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1. Introduction

1

Recently SU(4) symmetry already considered earlier had a revival

in connection with the discovery of the new mesons Y., 1V(3.7)
and \V(é.l) 2). One way to understand these new resonances is their
interpretation as vector mesons composed predominantly of charmed
quarks. The basic¢ symmetry of strong interaction then becomes SU(4)
instead of SU(3). One considers the ¥ as part of an SU(4) fifteenplet
together with the usual vector mesons @, ¥<*, @ and d’ .
Because of the large mass differences inside such a multiplet SU(4)
muét be badly broken. In principle the structure of the symmetry
breaking term is ﬁnknown. To incorporate the usual well satisfied
SU(3) mass splitting, we assume that the breaking operator H' has

a term H8 which transforms as the I =0 component of the SU(3)

octet. The mass splitting of the different SU(3) submultiplets inside
an SU(4) multiplet is described by H]5 which transforms as the

SU(3) scalar component of the SU(@) fifteenplet, so that H' = H8 + HIS'
For the tensors of SU(4) we use the Okubo notation. Then it is

easy to derive the Wigner—Eckart theorem for matrix elements

of SU(4) tensor operators within a given SU(4) multiplet. We find that
the matrix elements of H' and also of the electromagnetic current

:&L can be expressed by the eigenvalues of various operators

which appear in the reduction SU(4) D SU(3) @ U(1) and

SU4) ™ SU(2) @ SU(2) @ un. > '

In section 2 we derive the mass formulas for broken SU(4) neglecting
electromagnetism and apply them to the 15-plet representation of
the vector mesons. In section 3 we consider mixing between singlet

. . . +
and fifteenplet which leads to a five parameter mass formula.

+)

This problem has been considered also in ref. 4.



This reduces to a three parameter formula if ideal mixing
is imposed. In section 4 we take up the problem of electromagnetic
mass splitting for both, the unmixed and the mixed case. .

In section 5 we draw some conclusions.

2. Mass Formulas for Broken SU(4)

In this section we shall derive mass formulas for SU(4) multiplets
which arethe generalization to SU(4) of the well-known Okubo

mass formula in SU(3). We shall consider the mass splitting inside
the full SU(4) multiplet and not just the mass splitting between

5)

SU(3) submultiplets In SU(3)the mass operator H is

H=H +H |, (2.1)
where HO is the SU(3) symmetric part and H] transforms like
the isoscalar generator of SU(3), the hypercharge operator \;"J ¥;.

In analogy in SU(4) the mass operator is

H = HO +H + H (2.2)

where HO is now a SU(4) scalar and H] and H2 transform as
F8 and F15 . FB is the isoscalar generator of the SU(3) octet

and F15 is the SU(3) — scalar generator of SU(4).
For the derivation we need the properties of the SU(4) tensor
operators. We shall use the Okubo notation for these. Then it is a

simple matter to derive the Wigner—-Eckart theorem for matrix elements

of a SU(4) tensor operator within a given SU(4) multiplet.




B T L RN

Usually one denotes the SU(4) generators by Fi (1 =1,2,.000., 15)

which obey
[Fi,FJ.] = ifi 5 F (2.3)
and which can be represented in terms of a set of standard hermitean
: A =La. :
matrices i by Fi =7 Ad when acting on the quadruplet

representation of SU(4). In the Okubo notation the SU(4) generators

are given by a set of sixteen operators Flj (i, = 1,2,3,4)

15
Ro-) T (9\%)4’}-’ (2.4)
3 =4

which satisfy

[Fij ; Fkll = Jj Fk} -~ J; :Le (2.5)

4 .
) F4u =0 (2.6)
e=4 ,
i _ J oLt

The Flj transform against charge conjugation 2? as:
f;bj» ¢t - - T, (2.8)

Now, for any regular tensor operator T*. we have within a given
J




irreducible representation R of SU(4) 6

. . koo . 5o . 1

1 1 i 1

T, =aFy +bZFij +cZFkFlFJ., (2.9)
k=1 L1

where a,b and c are reduced matrix elements. In the special case
that R 15 contains R at most twice, which covers all the cases
of physical interest, we drop the last term (¢ = 0), so that we have

only two reduced matrix elements.

