O‘L,Ucome from A dependent and’\independent terms of oglréspectively.

dy -t (Fu 2,](3 ,;QAF)-((HV)(/!JH
+;\m-§(2w) +4,§(4.x,\) + Mmjf;(%*v)”z‘
- 2;; Ci-} A(Co@%(%i-’lf‘)'(%-‘-’lf)))z -
S22 (48 § G- (2 L L5+ A (o) Th
+ [ g+9\(w«_3%7(z+v)-(i+1rﬂz’)'

2
S (LR (4-2) + A s = (24 )] [Hﬁ\[m-\g-(%wi"@w))]z)
81 S r v
4i(gﬁA#+M(§4>\(m%(aw)~g)))

I *‘__ 2 L ¥ (15)
+ 937y ~ Mgl - Megtiy,
ilu -—-—-F/W 4 (B/M,g) + g(a %)_
2 gt 1 2
“%%lf%f*ln_%q_r(_ap\f* ""‘2’_1"§2+
+3£(A V(ztu) + 2e Afca 51 +eA/A3F%(45\)§+

+-"£ (.80 G 4 11y)) + XA gt
+ 0 (?\(1"?\))]%1

(16)
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We are interested in (15) only in so far as we extract from the inter-
polating qutheory the rules to be respected in the renormalizatien of
the much simpler Lagrangian ‘Lu = C{”).r.d— AL , in order to

obtain a smooth mass shell behaviour.

The main result of chap. II was, that an appropriate handling of the
point transformed part of the kinetic energy, which is linear hnA,

is uniquely responsible for S-matrix invariance.

In particular S-matrix invariance does not impose restrictions on the
definition of T-products not involving this term., We used the indetermi-
nateness left over after the requirement of S-matrix invariance already
tacitly in the preceding section, when we constructed the T-products
with[ﬁj{vertices. We exploit it further by constructing the contvibutions

to the Creen’s functions of terms O (1-A) in (16) such that they cancel

out for A =1,

We are left over with the Lagrangian:

Lo = ~HES 4 L34 (52 + £ ALGro) -

PR ¥ G €T Vo L Y SN L
Z 2 5 2 T Z glf.i +

L
2 o Qud) (42
+ 20 AL ] QB (a2 +

me

-

+ Q,ZA/u 3’“3 % Zjlmzi , (17)
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%
Note that the remaining?\terms are not subject to restrictions imposed by

S-matrix invariance.

We are now in a position to read off from (17) the renormalization
prescriptions in the U-gauge: Construct the T-products involving only

A independent terms with a minimal number of subtractions. Add the
T-products with Adependent terms of dimension 5 and 6 such that a unitary
and causal theory emerges (especially, the factorization property IILI.
b.(5) has to be fullfilled). The infinitely many subtractions necessary
for these T-products are, apart from the axiomatic constraints, to be

chosen arbitrarily.

Remarks: 1.) A minimal subtraction scheme for the T-products of the ,2-—
independent terms provides in view of the S-matrix equivalence of R-

and U—gauge a smooth mass shell behaviour for the whole theory.

2.) The unitarity and causality constraints are fullfilled if one

proceeds along the following lines: The T-products of the A independent
terms are constructed so that the formal cutting rules (with respect

to the A independent part of the interaction) and the causality rela-
tions are respected. Using the Epstein-Glaser construction this is
automatically built in. All c-number two point kernels of the normal
product expansion of A independenf T-products have to be assigned the
correct massland wave function renormalization (that is, a pole at the
point of the physical mass with unit residue). The prescriptions, given

50 faf, are quite general and not at all restricted to gauge field models,
The only specific rule to be observed in order that the fl independent
Green's functions can be completed by the ﬁ dependent ones to a manifestly
unitary and causal theory concerns the factorization property III. b(5):
(Amputated) graphs differing from each)other by one attached external

line, which is either A/“’ or af"g 1ine7 , are defined equal,

7')That is, -terms in the normal product expanéion of the T-products, which

go over into one another by substituting one fiehiapin the Wick or-
dered operator part by field bZﬁE R
M

_20_
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Obeying the same rule also in the construction 4 la Epstein-Glaser of
the A dependent T-products we fullfill the factorization requirement
I1I. b. (5) which together with the cutting rules (now with respect to
the whole Lagrangianjz)), the causality relations and the correct mass
and wave function renormalizations render the axiomatic respectability

of the U-gauge theory in the Stiickelberg~split formulation,

3.) Using the normalization conventions for graphs with vertices emerging
from the A independent terms of (17), as they are specified for the same
graphs in the R-gauge approaches of references [f] , we obtain with our re-
cipes the same S-matrix results as by calculations based on R-gauge
prescriptions of [l] . However these normalization prescriptions are

not a necessity in order that we can pass over via the A - interpolation
from R~ to U-gauge. We have for this purpose to follow the {(weaker) rules
given under 2.).

In particular, no Slavnov identities for the R-gauge Green’s functions

are needed.

