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You are certainly aware of the great enthusiasm for renormalizable

theories the gauge theories have engendered, and the essentials of
renormalization theory have been presented by Prof. Osterwalder at

this Seminar. What about nonrenormalizable theories, are they necessarily
dead forever? It would be very shortsighted to believe so, and would be
merely a reflection of the failure so far to escape, for realistic theories,

from the unreascnable and unmatural confines of perturbatiom theory.

I shall first describe a possible way to approach a certain c¢lass of
nonrenormalizable theories. For this technical exposition, I choose the
simplest (though obviously unrealistic) theory of this class with a chance
to exist, massless ?‘A theory in more than four space-time dimensions. I shall
mention the problems of extension to other nonrenormalizable theories in

the class considered and compare the conclusions reached so far with the
corresponding ones for renormalizable theories at the end. - Almost all the

material presented here is taken from a recent paper of mine /1/, which

should be consulted for more details.

1. General outline

Nonrenormalizable theory is here dealt with by using an explicit cutoff A
in the Lagrangean, studying the-/j -dependence of the Green's functions,
deriviﬁg sufficient conditions for the existence of the .4 -»&¢ limit for
these, and obtaining the consequences for the limit Green's functions if

these conditions are fulfilled.

These tasks are facilitated if one starts with a theory that has a polynomial
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interaction and is renormalizable in some space~time dimension, and

then increases the number of space-time dimensions from that integer to

a generic (nonrational) real, or even complex, number. The gain is that
hereby (dimensional) degeneracies are lifted that would otherwise lead to
logarithms in almost all formulae, and these logarithms are much more
complicated to handle than powers, which appear in the generic-dimension
case. The restriction to integer dimension is of course the central issue,
and we shall discuss what is involved hereby. We shall also find that for
the ,{st—o<> limit to exist for generic dimension, the sufficient conditions

mentioned before are alsc necessary.

The cutoff that allows most easily to study the cutoff dependence to arbitrary
accuracy (as will turn out to be necessary) is the one employing higher
derivatives /2/ in the kinetic part of the Lagrangean. It leads necessarily

to indefinite metric in the "state space', but this does not affect our
analysis that rests on perturbation theory and Euclidean integratiom, though
it does render the problem of unitarity nontrivial as we shall discuss. The
restriction to a zero—{physical-) mass is chosen since this diminishes the

number of parameters and thus simplifies the analysis.

For the 954 model, we are led to consider the Lagrangean

R 4 ; Ea -2 s 4 s 2 - 2

in 4 + £ dimensions, the subscript B meaning bare. The (mass) dimension
o

of ¢E is 1 +-% , such that g5 has dimension - £ and gB./f’ is the only

dimensionless parameter in L, such that the bare-mass squared of the zero-mass



theory has the form

(1.1b) iy = 2 = : o K
yﬁ/ﬁ:’ﬁ: _/[ j{/{k(f) (é—“‘fg_/j )
=7
with computable mercmorphic coefficients ¥y ¢(E) . Our main objects of
77 ) 2L . 3 o . —
’/1/_?7 (_//-_7AA,/.,'QJ—1) ?.{f V- ) =

study are the vertex functions (VFs)
, the Fourier transforms (with a factor

= Ta(C2n); Gp E)

[-:;,;J,)#f—é‘(/«/’éf/_;) taken out) of the connected amputated one-particle~irreducible

parts of the Green's functions {( Qg, (¥, /- 93, ()’i,‘, ))+> » and the correspond-

ing "renormalized" functions to be introduced later.

2. Large - A expansion of bare vertex functions

It can be shown that the 7/;9 deriving from Lagrangean (l.1) admit the

following large - expansion:

7 =4 K=o

(2.1) 7/;75)(["2;? ) 9,6 )= ‘_,.

where f.k are certain power series in gy The proof /1/, which uses Zimmermann-

J
-type "oversubtractions” and is slightly technical, will not be reproduced here.

