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Abstract:

Corrections to the Glauber model for hadron-deuteron scattering in

the realm of nonrelativistic eikonal expansion, are expressed through

two~body scattering amplitudes. Numerical calculations including off-

shell effects are carried out and the comparison with experimental

is given for elastic = d scattering at 9 GeV/c., Dependence of the

data

relative values of corrections on parameters of input amplitudes is

checked. It turns out that this type of corrections does not exceed

227 at the largest mementum transfer measured, t * -2 (GeV/c)
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1. Introducticn

Tn the last few years a growing interest in calculation of different corrections
to the simple Glauber model(l) for hadron-deuteron scattering has developed. The
Glauber model is known to be valid for high energies and small scattering angles
only. Nevertheless, it has been quite extemsively and not without success
applied outside the region in which it is supposed to work.. The two alternative
explanations of this fact are that either the values of different corrections

to the Glauber model are still negligible at medium momentum transfers or that
there exists some mechanism of cancellation one against the other. On the

other hand, cases are known(z) where the simple Glauber model is reported to

be - incompatible with experimentél data., In any case, only a quantative numerical
analysis may give us some insight into the real physical situation. However,
although the literature om this problem is quite extensive (see e.g. 3-293,

it consists mostly of theoretical considerations and due to the mathematical

complications the direct comparison with experiment is rather rare.

One popular generalisation of the Glauber model 1is the nonrelativistic eikonal

(%)

expansion (NEE), introduced by Sugar and Blankenbecler, The corrections it
involves are of a very fundamental character since they are connected with .
abéndoning the.assumptions about small scattering angles. In this paper we

shall present the calculation of the hadron-deuteron elastic scattering amplitude
in the second approximation im NEE. This amplitude differs from the Glauber
amplitude by two. terms which we shall call the-eikonal and -the Saxon-Schiffcg’A)
corrections, respectively. Our formalism will be based in general on that of
Sugar and Blankenbecler but with a different choice of eikonal momentum. The

reasons and implications of this choice are briefly discussed in Section 2.

Apart from building up a formalism for expressing the correction terms through
the two-body amplitudes known from experiment, we also give the method for

taking off-shell effects into account. This we are basing on a previous paper(Bo)
by E. Bartnik together with the present author, where the shapes of the two-
body off-shell elastic scattering amplitudes were nuﬁefically énalyséd. In

what follows we shall refer to this paper as (I).

For the comparison with experiment we have chosen the case of 7 d elastic
(2)

scattering at 9 GeV/c , where the authors find a disagreement between the

simple Glauber model and experimental data of the order of 50% for the largest




momentum transfer measured, i.e. for t = -2(GeV/c)2. It turns out that only
about half of this discrepancy is due to corrections of the type considered here.
The rest must be comnected with other corrections (spin, Fermi momentum,

recoil etc.), This is discussed in Sections 4 and 5.

This paper is organized as follows., - In Section 2 we introduce the NEE for
elastic hadron-deuteron scattering and derive the formula for the amplitude
which is then written.in terms of two-body amplitudes and discussed in
Section 3. The ndmefical results and comparison with experiment is presented
in Section 4. In Section 5 we give some conclusions and discuss possible
future improvements of this model. Finally, in Appendix A we describe the
transformation of the two-body off-shell amplitudes from cms to laboratory

frame and the effect this has on their shape.

2. Three-Body Nonrelativistic Eikonal Expansion

Throughout this paper we shall use the same notation as in (I) except that in
the three-body case the amplitudes and Greems functions will be denoted by

capital letters. The sign "*"

on any side of t or T-matrices means that the
corresponding bra (ket) sandwiching this matrix is off emergy shell. The
symbol """ ‘is reserved for amplitudes and Greens functions in the eikonal

approximation.