In accordance with (2.2) the mass operator H is:
T (2.10)

where TO is the SU(4) symmetric part, while T33 transforms
. . . 4 . .
like a linear combination of F8 and FIS’ and T , 18 proportional

to The exact relation will be given below.

F]S.
As we ghow later TA4 can be expressed in terms of those operators
whose eigenvalues label the states of the SU(3) submultiplets. This is no
longer true for the second term T33 which describes the SU(3) splitting.
The SU(3) states are characterized by the eigenvalues of 12, 13 and Y}
But T33 cannct be expressed by them . On the contrary T33 connects

states of the same 12,13 and stithin different SU(3) Submultipleté

of an SU(4) multiplet. This is similar to the situation occurring in
SU(3) in connection with the electromagnetic mass splitting where
different I-spin multiplets are mixed. It is wellknown that the

electromagnetic mass splitting in SU{3) is simplified considerably if

another SU(2) subgroup of SU(3) , namely U-spin, is used to label the




states. The situation is quite similar in connection with T33 where part
of it can be expressed by operators of another SU(2) subgroup of SU(4),
called Z-spin.

' 3 4
Therefore we express T 3 and T , in (2.10) through the generators

3). Whereas in SU(3) we

of the different SU(2) - subgroups of SU(4)
had only three SU(2) - subgroups defining the I-, U- and V-spin,
respectively, in SU(4) we have six different SU(2) -subgroups which

define six spins: I,U,V,W,X and Z:

I ) 2 .
I =F 5 = F1 1F2 ' I, = F ) = F1 + 1F2 )
1 1 © 2
I,= 5 (F, Fo)=Fy
-l - G S
U =F,=F - iF , U, =F, =F +if, ,
i
U, == ,2 _ 3. 1 V3
372 (F, F3)—2F3+2F8,
1 ) 3 ,
V_=F3=F4-1F5, v, =F =F, +iF, , (2.11)
1t 1 .3, ] Y3
Vy=g By = F ) =5 F+5F 5
W=F1-F*iF w=1«"4 F_+ iF
- 4 9 10 °? + 1 9 10 ?




Tt is now easy to obtain from (2.9} for ¢ = o:

3oc(a-20)(-Y+4 Y, )+ -g—[ 3(Z*-1%) + (% ‘Y;)] y o (2.12)

=3
1]

Y= bY, - (a-2b) Y - 3(6-Y5). (2-13)

=
o
1

Tn (2.12) and {2.13) 52 is one of the Casimir cperators of

SU(4L)
s A5 2
= +
Y T (%) ) (2.14)
v=4
and é; 1s one of SU(B);
8
S Z
=32 (%) ) (2.15)
=/
whereas Jg and Y;y stand for
2 __zﬁg-ﬁf
Yg: z 8 Yffs'*‘z P (2.16)

According to (2.10) the mass operator 1s a linsar combination of

3 4 , . . .
T 3 and T , together wilth an invarlant term.
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Finally we get the following four-parameter formula for the

mass splitting:

H= o+ (m=my)( €, ~ Yo )+ 3m1(22’-—'f£') (2.17)

+ 3 my Yo = f(my-3m,) Y j
[

Here the contribution of é,has been lumped together with that from T

>
and we have introduced mo= m33b/3, m,= maab/3, f = (2b-a)/b.

For mesons (2.17) stands for the squares of the masses. |
Since mesons are assigned to self conjugate multiplets

the C odd terms in (2.17) must vanish,i.e. f = o. For baryons

we take (2.17) as a formula for the masses themselves where

C even and odd terms contribute.