Its essential point is, however, to show that the Zg can also be computed

from an effective Lagrangean



This formula needs some explanation:

1) "Analytic integration" /3/ is to be used, with Feynman rules as follow
from the first two terms on the r.h.s. of (2.1), all other terms on the r.h.s.
being treated by (repeated) insertion into the Green's functions.. Analytic

integration here means to evaluate

A, .. oA - g [ - -
/9/ w /- 7y /4 Ky 2L A <7

(2.3)  _ (2r 36)L | ¢ S _
2e CT )T T e <z s Es R ).

1o —2 - £5 - o .
[ Dt AT I BT eyt (LGOI
. o
and to set this zero if the last square bracket is zero. The use of generic E

here prevents the second nfunction from having a nonpositive-integer argument

gince < is integer and i positive integer.

2) The triple sum goes over all n_ scalar moncmials, involving 2r derivatives

and 25 factors  » that are linearly independent at zero momentum transfer.
. 4 2' .

For r + s = 2, these are ¢/_j;b and @ , for r + s = 3, these are ?567 ;z),

qﬁ}ﬂgf) , and §Z56, in view of, e.g.

A 3 .
PP = FO0P + SO0 = At L E e
3) The coefficient functions /), /ggd' ’ ﬁ) are obtained as

power series

-ri"*spa{’ (€ ) ./29-/4.7 g) %

7

[ o)
(2.4) 74;‘5»- /.fﬂ?é’/jfﬂ’}: g

where S is the number of loops of the (regularized) graphs entering the



computation and 25 the one of external lines. The 74;,‘51/,‘{ (’é‘) are

meromorphic in £ , real for £  real nonrational.

4) (2.2) yields in view of (2.4) the expansion (2.1). Since an i-loop

graph contributes in (2.1) only with & » the expansion (2.1!) becomes
for finite-~order graphs an ordinary asymptotic expansion for large A L/J is
termed effective Lagrangean since it must be evaluated according to the special
prescription given under 1), and then yields directly the asymptotic expansion
(for finite-order graphs) (2.1). In contrast, the true Lagrangean (1.1) yields

(in principle) the exact (i.e., nonexpanded) VFs on the l.h.s. of (2.1).

Using only the first two terms on the r.h.s. of (2.2) and integrating analytically

vields 7% - in (2.1). Then the ordinary UV divergences appear for positive-
~rational £ . Since the 7/;73 are actually finite order by order in Bp>
identically in ~J , for 05 £ < 3, on the r.h.s. of (2.1) there must be cancella-
tions of all £ -singularities in this range, between terms that, in (2.1),
obtain the same A —dependence at these £ . (Inversely, this shows that in the
fjk there can be £ -singularities only at raticmal £ ). At such £, Lry -1 -
factors will arise. In particular, for £ = 0 there arise terms A-QJ)-///’/I )A’
and the removal of the j = O‘terms hereof is the subject of ordinary renormaliza-

k> o
tion theory.

7
3. Z& -definition and properties

Tn (2.2) we combine the terms proportional to the ones that define the

Feynman rules. We introduce



G0 T-2F, gt e )= Z ., (o

[¥e

\.‘[\r\

)

(3.2a) 7 .
,76[/ L///d27 ‘7{:“ /-[ 5/1_7_3 ZC7AJ/./ tﬂ /: C}/C{ "é

where/ﬁ{ is some unit of mass and g is dimensionless. (3.2a) can be

solved for ?,_,;:.’J
g & - - PN
G2y Gl = G Sy ] £

where the function g < ‘i'-) will later (in sect. 4) be characterized in

a different and more informative manner. Using (3.2b) we can intreduce functions

(fer r + s 2> 3)

/ . . -
T i -k ,,/t ) \__ f ) o~ - . -
(3.3) Crse /?:/“ dE == g Sz s Zs {2 /_./t: g‘) o
"f;- 74 { Fal “_.,7 . . 7
/el ’// / ) (?ﬁf -ZS E) (lglr )) /?/’i‘(l‘_ &'/if E-,/) ?

by substituting for g 4,5 on the r.h.s. Then defining

ay . .
G4 P= Zi o A5 ) %

(2.2) takes the form

.‘ 4 o . £
#2 S Y Cps (geidle ) DG

/4*57/3 P § s-7 YDy
w S = PR =fo .,,_S"
‘57,’“f } L



’
where the (4 g,r are power series in their first argument beginning

!
with the first order, except Cb,%7 which begins with one half. The

coefficients in all power series are meromorphic in £ .