Our considerationswill be valid in general in any reference.frame, although for
simplicity we shall assume that the centre of mass motion has already been
factorized out and the numerical calculation will be done in the laboratory
frame. The three~body state is fully described by two relative momenta

> m1152 - m2‘1:1
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Py = m]+m2+m3 ? (2.'2)

> . .
- Where ki and m. are the momenta and masses of particles respectively, and

L . : . L . Wi
thé subscript 3 is reserved for the incoming particle  , whereas 1 and 2 refer

e ‘ : >, . :
‘to ithe nucleons of the deuteron. Clearly, 44 1s the relative momentum of the

cyi - L i . . .
" nucleons and Py 1is the relative momentum of the incoming particle and the
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centre of mass of the two nucleons. Introducing the two-body interaction

potentials Vij and denoting

W=V, + Vg (2.3)
we get the full hamiltonian in the form
P2 q2
3 3
H = - + + W+ V , (2.4)
2u3 Zmlz 12
where
(ﬁ +1,)m m,m
172/ 1™ _ | | o
Mg = W . 12 @ v, , M= mpdmotmg . _ .(2.5)
We shall use two Greens functions: the full Greens function
G=(E-H+ie) | (2.6)

where E is the total energy of the system, and the Greens function with only

the deuteron potential included

Gy = (E~-H+WH+ :’Ls)“1 '. : ‘ : (2.7)

(9

The scattering matrix is given by the Lippmann—Schwinger equation

=)
[}

W +:WG3T

W+ TG,W. | ' (2.8)

]

This equation is a starting point for the eikonal expaﬁsion.

The eikonal approximation will consist of two steps (see (I) for comparisom

with two-body case):

. . . . . . -
1. Linearization of the hamiltonian in momentum p (from now on we shall drop
the subscripts where it does not lead to misunderstanding)

'2 S . I

P- , BPo, Polp~Po) . . . :
m " ; | (2.9)




here “;O is the so called eikonal momentum, its choice is not specified so far
but obvicusly the neglected term (; —;5)2 must be small in the physical region.
From now on we shall always assume that the =z axis of our frame is parallel
to p_ .

o]

2, Neglect of all terms describing the bound state

2
v q , B+0, 4 (2.10)

12° Zmlz
where B 1is the binding energy. The choice of the second step is somewhat
arbitrary. For instance, one can linearize the hamiltonian in momentum E
instead of neglecting it. Our choice has the advantage of simplifying the
calculations. Note that althcugh the Fermi momentum is neglected here, the
deuteron interactions will be taken into account when averaging the scattéring

matrix with the deuteron wave function.
Now, denocting

E =E - B - : . (2.11)

: 7 > > ]

~ P, Py(P7Py) ] - -

G %--Eo H.iz-— -fa—-~ —W.+ 1§. . 7 (2.12)
> >

. 'Pé PO(P"PO; . -1 : .

G3 = EO - -—u-' = ""‘_u-—-—"— + 1e . (2.. 13)

~~1 -1 ~-1 -1
N = - = -
¢ =6, -6,
R S 2
(»,~P) q
R e Iy, Viz =B - (2.14)

This operator is in a sense : measure of the validity of the eikonal approxi-
i, 2 . . . .
mation, In terms of it the Lippmann—Schwinger equation takes the two alter—

native forms
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T=T+TG, NG, T, | (2.15)

where T ‘is the solution of (2.8) in the eikonal approximation. The iteration
of these two equations allows us to expand T in a series of growing powers of
the operator N . This is the so called nonrelativistic eikonal expansion. Up
to the first order in N the scattering matrix is given by the formula

T, - T + T 53 N 53 T, . (2.16)

where the neglected part is of the second order in W

T-T, =T G, N (G3 + G3 T G3) N G3 T . (2.17)

1 3
(9)