To apply the mass formula to actual cases we need the classification
of the SU(4) states in terms of the eigenvalues for the operators i
4ppearing in (2.17). According to the usual reduction scheme

SU(4) D SU(3) ® U(1) we can choose for the c¢lassification of

states the irreducible SU(3) representations (p,q) (in the

"highest weight" notation) contained in a given SU(4) multiplet.
The states within the SU(3) representations are classified as usual

by I, 13 and Yb - For the additional U(1) we have then \35 R

which commutes with the SU(3) generators Fl’ F2 . F8. The Casimir _
operator E% when acting on states of ap SU(3) multiplet {(p,q) has :
3)

the eigenvalues

4 SR
3(Psq) = p" + g% 4 pq + 3p + 3q , (2.18)

L e AT B e B R e
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For the evaluation of the third term in (2.17) we need the
classification of SU{4) states according to the reduction

SU(4) D SUL(2) @ SU,(2) @ Up (1), where p=Yg+ 5 Vis

commutes with all components of T and—z. Since \% and.\ag do not
commute with the E'operators the formula {(2.17) automatically
1eads to mixing between states belonging to different SU(3)
multipiets.

In the following we shail apply (2.17} to problems of current
interest. There cur SU(4) operartors \; and Y;g ~are connected
in a specific form to the physical operators for hypercharge Y ,

charm C and baryon number B:

(2.19)

G < @
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The charge Q is then

Q= 1, + (Y+C) =1 +”'2"(6+Y3>"-§_ Yo . (2200

4
2

The definition (2.12) for Y and C corresponds to the usual
assignment of the fundamental quark representation (u,d,s,c) with

3Y = diag (1,1,-2,1) , C = diag (0,0,0,1) and 3Q = diag (2,-1,-1,2).

As an example let us work out the mass matrix for the 15-plet of the

——————————per v PR VR PR R U T P TE R PR [————_EEL



vector mesons SJ, K*, @, 4’, D¥ and F¥.

The classification of these states as SU(3) multiplets and their SU(2)
quantum numbers for I, U, W and Z spin together with Y, C and PrYw~(C
are given in table 1 . We listed also the U and W spins. They will be
used later in connection with the electromagnetic mass splitting.

As is well known the SU(4) fifteenplet consists of an SU(3) singlet,
octet, triplet and antitriplet. The triplet has C = | and consists

of D*+, ¥ °  and F* 7, The I = O member of the octet is denoted by
Wy, whereas W,z 1is the SU(3) singlet component . [he physical

& and ¢ will be the mixings of We and @y

In terms of these states the I-, Z-,U- and y- multiplets are:

I-spin: singlets Wg ; (0%_3 1_1:*4-5 pub ;
dou blets (K*"'? K*O) ; ('{(’?0’ - K*—) ;
(5'*—0)-1)*—) ; (D*+ - :D*o),-
triplet  (_o*, g0, @), (2.21)
- 1
zspin:  singlets %5 9% 07, Eay + s

doublets (K¥—; ’D*o)j (F") - K* +) ;

(Ko, p*4); (D*, - K*),

. Tz . -
triplet (__ F*- ; —v.f_.iw3+y% W ) ,I'*"') ) {2.22)

U-spin:  singlets Wys g D"w,' D¥e -i-(&)g + l@fo);

doublets (€T KFT) (K*F -¢%)
(O, %) (F%,- D),

triplet (-K*, 4 (B wg-¢°) )T('*"/\ _ (2.23)
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W-spin: singlets K*? ; K¥e s %(ﬁw? -'§°)5 f——g(‘ﬁ@o‘f' Wy —_ﬁwls)j

(g, D**) (D*,-¢7);

doublets
(kee, 005 (37, 7KDs
triplet (—:6*0 L(Ega‘f'wg*u;'wﬁ) D*O) (2.24)
’ iz Yy

From (2.21) we see that the particles belonging to the same I-spin
multiplet have the same quantum numbers for Y and C, according

to the reduction SU(4) =2 SUI (2)®UY(]) @Uc(l).