(3.5) is to be evaluated by treating the terms of the triple sum as
(repeated) insertions into Green's functions defined by the Feynman rules
deriving from the first two terms on the r.h.s., and integrating analytically,

This yields for "renormalized" vertex functions the expansions

(3.6) 7/:’ L'/(fh)(« f;;f;,ar“‘f= £ )= /’7(;;, //.;'Z‘n)(. 57/»5"5,8 )+

y
= 25 ¢ 0 K
: ~25 £ € -
£ 2755k (2, gt

where hoo is the unregularized function identical to foo of (2.1) with g5

there replaced by 5?/ﬂi—.

Simple dimension counting gives
(3.7a) 72 (00’. duaE ¢ ) =0

0 LOLp T ] Lpaiped; 2 )
P=p

3.70) 75 (0000, g ™% ¢ )= —fop €

whereby the r.h. sides derive from hoo only, and in fact only from the
Born terms of this function. The relations (3.7) can be taken as renormalization

ani
conditions for direct constructicn of the 44 from the Feynman rules deriving



from the Lagrangean

38 Ly =5 PLITr AP - S g T

+ counter terms.

Subtractions are to be made as one would in four dimensions to enforce

the renormalization conditions (3.7), such that the counter terms (apart from
the now necessary mass counter term) are in form properticnal to the original
terms in the Lagrangean, provided the second subtraction on self energy p;rts
implementing (3.7b) is by subtracting const p2( 4 —-&ftiui) rather than

const p2 as one would usually. (3.8) is obtained from (i.1) by using (3.4)'and

(3.2b), and noting that

c}j,(z,g): z 4+ OCz%)
as follows from (3.2a). Again, (3.5) is the effective Lagrangean to the
("renormalized'") Lagrangean (3.8).

P

From the Feynman rules embodied in (3.5) follows that the functions /:£ are
»

free of £ -singularities for 0< £ < 4, and we shall prove this also in the

next section in an entirely different, and suggestive, manner. For £ = O,

77 : . 77 - . o
the /4 are singular in contrast to the /iB ; these are infrared singularities
brought about by the conditions (3.7b-c) which are, for L= e¢s and A<,
inappropriate for the massless theory in four dimensions /4/. This feature,
and a related infrared difficulty with (3.7b~c) in 4 +£ dimensions to berseen

later, are the reasons for introducing a set of differently "renormalized" VFs

in the next section.



4, 7/-_11 -definition and properties

From the unrenormalized VFs Z;? we construct renormalized VFs Ll_,by

the formula

72 //2}1)/./{/ ?,.E’)

(&.1) B
=25 ( 5,200 )" Ty (C20) 9605, Aue ), E)

where we set

Wi G (oA & e am Y G2 T LA L) o (550

=7

2wy Lo (G, AL, £)= 7 = (AL )7 2y (5, e )
k=1 ‘

The functions (power series in éwith coefficients meromorphic in £ ) &,

and Z-ak can be so chosen that the large -1 expansion for E becomes

= _ _
(4.3) [y (Bl e, 2, f’) =
. _ o oo : _
i - . - T A e )
_ e, o~ -) 57 7 s EgtE oy T
= fray ¢ R 9 L. +d;:/f oy g f/’;‘k- L ’);'/'”/ e )

That such a choice is possible follows from sect. 2, and is exhibited in

.