These formulae for NEE were first introduced by Sugar and Blankenbecler and
were fairly extensively used in nonrelativistic and relativistic approaches,
i in Eq.(2.16)

copsists of two terms. The first one is the eikonal amplitude which for small

though usually without numerical calculations. The amplitude T

scattering angles is equivalent to the Glauber amplitude, However, to get a
model valid- for higher momentum transfers we must get rid of some additional
numerical approximations in the Glauber model (like neglecting the longitudinal
momentum ‘transfer) and this, as well as taking intb account the off-shell effects,
introduces a difference between the Glauber and the eikonal amplitudes which we
shall call the eikonal correction. The second term in Eq.(2.16) is called the

Saxon—Schiff correction.(A'g)

Our formalism is very similar to that of Sugar and Blankenmbecler. However

(apart from working in the relative momentum representation which only gives

‘the more symmetric form of the final formulae), there is one important difference,
already mentioned in the introduction. Namely, we choose as the eikonal momentum
the average of the initail and final momenta

.

-+ - : . .
P, = 3(P; *+ Pg) - (2.18)

and eikonalize twice in the same direction.. There are two reasons for this.
. . . . . . ‘o . +
Firstly, this choice leads to important numerical simplificatilons 3 and secondly,

it has the advantage of diminishing the Saxon-Schiff correction, as will be seen




in Section 4, in agreement with theoretical predictions of Kujawski.(ZB)
Our aim is to express the amplitude T] through the two-body amplitudes known
from experiment, and to calculate it explicitly for the case of 1 d scattering

at laboratory momentum 9 GeV/c. This will be done in the next two sections.,

3., Hadron-Deuteron Scattering Amplitude with Eikonal and Saxon—Schiff Corrections

Eq.(2.16) is an operator equation, and to calculate the hadron-deuteron scattering
amplitude we must carry out all the integrations over the intermediate states

and then average both sides with the deuteron wave function. This means that

the eikonal three-body amplitudes E will be at least half off-ghell. In (1)

we have developed the formalism for calculating the half off-shell two-body

amplitudes. They were of the following shape(30)
—y A2 2 -z
ey - ok o] - CAZ - ids, (3.1
oy 4T ‘ . :
v oo igr T08f - CAZ 4 ida . (3.2)

where Ei_agd Az are the momentum transfer components perpendicular and
parallel to, the eikonal direction respectively. The values of the total cross
section o .»-half the slope of the differential cross section a and the
fitting parameters C and d depend on.energy. The amplitudes f differ
from the Lippmann-Schwinger amplitudes by a constant. factor and are normalized

according to the formula

2 _do
£ &) | =5 . (3.3)

‘One_should bear in.mind that although the formulae (3.1) and (3.2) were derived

':‘1n the elkomal approxlmatlon under the assumptlon of spherical symmetry of
e

'_potentlal which .allows .one to express the potential through the eikonal on-shell
amplltude uniquely, for practlcal calculation one has fo substitute the eikomal
amplltude by the experimental opne. This makes the procedure of the off-shell
COntlnuatlon somewhat ambigious, especially in large momentum transfer region.
.However ‘1t should be a good first order approximation and the corrections are

-ii‘ef hlgher order 1n the, -two=body. N  operator.

'ujmm SAERE i‘ﬁWWWﬁMWMMmmmmmwmmwmmlnrmrrrw-mmnmwmmwm'rm"'""’""”"""""""”“"""""'"'




The formulae (3.1) and (3.2) were derived in the centre of mass frame and to
use them in our case we must transform them to the laboratory frame (see
Appendix A) which has the effect of changing the values of o , C, and d but

does not change their functional shape.