Similarly the othexr SU(2) reductions are:

sU(4) D 8U, (2) @ Uy (1) @ Ugoy (125 SUG) 2 SUL(2) @ Uy (1) @ U (D)
and SU(4) = SUW(?_)@ UQ(I) @UY(I).

0f course Y- C is equivalent to P = Yg + % Y45'

Then for U- and W-spin the reduction is SU(4) D SUU(Z)C@SUW(Z)@UQ(I).

Al]l these relations are intimately comnected with our quantum number
assignment and classification of the fundamental quark representation
4 = (1,0,0) of SU(4). The I-, 2=, U~ and W-spin content of the
quark representation is exhibited in table 2. Then the application
of the operators I+, Z+, U+ and w+ on the quark representation has
the effect: I+d = u, Z+c = 5, U+s =d, W+c = u for the quarks.
Similarly for the antiquarks: I u = -d, Z+E = ~C, U#g = -s, Wu = -c.
We apply now (2.17) to the vector meson 15-plet. From (2.22) we see
that all states except &) and &, are also diagonal in Z-spin.
Therefore we have the follbwing equations for the squared masses of

9 )

K¥ , D¥and T*(denoted by the particle symbols):




...1] -

K = m + 911'1‘l - 91’[‘12 3
D* = m+ 3m1 - 3m2 .

(2.25)
% = o+ 9m1 - Bm2 ,

whereas the matrix M for the singlet — octet mixing has the form:

m+44m1*94%2_ -2Vz My

M= . (2.26)
~2z my m kA g

The eigenvalues of this matrix are identified with the squared
masses of the physical w and & meson. (2.25) yields one mass

relation through elimination of wos My and m,.

g *+F =KkK*¥+ 0¥ . (2.27)

From (2.25) and (2.26) two further relations follow if one uses the
trace which is equal to w+® and the determinant of (2.26) which is

equal to we¢ . These are

3%+ ¢ = 2(w+?) (2.28)

(@-g)(c&_?\ :%(K*-?)(ZU-F-Z‘*’*?-EK*), (2.29)




The eigenfunctions of 4> and & are then respectively (up to

normalization):

fwy ~ (””4'”““1"¢“a:)iadg>' + 2V2 Wu4.|°065>,

éfb} -~ (M" '}qm@ﬂ,‘m¢) i wﬁ> + 2\[.?: My 1 Ct)4g>_ (2.30)
The formulas (2.27) - {2.29) have been given before 7). If
the SU(3) splitting term proportional to T33 is neglected
we have 3)
My =M+ 2 (2.31) |

where Mi’ M3 and MB are the average mass squared of the SU(3)
singlet, triplet and octet,respectively.

Already (2.31) shows that the average mass squared of the charmed
triplet (D*+, D*©, F*+) ig rather low of the order of 1 GeV-.
Fer completeness we give solutioms c¢f (2.27) to (2.29) using

the aﬁ,‘P and K masses as input. The two solutions are (masses in GeV):
(1) mg =o0.64 mg = 0.76, Mpex = 0.98;

(ii) m, = 1.07 , Mo = 1.06, ™ 0.85.
The SU(4) symmetry breaking has the nice feature to lead to

definite 5¥(3) singlet - octet mixing for ¢ and % (see 2.30).

On the other hand the results (i) and (ii) are not

tenable since the ¢-mass cannot be fitted. The solution of
the SU{4) mass breaking for the vector mesons lies in
additional SU(4) singlet - fifteenplet mixing which

will be discussed in the next section.

Hers we still note that the mass formula (2.17) , when
applied tc the quark representation gives, according to table 2:

] - - -3
- £ m. + +m) =m m m 3fn,,
3 (mu m, *+ mg c) ’ s T My 1 (2.32)

-Sfmz,

li

moo=m m - m
Ty d’ c u




so that R = (mC - mu) /(mS - mu) = mZ/ml' In deducing (2.32)
we have taken into account the fact that for the fundamental
representation 4 only one reduced matrix element appears in (2.9),

i.e. b =c¢ =0, since 15 is contained in 4 X 4 only onces.