- - ——-7 . _'—1
the A ~independent relation between ’/A in (3.6) and //1 ‘that we shall

establish in (4.15) below.
L
Applying A J 07/'(-'),61 _// y, to (4.1) yields
' Y

(4.4a) C%DQJ? Zz (//?Zﬂ)//u) ?—:’ 8)20
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with

av) Oy, = [ 0u ]+ 505, €)1 T~ 30y 7755/
where

folgre)= p LD lF /;,,9

(4.5a)

o)
?—‘E?-fé(z}g. .,k/o(g/)?,ﬁ ;

w50y P(ie)=F w[dADuT (02, /? =
foF

=% Oy (n 25 = Cole) 3%+ c, ()"

with computable functions /Z?(QCZ,Cagfé)meromorphic in £ , and regular
for 0 € £€< 4 as we shall prove. The -1 -independence of/3 and 7+ follows
from (4.2) and (4.3): The first implies that no factors /4f“26?+ €k jfa-f
7

£ &
may occur, and the second excludes the occurrence of A , K> o

We next introduce the function

§ .
we FEF€)= §2Xp/5 fdg'[ﬁ/§5c)_7~ (e 5’)“"7} -
a

———

= ?,_. E—'rbo(g)?z-{---.
which increases monotonically in the interval o< F < Foo (€)  vwhere %o (E)
is the first positive zero of{/3(/§7 £ )if there is one, and we shall only

consider é in this interval. The inverse function we denote by é(g, £ )



w 11 -
.72y (g, e), £ ) =

@m G ()= g bl g e

(We shall prove it to be identical with the function in (3.2b).) From

(4.5a), (4.2a) and (4.6), (4.7b) follows

(4.8a) ?&fgj/a,ﬂ, erﬂ“ig(’?fg,ﬁ)/u*fdi EZ)

and from (4.5b) and (4.2b)

—

b
W Zy (5 Afe )= o) 2 fo/sv PG g )].
R
We now consider the function
(4.9) [J/J/ogj Ep(/'o/"/'?), %@;C)/P = ?@455)

From (4.1) we have

- £ : _ -7 —
@10 Flgyd,e)=-c 2y (5, AL, c)[o?/oﬂ/n‘yz/;(/o(_p);ﬁ%)/_
The last derivative herein satisfies (4.4a) with n = 1, which implies

[J/cﬁ/’-’gj E(P/‘ﬁ);/“)?—zs)/f,:o =

-

=<5 2 [ol5 gl ) g le )] Floige)«1%c )
; /

(4.11)
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where for dimensional reasons /fj can only occur as indicated. For

-

regularity reasons, /" must be a power series in its first argument.

The l.h.s. in (4.11) is a renormalized and, due to £ >0, finite (i.e.

not IR-divergent) quantity. (4.3) is then applicable and implies that /EkﬁIQL)
must actually be independent of its first argument, such that é > 0

yields ~ (*,€)=7. (4.9-10) then yield, with (4.8b)

Ip A2
a2 [/ %] 7], (427, 2p, e:)/p__ﬁ = exp/s /o(tp/z,c)"gf/z_; e)]_
2

In the analogous way, one derives

(4.13) 7:15’/090‘7; Y 5):
T A~

- -£
¢ ?/?@45‘8) exp[éf/o/f/}/éf/—'ry/é:/‘/—.
o .

From these relatioms with (4.1) and (4.8) fecllows

7
o 16ay LW exp[-ﬁfo/gy"/b/‘f ) Vs e)] E('ﬂ/—p)./«, g,g)f /
0 /

P =

I

Y

g
G.160) exp[-u [oAF SlGIe) T giG ) ] T 0000 i, T8 ) =
(4]

=-cufarg,e)
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Comparison with (3.7) leads to the identification

e
(5.15) ex/o[—i’nafofﬁf/;(ﬁiz/"’?‘/?'ﬁs/]/j//‘?”);//?_jg/:

:C([fn)//q‘ﬁ?/j:c},z)

and finally, with (4.1) and (4.8}, to

(4.16a) E//fn),-/'zy,e):_23/?y/x'fa)ﬂ§5,(‘?2q) G £)
; Tov

where

W gy = A F g

and

A
(4.16¢) Zﬁ /9&/11‘?5),— exp [~ 9 jf/o//fﬂ(f;i‘_)"’?/z‘, 227
. )

This shows that the é;- ~function (4.7) is identical with the one in

(3.2b) and also yields an expression for g?;in (3.1) and (3.4).