To express the eikonal three-body amplitudes through the two—body ones we use

(25)

the formula given by Karlsson and Namyslowski which is the generalization

of the well known Glauber formula to the full off-shell amplitudes case

STV G -<F T A

- _iu J dr! J dt ! - - ]
2ﬂpo 1 s 1 y+ie

T f(pz_poz)_1€ T E(pz-poz

x[ I 1 _ 11 ] sz E_L d?i*n
. 2 1 _ . t LIV s
T 2(pz P, )tie T+ z(Pz P,,) it

- 1 |
x <pY, 5P+ )T ”['T |pl’ (PZ+POZ)+T,3>
1 >
« Bl F(o1p )] EdlE 13 [B), 3,07 (3.4)
where
<p’ "”I‘T{[B’ @ = <p’['e! B8’ [1(3’ -+ Q- a’)] : (3.5)
<3'q'|'1y 139 >= <‘5'|'t5|3>a3[~;—<3’ -® - @ - 3)] . (3.8

>
Here P, denotes the on-shell value of the z-compenent of momentum p 4

and the amplitudes 't; and 'té are the off-shell scattering amplitudes for
the reactions xp » xp and xn + xn. Using the & functions one may carry out

six of the seven integrations in Eq.(3.4) and with the additional assumption




that the full off-shell amplitudes depend like the half off-shell ones only on

the difference of their arguments (which implies here that they are independent

of the integration variazble 1 ), applying the Cauchy theorem, we finally get

> 3

ST - 'E]'(K)63(% 743y + 'Eé(K)s%% 7-%)

+ B 1 - 1
p I 1 . ]_ T -l
O %7 3PPV e S+ s(p i, )p -ie

R Y S S N N (3.7)
3 27 ; ‘
where

£=3% -3 , =3 -3 | (3.8)

also for unphysical values of the momenta.

The formula (3.7) which may be symbolically written as

~

Th= Tl + T2 + T3 ) (3.9)

must be now substituted in Eq.(2.16) which after using the locality of Greens

functions and N operator in momentum space takes the form

> 1.3 > 3 > * > e P e
T, () = [d Ae 47 a5 ¥ (qp){<pg q¢ |T] p, q; >

|

2 ~
u -+ 5> 3 PR,
* -—-J d® p a®q <p; 4 |1lp q >

2 —p 41e)2

| Py (py*n-p +ic)
- -
e -20% 2
X + + Vv - B
12
2u 2m]2

| X <P qiT| p;d; > Fu(@) , o ~ - (3a0)
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where 1 1is the deuteron wave function. Although the input amplitudes (3.1)

and (3.2) have a very simple form, some of the integrations must be done

numerically. In view of the very complicated shape of the final formulae

(computer input) we shall not present them here, ¢lassifying instead schematically

the different terms of corrections and giving their general description.

From Eqs. (3.9) and (3.10) it is clear that the Saxon-Schiff correction consists

of nine terms. The full amplitude (with normalisation (3.3)) may be schemati-

cally written as the sum

. 33 . |
F) = + § ] E,_ (&) . | ‘ (3.11)
‘ 2=1 n=1 - .

L~ >
The firstterm here, F(A), is the eikonal amplitude. One can see from Eq.(3.7)

that it consists of two single scattering terms and a double scattering term

which in the forward direction reduces to the Glauber(]) formula but in general

differs by the eikonal correction. For the sake of discussion the amplitudes

may be grouped as follows (we omit single scattering amplitudes since they are

exactly the same in our and Glauber models)

1.

F1 - double scattering amplitude in the Glauber model. It has slope %— in
A ") * 5 .
the variable A% .

1

FZ - double scattering amplitude with eikonal correction - same slope.

F3 = Fli + F22 - double scattering on the same particle. According to
expectations they are very small in the forward direction and proportional
to the deuteron form factor, therefore their comtribution is negligible

everywhere.

5= Pt Ty

slope a/2 in Ai but for t = O is much smaller than F2 .