3. Mixing Analysis.

In the laét section we have seen that a mass formula based on SU(4)
is contradicted by the empirical masses of the vector mesons. With
the discovery of the new vector meson \V(3095) a new situation
arose. There are now threerI = (Q vector mesons w,d’and‘f’which
in principle could be mixed states. Apparently the W has no SU{4)
partners. It is appropriate then to consider the mixing of the
fifteeﬁplet with a singlet. In this case the ﬁass'matrix (2.26)

is replaced by
M, -9Im, ~am, A
M = -2z my mm + by B . (3.1

A - ® Mo

o stands for the SU(4) singlet mass squared and A and B are

the nondiagonal matrix elementé which mix the singlet W, with Gy
and.cokg,‘respectively. (3.1) has six free pérameters whereas only
five masses are known, ?.v‘<*’ W, ¢ and ¥ , to be used as input.

Therefore (3.1) has no predictive power without further assumptions.




(2.17) shows that F_, and F _ appear in a definite ratio. We aSsume that

8 15
the same determines B/A,the ratio of the @,; and Wy coupling to

the singlet. This gives the ratio i

/yni - Slml

B
X = — = —
| A 2z my (3.2)

The five-parameter mass matrix thus obtained agrees with the matrix

4)

used recently in ref. . Other authors based their mass mixing
on the nonet symmetry for vector mesons 8).'In our notation this means
to fix A by

A= -2V6 o | (3.3)

but we shall not use this additional constraint,
In (3.1) two parameters are fixed by the e and K¥ masses from

(2.25)

(K¥- 0 1, (3.4)

u
v

1]

- 1 - K*
m 9m, 2(3g K* ). (3.3)
As the three unknown in (3.1) we use & , A and Ty, is determined
via (3.2)

(LA, (3.6)
3
|

=
[
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Expressing the three tensor invariants of the matrix (3.1) by the

eigenvalues (squared masses of W, and¥Y) gives us three

equations for o, A and m. Elimination of A and m leads to a

third order equation in & . This equation has three solutioms.

Only for two of them A is real. In one solution the masses of
charmed particles are around 1 GeV. We must take the solution
where Ty # and m

decay into these mesons. Then with the input

Hle = 0.76737 GeV , Me, = 0.78266 GeV ,
moew = 0-89433 GeV, mg = 1.01969 GeV ,
m,w = 3.095 GeV ,
we obtain
o = 21.4184, m, = 0.0352 Gev?,
m = 6.9786 GeVz, _ m, = 0.7218 GeVz,
A =~ 0.1843, m, = 3.2414 Gev?,

The corresponding masses of the charmed particles are

mox = 2:218 GeY,

mox = 2.265 GeV.

The large value of &« means that the SU(4) breaking
is roughly twenty times larger than the SU(3) breaking

which is determined by m, -

5 are around 2 GeV, otherwise the ¥ can copiously

(3.7)

(3.8)

(3.9)
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The wave functions for the mixed states @, P and V¥

in terms of the 8, 15 and 0 componentsare:

[w) = 06595 |woy + 063014 [@Wg) + 0.ho88 |ugh

16 )

%) = 0.5288 |wo> - 0.0015 [wgp ~ 0.842% |y

05342 [wo) = 0.3F765 |wg) ~ 0.33h2 |ays), (3.10)

It 'is easy to express lw> , |é> and [¥)> in terms of

the ideally mixed states lCdc->) [CLJA> and |&3¢_~> defined by

Jwp) = L lwgy + & 1@y + 1w

r = ~E1wgd + e lwgy + & 1>

(3.11)
e
0 = - B jwsy + 4 1w
The quark content of these states is (U + d;)/ﬁ : »
s5 and cE,l_’espective-ly. The physical states theﬁ are:
lwd = 09935 |wey - 00664 |wWa) - 00254 Iwc>)
= 00659 |wed + 0.99F¢ |ws)y =0.0223 [wy)
) «7 ’(3.12)