4,) Different choices of the infinitely many subtractions, mentioned
under 2.)]1ead to a finite number of different S-matrices corresponding
to the different possibly non gauge invariant normalization pre-

scriptions in the R-gauge,
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IV. The nonabelian SU (2) model

In t'Hooft's R-gauge the model under consideration is given by [7 ]

Lo =-5(Bu) + § % (DuCDOT) -
- B ﬂéi__ 2 J ~ L\ _ nh? (,E?+
- 20T F £ (s K*)

m

E
"Y' r,
DC=aﬂ(Eﬂ+:KE)+ .
FOp-tE Y O ((aEF)d v Ket)
T = Pauli z.natrices, ’_ﬂ_ =

unit matrix,

F is the translation parameter of the spontaneous symmetry breaking,

> > :
% denotes a physical scalar particle, K andlf stand for the longitudinal

and F.P. ghosts respectively,

_.22...
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To pass over to the U-gauge we perform the following substitutions
in {1):

KT
(eERL kT ) ¢ BF (¢hmP L, o
- »L?‘-'E >, "“‘-KI'..
LG T 2F [ > 9K ZF
—%{——H& T 2 b T)e +
LK - K
+%}(3}"€ TF)e EF) (3)
I‘K - iR (“i/u,} K) ) y
Lo(5. (2" Kz, K(Ke) (K2 L,+44
R (}/“' %//u) ! ! I ! | U ) (4)

%, K 2
Ly = -L (BN + 4|32+ S - 22y mr)] -
’h‘L’L Q ml %3 _ /Tfl,l L{
T 7 TALF 16 F?

(4a)

__23_.
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The point transformations (2) and (3) have to be executed one after the

8.)

other because otherwise the recipes of chapter Ilare not applicable 7.

The renormalization prescriptions for O{U which give a smooth mass shell
behaviour are analogous to those for the abelian model (and are justi-
fied by the same arguments): Identify the part ofagu coming from LR and
the part coming in through the interpolation (in the language of the

preceding chapter the} dependent and)independent terms)

1 1 3
o(u"i(-é' )+ 45(3,u%')z—412-’%'2—-“ﬂ-—%’—

q T ) ARF
- ﬁ;, 't -4 %%"“(?«Lm)) —

Define the T-products of A idependent factors with a minimal number of

subtractions. Add the T-products with A dependent terms so that correct

8.) The intefpolation method described in chapterIl applies to Lagrangians

with interactions 1nvolv1ng no_ higher than first derivatives. The p01nt
transformed term "i(a %’ui-“b() contains a second derivative of K. >

If we perform the point transformations (2), (3) one after the other a [IK
appears only in the second step as part of the transformation function
of %, where it does not matter,
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mass and wave function renormalizations, cutting rules with respect
to DKU , causality relations and the transscribed factorization
property IIL.b.5 are satisfied. The remarks at the end of the section

III.c apply without exception also to the nonabelian model,

The only point requiring some further discussion in comparison with
the abelian case concerns the mass shell cancellations ofﬂaﬂterms.
The points a.) to v.,) of III.b can be immediately taken over to the
nonabelian model. All that remains to be done is to find a similiarly
simple connection as (14) between the A dependent part of the gauge
fixing term and the point transformed F.P, ghost Lagrangian. The

latter can be written in the form

FP = ZFN? MTq> %%“f(% ®f
—fkt?(iLH(@uf)j

—» > .E’i I()"'E .
AQ, T ¢ i 3 K-t a=r ~ ¢
%" - e JiF ‘-‘}:L(%u f‘q )e \EF+ %{(aﬂ’e L F )e )

LG o

H

-~
K= — sn = % oY
~ it o F B % JoF
Introducing the transformation matrix A.{,K, of the left handed
nonlinear chiral transformation Ky
e . xt . ol ,{',, —=
K I L= 4 TRE ZF
iF 2 o
e > e € .= €
t
A QK
ik -
3ke | 2o

we can write (6) as follows:

x Y L /J.,L ) k.
FP. = 0up" ((m" 53 %} )Agwaf*‘f +
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Equ. (7) suggests a point transformation of the F,P. ghosts:

T §r o= Ai’“‘f?" (8)

which translates (7) into

~, § § )‘“:‘ N'é' -
F.Po= 0 o ( T T . ) J
u (:NS@K}) J(j’w) i m Y
1ay* KL = ~i ¥ § gl

LE?} ? )

- M i j
] $K; Lf 5K

andﬂiinto
. - ~ ) ' -y > 9
A= F?(tf*a%lkq%’)_ % %ﬂ%ﬂ.+h45)
..)l 2> \2 ™~
+%(Bﬂ%/“+f"]!< ). (10}

Equat.~ions (9) and (10) represent.t‘ne analogon to the relations
III.b.14 for the abelian Higgs model. They guarantee, that those

parts of the T-products with factors
A A
(aﬁ?ﬁ'u MEN (g’ + ME = ( aﬁ?}"*‘ +MK))

not listed under III.b., @) - y) have ghost loop structure and can
, . : ~k Y

therefore be manipulated to vanish together with the L() } L? ghost

loop contributions. One has to note in this context, that also the

L

. ¥ o . I
point transformed ghosts kf ,(.F have to obey Fermi statistics.
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V Conclusion

The main purpose of this paper was to single out the essential
ingredients necessary for the renormalization of unitary gauge

field theories with smooth mass shell behaviour. Slavnov identities

do not belong to: these essentials.(They may be rather regarded as a
convenient technical remedy, in proving unitarity in R-gauge formulations
(see D}] )). It is an open question what kind of anormalies we obtain
starting from a non gauge invariant renormalization in the R-gauge (only
fulfilling the weaker conditions of chapters III and IV) and interpo-
lating to the manifestly unitary gauge. Our conjecture is that the
exclusion of anormalies in the equations of motion and in the Ward
identities for the spontaneously broken reflection symmetry of the scalar
particle, together with the requirement of mass shell smoothness, fix the

S-matrix uniquely,
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