F - double scattering in Saxon-Schiff correction. It has

Fg = F]3 + F23 + F3I + F32 - tyxiple scattering and F6 = F33 -~ quadruple
scattering have slopes less than a/2 and, therefore, one coqld expect

them to dominate for large t. However, only numerical analysis may tell
us whether F, - F6- dominate in some t region since if such a region |
exists, Az and n %35 effects are there comparable with AL (see next

section).
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4. Numerical Results and Comparison with Experiment

As mentioned in the introduction, for comparison with experiment we have chosen
the case of elastic = d scattering at laboratory momentum 9 GeV/c.(z) The
differential cross section for this reaction was measured up to t = -2.28 (Gev/c)z.
From the considerations of Bradamante et al.(z) it follows that the results of

3D

calculations of Alberi and Bertocchi(

(32)

in the Glauber model based on the
Barger-Phillips parﬁmetrization of 7 pand 7 n amplitudes disagree with
experimental data by about 50% at the highest momentum transfer measured., It
should be stressed here that our aim was not to get a better fit to the data*6
but to check to what extend the eikonal and Saxon-Schiff corrections may be
responsible for this discrepancy. Therefore, being not interested so much in

the absolute value of the full amplitude as in the relative values of corrections,
we have carried out the calculations for the three sets of parameters o, ¢ and p
(slope, total crss section and Re £(0)/Im £(0); see (I)) describing = p and

T n on-shell amplitudes. All values of parameters are given in Table 1. The

set A is the one quoted in Ref.(2), the set B is based on our own fit to T p
scattering data up to t = -0,7 (GeV/c)2 and the set C was taken to reproduce

the Phillips amplitudes<2) but only in the double scattering region.

Qur fesults are presented in Figs.1-3, 1In Fig.la and b there is the 7 d
differential cross section for different sets of parameters. In all three

sets curve number | corresponds to the Glauber model, curve number 2 is Glauber
with eikonal correction and curve number 3 is the full cross section with the
Saxon-Schiff and eikonal corrections. In Fig.ib the single scattering contri-
bution is subtracted and the comparison with experiment is valid only for large t,
since the set C of parameters does not reproduce single scattering in a
reasonable way. We used this set only to reproduce Bradamante's curves in the
most interesting region+7 and to test the dependence of relative values of .

corrections on the parameters used.

Fig.2 shows a comparison of the contributions from subsequent terms of the
amplitude to the differential cross section. The numbers correspond to

Fy - F6 from Sec.3 and the interference is completely ignored (g% i~ ]Fi[z).
Fig.3a and b illustrates the t dependence of real and imaginary parts of

Fi(i = 1,...,6). From this figure a mechanism of cancellations between different

terms may be deduced.

- i




From our numerical results the following observations can be made:

1. The effect of eikonal and Saxon—Schiff corrections is rather small in the
momentum transfer region up to —Z(GeV/c)2 and does not exceed 227, there-
fore (if the Bradamante-~Phillips amplitudes are the only projer ones*6 )
these corrections can not be the only ones respomnsible for discrepancies

. *
between the Glauber model and experiment.

2. The relative values of the corrections depend rather weakly on the shape

parameters of the two-body amplitudes.

3. The corrections diminish the value of the differential cross section. If
one believes Phillips' parametrization to be the best one, then the

corrections go in the right direction (see Fig.lb).

4. The eikonal correctiom is much bigger than the Saxon-Schiff one. This effect

(23)

" is probably connected with our choice of eikonal momentum since then
some part of the usual Saxon—Schiff correction is already contained in the

eikonal approximation.

5. Even the numerical analysis does not uniquely answer the question, where
the different terms start to dominate (see Figs. 2,3). The slopes of
their contributions to the differential cross section are changing with t,
therefore qualitative analysis like the one sketched in Sec.3 may give the
wrong predictions. On the other hand our model is still too simple to be
valid quantatively in a much larger momentum transfer domain than the

Glauber model {see nect section).

5. Conclusions and Rematks

To end our discussion the following remarks should be made:

1. It is not clear which of the two-body amplitude parametrizations is the

best one. Though Phillips' parameterization works exceptionally well for T p

PLEEY

up to the highest energies measure , for m d one can get better results

with simple gaussian parametrization (see Fig.la,b) or some others proposed

" recently (see (29) and references therein). Since there is so much freedem

in the Glauber model itself, the actual value of corrections calculated in

some formalism and the problem, whether they explain the existing disagreement




between the Glauber model and experiment or not, can not be an argument for or
against the formalism used. We can only decide whether the kind of correction

considered is still negligible or should be taken into account.