1Y) = 0,0265 |we) + 0.0206 |w,) + 0.999% [, >,

We see that the physical w, ¢ and ¥ st.ates'deviate very little
frlom the ideally mixed states (3.11). .Whether the‘amount of deviation
from the idealiy mixed situation is small enough to understand the
small total and partial decay widths of the ¥V will be taken up in a

forthcoming paper. From (3.10) we note that the w-3 mixing comes

out reasonable, the mixing angle being 39°,

UL RLE T ]



It is of interest to see what are the mass constraints resulting
from a pure ideal mixing. Imposing that the eigenfunctions of

(3.1) are exactly given by (3.11) we get the following constraints

on the parameters in (3.1)

) = m o+ bm (1 =-yze) ,

2
]

m+ 6 (m1 - m,

(3.13)

e
]

-2 Vg m] .

As can be read off from (2.17) the quantity m + 6 (m1 - m2) is

just the mean mass m, . of the 15-plet. The constraint (3.13) results

15

in the mass formulas for ideal mixing, 1.e.

C()'*"\F 3

i

= W , 2D¥
? {3.14)

TK*=w+ P, 2FF =4 + ¥

The constraints for ¢ and K¥* are the well known nonet
symmetry constraints which are well satisfied. As is well known
for the pseudcscalar mesons the correspending relations for

q , 'q’ , 7 and K are not satisfied,whereas for the tensor

mesons the agreement is similar to that of the vector mesons.

[ S —— R L PPN R R
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4. Electromagnetic Current in SU(4).

In our scheme where the charges of the four fundamental quarks
u, d, s and ¢ are (2/3, -1/3, - 1/3, 2/3) the electric charge

operator Q has the form (2,20)
F +F, +4F —\/EF 4. 1)
0 3 V3 8 3715 ¢

Therefore the electromagnetic current J and any electromagnetic
operator related linearly to it is the same superposition of

0’ F3, F8 and F]5 as in (4.1). In Okubo's notation this means
that

F

J= eT +e' (T w1y (4.2)

. . . 4
where TO 1s the SU{(4) invariant part and T]1 and T 4, are

irreducible tensor operators whose matrix elements for an irreducible
SU(4) representation are obtained again from (2.9). We cobserve
that J commutes with all U- and W- spin components. Therefore

J is a U -spin scalar as in SU(3) and in addition a W-spin scalar.

4

T 4 has been expressed already in (2.13) by Y] and the SU(3)-

5

Casimir operator ﬁg.

Similarly to T33 we can transform T]I into

] 1 1 b 2 -
T ;- (a—2b)(I3 + E»YS + T Yls) +-§ [ 3(ﬁ - Uz) + g; - YQIS]' (4.3)

] rup- L2l L EUT Y TR MIM B ALY SR E R (14 0 1SR 44 1 i R S8 SR 1 W e e e e 5



We see that the breaking caused by Tll is controlled by

U- and W-spin in analogy to I- and Z-spin which essentially
determine T33.

Thus we have

et = b+ ) @3B s T G

The SU(4) invariant contributions in (4.4) can be combined
with T, and introducing j(=3(2,b—-ab)/b as in (2.17),

J turns out to be of the form:

22 22
J = + 3e1(W -1) - felQ (4.5)

)

J consists of a charge-conjugation even part and a charge-conjugation
odd part (propcrtional to Q). The ¥ -even part for example

is of interest for radiative transitions Vo Psr¥ , where V' are
members of the vector and P of the pseudoscalar meson fifteenplet.
Both terms contribute for example to the electromagnetic form
factors of the baryons. The application of (4.5) to the radiative
decays of the meson fifteenplet is easily dome with the help of

the decomposition into U- and W-spin submultiplets. This will be

done in a forthcoming paper.