The formulae (4£.12) and (4.13) allow the functions /af',ﬁ) and 274, 81)
to be introduced without any reference to renormalization, but only to

regularization, and may even be useful for computation of these functions.
They also show directly the dependence of these functions on the manner of

regularization, which means that the é-parametrization of the renormalized
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functions is regularization dependent. This dependence will also persist

in the E£-*C1limit. While for & = 0 the A=+ o00o1linit is formally trivial,
cp. (3.6) and (4.3),t:€in principle, simpler) g-parametrization is not
applicable as we noted at the end of the last section; the é—parametrization,

however, is then still applicable, and from (4.6) one finds

9’/%‘?) g): Qbo—”"-{- O(‘eiZHE, E’-)

for £‘~=r0) ?70.

The definition of a renormalized @ 4 theory in 4 + £ dimensions, £< /2,

by the ansatz (4.1-3) leading to (4.4) with J-independent parametric functions
(and to a similar PDE for the 7;’3 themselves)} is due to Zinn—Justin'-/S/. While
for £ < & the construction in perturbation theory is not actually possible /6/,

A
for &£ = 0 factors [[n (A//ﬂ)] replace the square brackets in (4.2).

5. g‘: —-definition and differentiation identities

We shall find it useful to define 7:1‘; functions whose graphs are obtained

from the graphs of the 72 functions by inserting an extra vertex 0. with
i

zero momentum transfer. Thus the a; are the Fourier transforms of the

amputated one-particle-irreducible parts of the connected functions

(5.1) fo{x (/Oc.fx) ¢/x,,)~~- 95()(9_,, ))+ %o“” = G,:zc' /»\’,,---/\/9:,4; ?/M"f&'/

defined, following Zimmermann /7/, by renormalization conditions complementing

(3.7). Specifically, we consider the set of operators
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i= 1 2 3 4 5 6
0, = g B0 gt 0% SYs ¢
dimoi= 2+¢ 4+ E 4+28 B+ E 6+2¢  6+3g¢
Here
.2 y -
(5.2) CMGM4(32 = 2"2 +.€;é% , "7S'ﬁ1‘5fcn;

is the ordinary dimension; in the notation for the Oi’ we have suppressed,
besides counter terms, only dimensionless factors. We have listed only the
operators that are, for zero momentum transfer, linearly independent,

note e.g.

$°L PP -5 DB L, ($9p) <
@2

AN

o 7 G (D p2).

If we now define thé renormalized operators by minimal subtraction for £ >

sufficiently small, we may choose the renormalization conditions

(5.30) 74, (00, 3 4" F¢c )= o,

¥
(5.3) [l In*] 7, //:/79)_,- g"F ¢ )426 = oy ¢
(5:30) /. (0000, e ¢ ) = o, .y
, < P
A -
30 [2p ) Gl g ) - Ly
(5.3e) [ L] 15, (p(p)00; g.0F f//,;:a Ty 53

(530 T (000000, ™8, 5 ) = oy
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which imply that in the construction of Oi as counter;erms only

operators of the form Oj with Q) < &, are admitted. The conditions

(5.3) lead for 0<¢ <3 to unambiguous IR and UV-singularity-free functions
Z;z . We shall indicate below how to obtain formaliy exact expressions

for the Oi’ i =1,2,3 in terms of ordinary operator products, and also

how functions ZC; - , analogous to the 2::& but in the é parametrization,

<

are constructed,

First we derive the "counting identities” /8/. The generating functional

/9/ of Green's functions is

GCEI5 =

(5.4)
= D) exp
nf J O /O/ofaf'x[lfqﬁ;9¢,0¢)+‘/¢]f]
- (same with J = 0).
We perform the variable replacement @ (7¢ )P R o infinitesimal.