2. The small value of the Saxon—Schiff correction around t = -2(GeV/c)2 is

an argument for using the eikonal approximation (with eikonal correction) in
this region, However, the choice of eikonal momentum %{;i + Ef) should be
recommended if the approximation is to work well in the medium momentum transfer

region.

3. Parémetriza%ion'of two-body amplitudes in a2 simple gaussian form in
momentum transfer is a somewhat rough approximation and does not allow us to
push the ﬁalidity of our formalism into the region of much larger momentum
transfers than for the Glauber model., Unfortunately, for non—gaussian functions

our formalism does not work so well because of serious mathematical complications.

4. ' Among the different correction terms there are many cancellations as may be
deduced from Fig.3a, b. They may be the main scurce of the unexpeétedly big

success of the simple Glauber m.ode_]_.m9

5. The future improvement of this model should go in three diréctions:
a) inclusion of the phase of the two-body amplitudes (e.g. via the Regge
modelfy
b) parametrization of the shape of the full 6ff-shell amplitudes and
célc@lainn‘of'fufther terms in NEE;

c) relativistic gemeralization of all this formalism *10

All these changes will be rather difficult to introduce, especially if one
wants to take into account also the spin and Fermi motion effects. However,
we hope that the relatively simple formalism presented in this paper may serve

“as'a basis for, such future generalizatrions.
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Appendix A

Transformation of the Off-Shell Amplitudes to the Laboratory Frame

We start from the cms amplitudes (3.1) and (3.2). The relation between

(

laboratory and cms amplitudes is 35) {subscripts ¢ and £ refer to cms and

laberatory frame respectively)

[sin2@c+(Yc cosB_ + 2y ])2}3f4
- : y
fQ(Al’AZQJ) - . B 1/2 fC (Al’ AZC(AZE,)I 3 (A' 1)
[y +A v cosl :[
, e cl ¢
where
=
o= o (.2}
2
. E1G
and  (with y_ = —El )
1
A+YO
Yo = T (4.3)
I+2hy_+27
I + A
v o= —_ T M¥a ] (A.4)

¢ /T2y 27

YooYl and Y. are the Lorentz coefficients for the incoming particle in the
laboratory frame, for the incoming particle in the cms frame and for the target
particle in the cms frame respectively. From the transformation of the

momentum components we get for the left off-shell amplitude

- ik.g —ah? - C' A2 - id, A
@) =2 3(t) e T 24 1hes , (A.5)
2 4
where
C d
C' = — N d = — » (A'6)
YC 1 YC

t t t 3/4
Gz Qg ¢ DeGeg + g 13
ot C C

2(t) (A.7)
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Of course, the form (A.5) would be extremely inconvenient in further calcula-
tions. Therefore, we tried a two parameter fit according to the formula

e A2 Y A2
afg—C Azi

-0, AZ - 0, A7
1
B(t) e = e L .

5 (A.8)

where oy and CI are the new effective values of slopes which already involve

the effect of the B8 function.

The fit turned out to be extremely good, with both sides of Eq. (A.8) equal
up to the four first digits from t =0 to t = -2 (GeV/c)z. Moreover, it
does not change the values of « very prominently (e.g. starting from

o = 4.25 (GeV/c)_2 we got o, = 4.31 for 7 p at 9 GeV/c). This procedure gives

i
us the final shape of the amplitude in exactly the same form as the initial
one, namely in the form (3.1), very convenient for further calculations.
Note that this procedure has nothing to do with the Glauber approximate

similarity of shapes(36)

of laboratory and cms amplitudes since in our case
the values of parameters are changed and no assumption of small scattering

angles is necessary.