Now we shall apply (4.5) to the problem of electromagnetic mass

splitting. As an example we consider the vector meson 15 plet as




in section 2. Since electromagnetic mass shifts are of second
order in the electromagnetic interactiom, that is, quadratic in
the current, some caution is necessary in connection with the
application of (4.5). If we assume that the electromagnetic mass
breaking term has nevertheless the transformation properties
of I~ (T]] + T44) we deduce from (4.5) and the classification
(2.23) and (2.24) of the particles into U- and W-spin multiplets

the following relations for the non-SU(4)-invariant electromagnetic

mass shifts &V = <Vl(f— eo),\/> :
Jg+ = dgo = SKX* = gDt = JFH = 0

3
s0 = - Jp*e = = bw, = - = dw
SK T O 7 C%ss h6)

=-13 cfwz’g = -V¢ J&JM,’_ = -3z J‘wws

=—6€1

Because of our simplifying assumption the electromagnetic mass
difference between 9"' and g" vanishes in the case of no
mixing between S’o » Wg and 9, components. This agrees with
well~known results for SU(B)Q). To overcome this difficulty and
to obtain relations for electromagnetic mass shifts valid to

all orders, we go back to the statement that J and any power

J* are U- and W-spin scalars. Then the matrix elements of

J" are related in the following way:

o LY LAL ] R LT T D e



._21..

Kot T gD = KKRITMIKR) = LDHTTDH) = CFRTMFD

Lol TH KRS = 3wyl Thwg) — <g1T"90)

2L DT D*)

"

2<po T awsd = VB LpUTMee> - (3Ll T Nwe)

Lwg [T wg) + bt T ws) - 3<€°[j—n]fa> ’

212w, ) T wgd = gl TMews) + 2<ws | T wys) ~ 3<et T e,

<f°|5"| wisy = 3 <Wg| T wg) (47)

for the states of the fifteenplet,and
0°| T @,y = V3 L@ 3" wo) = - ‘E Q) TMwe)  (4.8)

for the matrix elements between I5-plet and singlet.

Tt follows from (4.7) that the electromagnetic mass splitting

of the 15— plet is determined by four parameters:

QTR <801TTIGTS (g T wgy and <wis| T was),

One further constraint is obtained from (4.5) by evaluating it
between I = 1/2 and I = O states. In this case only that part

m has
of the operator J " contributes which’the same structure as J

This constraint is

2<€0] j‘nlg0> = <CJ45|I“[W45> ¥ {wgl 77| w8> . -9

So we are left with three parameters for the electromagnetic mass

shifts to all orders in the electromagnetic coupling which we
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denote by A? = <<§+ljﬂ

Dy = <wpl T wgd

tet >

Dy = (W] T ws) |

Then we have the following mass formulas instead of (2.25):

ot = m+ 3m, = 9m, + Ae
K*¥*= n 4+ 9m} - 9m2 + Ag )
K¥®= m + 9m, - 9m, + ] A 1 A

i 2 4 T8 L M5
p¥t = g o« 3m} - 3m2 + A9 [
D¥° = g+ 3m., - 3m. + > A L A

1 2 4L T4 4 g
Tt = oo+ 9m1 - 3m2 + Ag

We see that we have still the mass relation (2.27), but

for the charged components

et + X' = K¥T

D**

(4.10)

only

(4.11)

This is a consequence of the first lime in (4.7) that the

electromagnetic mass shifts of all charged members of the

15 -plet are equal. The masses of the physical g") W

and ¢

are obtained by diagonalizing the symmetric mass matrix M

[ m43m, - 9o, + L (84 L)

M = / ‘?‘("As*‘ﬂlts)

%‘" (-4g+ Ag)

3
'J';"(-Ag“'*&ﬁ)
’WL+444’P14" QWZ‘]' Ag

-2ﬁm1+-‘f-g=(-a,+a,5)

-
'éé" ("As + A'vs)
“2VZwmy + %‘(‘As‘mﬁ)

m 4+ Lfmd-!'ﬂﬁ. !