This yields

(5.5) O=[{dw) e*/of"f"’*[ffﬁ&g 0«9)+'J¢.7f 777
(D) (oin [69L 2 0p e |
¢ J7G) foix [33 P e TIPSO * I8 Jerpfif

- (same with J = 0)

whereby the effect of the infinitesimal change on T(B)nas cancelled

out. (5.5) can be rewritten

(5.6) aGlI] + J[SSI]CLI) —a GFOR =0



_]7_

whereby A C;fi[} is the connected part induced by a certain
infinitesimal change of the Lagrange function, for fixed J, evaluated
by Schwinger's action principle. Going over to one-particie-irreducible
functions by standard formulae /9/ transforms (5.6) into the relation

for the generating functional of VFs
alfocf - X[ ] Torf = 0

or, for the VFs themselves, using (1.1) and (3.4),

ﬂgfffn)}/(,,*g?,)g/:

: o
.7y ((fd*[‘f_% BT+ APD)P —22 700 BT _
- f‘z 2’3 M&j ¢Z.-7 ¢“—//01/‘“" ¢f\.//02n)) >/0f"0pey~
{.

6
_ -
S el A2 ) T (o), g5 c).

T

Note that the sum herein goes over all six 0i rather than only the
first four, since the renormalized operators involve all six formal

expressions Oi as counter terms. Dimension counting gives

. . ~-£ + € ~ofimer O
OB Clget Ao )e 4T g iy, )

From (3.7}, (5.2-3) and (5.7) follows

5.9 e, =0 | e = ¢ y 63z, e)= _9,.,
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The expressions for the e:s i=4,5,6, obtained from (5.7-9) and
(5.2-3), in terms of higher 7; functions and their derivatives
at zero momentum are unilluminating and invelve, for €£ 2,

delicate cancellations of IR divergences. That all e, are IR and

UV divergence-free for 0 < £ <3 follows, however, directly from (5.7)

by solving it for the e. at six sets of generic momenta.
i

The Schwinger action principle also gives

LD =) 7 /(zk,)/, gt o )=

(5.10) = ¢ /fo(k[—;-’ PLUI+ 272 L0) G 924 fo20 5 sy
~F B0, 22
4. b7/ _3//99/7/«‘82 _ 22 ¢20')/m;p_23)/o7/(7y¢,"‘-/]-
. d//&,’/‘ $//2” )) >/9fr.’)ﬁ'€r‘ ~
A -
Z,i
(s
g ?/“ df/dc/ffm)/q‘ycj
with

a0 of (guS Ae )= g T Q%'/g/u‘%gz/

From (3.7) and (5.2-3) follows

(5.12) d, =d, =0, d, = -i.
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Since d;, i = 4,5,6 and e, i = 4,5,6, both obtain in (5.10)
respectively (5.7) only contributions from the ¢5£72¢5 term, we

must have

0/‘-/9/4‘5 -fffc_) /G;/?/a“g//ffgj =

a~& . :
and evaluating the r.h.s. using (4.16b-c) and the definition (4.7a) of

5 (-, ¢/ yields

(5.13) ol-(z,e) /E (=) =-29 €T 2TV G e, £),€ ) (=456

A third insertion identity is obtained by computing

AL QAL T] (20 gac~bc =

=< ol [~ 2000 -2 P25 /D d -

(5.14)
-2 2 %
+ 1T P17 ¢_§§"3_5}-¢ 2, 2% ;g
A g . o~
~ 28 A, 25) L2 o). i) ) ST
: *
6
TE G e A T () gt )
with

_ ; Hrg— Firr -
(5.15) Ca(%&” f41£)4=/4 £ el CZQ’/?;M_/16.5/
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(3.7) and (5.2-3) yield.

(5.16) e, =c,=c, =0

and

(5.170) Ca(p g ¢ )=

A 3 — :
=g A ALLIRAT LT (o) g e )
rP=0

(5.17b) Cs/g/r—“%f c /=
= AP [T [ D62 ] Ty (plp) 00, gebe))
..

=

(5.17c) CG/?/L(*C/€ E‘.)«:"

P

A [ 047 7, (000000, g eC ).

On the other hand, from (5.14) and (5.7) follows

oo d5e) fe (gt g ) -

e A [IDAT (0 2y -2 e

&
Y
™

and evaluating the r.h.s.