Table 1

I
uﬂ_p %5 n Uw_p %1 n D."'p ®7n f
Gev/e) 2 (eev/c) 2 | (wp) | (wb) |
}
| i

A 4,25 4,25 26.9 25.3 -0.126 -0.230

B 3.92 3.92 26.9 25.3 | ~0.126 | ~0.230

C 3.35 3.35 24.4 24,4 0 0

Three sets of parameters describing = p and 77n elastic scattering at 9 GeV/c
taken for numerical calculations of 7°d amplitude (see Sec.4). The letters
from the first column are used to differenciate between the sets of curves in

Fig.1 and 2.

T = = S R
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Figure Captioms

Fig.1:

Fig.2:

Fig.3:

The differential cross section for the elastic 7 d scéttering'at
laboratory momentum 9 GeV/c, The effect of eikonal and Saxon-Schiff
correction is shown explicitly. Letters A,B,C dorrespond to different
sets of input parameters presented in Table 1. Numbers 1,2,3 in each
set of curves correspond to Glauber amplitude, Glauber + eikonal
correction and Glauber + eikonal + Saxon-Schiff correction, respectively.

In the set C in Fig.lb only double and higher order scatterings are

‘taken into account. .The experimental data are from Ref.(2),

The contributions from different terms Fi(i = l,...,6 to the differen-
tial cross section as discussed in Sec.3 (without interference:

do . 2 )

PRI RIRE

The shape of a) real and b) imaginary parts of subsequent terms in the
amplitude. The numbers correspond to the numbers from Sec.3. From

this figure the mechanism of cancellations may be deduced,

i 14
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Footnotes

i‘l.

All considerations in Sections 2 and 3 are valid for any elastic scattering
xd - xd but the practical calculations and comparison with experiment

will be given only for =x = 7 .

. > . . . ...
For any reasonable choice of P, (linear combination of initial and
final momentum) N vanishes in the forward direction and is very small

for small scattering angles.

Note, however, that with this choice of eikonal momentum the physical

momenta ﬁ; and ﬁ; are slightly off-shell (see discussion in (I)).

; ‘ -+ . .
Note, that P,, 1is not the z component of vector P, (which is equal to
- . > . . L, .
|p01 since p_ 18 parallel to z axis). It has an extra contribution

2
coming from the fact that in general E, # %ﬁ :

Pyz T Py AR
where
b e o _Po
2p0 2

(see (I}, Eq.(2.6)).

The variable Ai gives the main dependence on t (especially in the

‘laboratory system). However, one must bear in mind that for large momentum

- . . * . .
transters, the factors including AZ and n 4 may also give a substantial

contribution.

It is possible that with some reasonable change of two-body amplitudes
one can get much better agreement between the Glauber model predictions and

experimental data than the one reported in Ref.{2) (see (29)).

With our simple parametrization of amplitudes we can not reproduce the

very complicated amplitudes of Barger and Phillips in all momentum transfer

regions.

It is obvious thatrthe other effects neglected here like spin of nucleons,

-Fermi motion or deutéron recoil: should also give some contributionm.

- ey e - B T L L R




10.

Other examples are also known with cancellations among different corrective
terms in generalizations of the Glauber model (see e.g. (10}). Although
their mechanism is much different from the one in our case, the final

effect is the same.

At first sight it may seem senselasss that we use a nonrelativistic
formalism for the description of ultrarelativistic energies. However, it
is the characteristic feature ¢f all eikonal theories that the non-
relativistic and relativistic approaches lead to the same type of final
formula (e.g. Glauber model has been derived in both approaches). There
are hints(}s’ 34) that alse in the case of eikonal expansion the two
formalisms may be easily translated into each other with the help of

some simple prescription. And all kinematics in oﬁr calculations are,

of course, fully relativistic., Therefore, our formulae should find

application also in relativistic formalism, though the numerical values

of amplitudes may be somewhat chenged by relativistic corrections.
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