(%.42)

(LI TR R T TP S
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which replaces (2.26). The electromagnetic mass shifts

in (4.12) reduce to the relations (4.6), obtained in

first order, if [59 = - 1145 . In (4.12) the

parameters i, and w can be eliminated by:

(4.13)

(g K"y + K= S Ay s A

three parameters are left over to be determined

w and P.

go that only
. - [+]
by the lnput masses af q 5

Then we have only two unknowns

1
N =+ A -A)
4 15 8 ’ (4.14)

™

1l
:3]
+
D
wn

and M has the foilowling form:

)

3wy + &+ 34 3 A iz A
M - VA N, +% + A 2z my+ D CRLY
F’E A -zﬁm+;fgﬁ - Yom, + 7

with * 0

(?+“K*+ )“K

rafLo

K =
The tensor invariants of the matrix M give us three equations for

the two unknowns 1in terms of Wy k and the masses of 9°,C0 and @,

Bv eliminating A and T we obtain a very complicated mass formula.

We do not expect useful solutions from this mass formula similar
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to the case without electromagnetic mass splitting. The masses of

the charmed mesons are determined from (4.11) and

3 3

D~ K*t = %(g".;-w-l-d?)-— 18m, ~ 2k - 6 A

In order to incorporate the VY neson we consider the case

and 15-plet mixing together with electromagnetic mass shifts.

Then, compared to (4.15), we have three

more matrix elements

[103, [308 and [3()15, which describe the contribution of the

electromagnetic mass shift in the nondiagonal elements between the
singlet and the 3, 8 and 15 component of the 15-plet. In analogy

to the procedure in section 3 we fix the ratios of these nondiagonal

elements by the ratios of the corresponding components in the

electromagnetic current (see (4.5)

A ,_IA :A = =

015 C8 03

wlro

Then the mass matrix in the 3, 8, 15, O representation has the

following form:

3my 4 4+30 EA
3 A M+ & 4+ A
E/_\ —2{5%,4--;-_5&
Bos A+ 5 Dos

R
-2{2my+ £ 4
homg + am

MA-V%:Aos

Qo3
A+éAu

d“-{%-ﬂog
WMo

Since m = 3m](1 +2 VZ&) + k + 54 the matrix (4.18) has still

LU EIL LT T AW W=y e

R T T T T S

(4.16)

of singlet

(4.17)

(4.18)
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five unknowns &, A, m_, A and AOB , so that the mass
spectrum cannot be predicted from the masses of g°, e, ¢

and¥. we eliminate_A by the constraint

03

[3 . (4.19)

m t@m. = m T m (4.20)

(4.19) agrees for A = - 2 Vg m, (see (3.3) ) with the relation
which follows from the assumption that the electromagnetic mass
breaking térm has the transformation properties of J, so that
it obeys (4.5).

With tﬁe constraint (4.19) we have four unknowns which can be
determined from the masses of g",w,d’ and ¥ . The explicit
solution of this mixing problem is rather complicated and will

be considered elsewhere.

5. Conclusions

In this paper we derived formulas for mass breaking in SU(4)
multiplets using Okubo's tensor formalism. These formulas
ére applied to mass breaking of the vector meson 15-plet
with and without singlet - 15 —plet mixing. Without mixing

no sensible solutions are obtained. For the case with mixing
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we obtain two scolutions. In only one of them the masses of the
charmed vector mesons are around 2 GeV. For this solutions the

Y (3.1) meson is dominantly a c€ system. We emphazise tﬂat

a parameter-free solution for the masses of the charmed mesons comes
out only if the nondiagonal matrix elements between singlet W, and
Wy and Wy respectively are constrained by (3.2).

The electromagnetic mass splitting is considered also in some
detail. The mass matrix for the 15-plet is derived including

singlet - 15-.plet mixing. To obtain parameter free solutions for

the charmed mesons one needs three further constraints for the

nondiagonal elements of the electromagnetic mass breaking matrix.
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Quantum numbers of the fundamental 4-plet.

Table 2
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