(5.18) (o (z2,8) /e (z¢& ) =~ 2[7-#2"/?_/2,5), g)j R
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_ 4 -t € )
The coefficients C, ¢, (E;L/u ,/4{/ E.) in (3.5) are closely related
to expressions of the variety (5.17). To show this, we form, using again

the Schwinger action principle,

(5.19) :¢(/0{ > g .
f X/‘ZZ Z f 2 ')J/ /?/“__E/S‘—-f_

1O Sog = /
£+529

-A[cp/o?/f7[6,{5 /}/« )A? 2#‘-£5 j¢(ﬂ-) 95//02“)) .Praf’ew

where the r.h.s. is to be evaluated by analytic integration using the
Lagrangean (3.5) again. Consider, e.g., the term r = 0, s = 3. This term

is isolated by forming

A [202T 77 (000002 g€ ¢ )

(5.20) '
= ¢ 6 (G ) [N Cs, (gt ) 17T

since for these momenta, all other terms in (5.19) and all not-lowest-
-order terms in the evaluation of the matrix element do not contribute
for dimensional reasons, in view of the homogeneous propagator J'./p2 in
the analytic integrations and a simple momentumpower counting. Thus,

using (5.17¢) on the 1l.h.s. of (5.20) we have

CQ / -9/ . - -
£2[80792 [ Cpyy (2,6) 2 %€ Jon G075 2_2/£66/2,g/

and finally
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/
(5.21)  Coay (z2,¢) =

- z
= ,—c'/é'f.f/ : ,Q""; > ¢ aval cout fo/f Z_wﬁ— e/

whereby the prescription for evaluation of the integral follows from
(2.4), (3.3), and the property Cyg (Z,*’ri)a—afzg)implied by (5.17¢).

Using (5.17¢) again, (5.21) becomes

(5.22)

/ ) N
COG7 (?’/"‘-'g/jf ):/:
| | "o (000000, 5z )

= : =7 7 - )2 viaf.
T BV ) SR O T covoans gente s
\ o

where the prescription now relates to the extra IR divergences of the /,
function not cancelled out by these of the Z;waunction .-~ Similar "exact"

formulae to (5.22) can be derived for all coefficient functions in (3.5).
The relations (5.7), (5.10) and (5.14) can be written as

. é6 . '
(5.23&) Qe ¢i+ bé‘ ¢D¢ -+ (E.' gﬁf-f- O//e ¢DQ¢ = f 6’(_' CZ

<2

(5.230) O, BE+ Ly PG+ C B4 oy B = I ol O

(5.23¢) a, ¢%¢ L. PP +Cc¢ff~o/¢¢502¢: L O

Using (5.13) and (5.18) we can obtain herefrom expressions for O2 and 03
_ . o _
as linear combinations of % . PO , and ¢4 (we neglect c-number terms),

with coefficients expressible in terms of 47,5, of (1.1b) and the parametric
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. . I g, ' N
functions /2" and 7“ . 0l 1s equal to 5__22 @ “with __22 a renormalization
factor involving a parametric function /1/ not introduced here. As to the
higher operators, only the linear combination &, Oq - € 05. - 6506

can be expressed directly in terms of the ordinary operator products éZ)

¢Dw) gb{‘ ,and¢ﬁz¢.

There are analoga 61"'66 to the operators Ol°'°06’ adapted to the Zinn-Justin
parametrization using g. To define these, ome starts from an Ansatz extending
(4.1) and (4.2) to VFs containing these operator product insertions in a
natural manner. The operators so introduced are d‘efined also for £ = 0, and
they have particularly simple construction rules in perturbation theory.

(For £ = 0 and .Z=09, they are linear combinations of massless- ¢4~theory
compositeoperators as one may introduce /10/ using 't Hooft's dimensional
renormalization /11/. The g-parametrization is in this casé not identical

4 . . . . .
to the 't Hooft one of @ thecory, in fact, as mentioned in section 4, 1t

remains regularization-manner dependent.)

6. The A>eco. Timit

It should not be surprising that we cannot prove that the functions 7/;, 7/‘;"
or equivalently, f: etc., have a limitl for ~2-%o0, Even for & = 0, the
renormalizablé case, one can so far not prove removability of the cutoff

(in the 7;:’ functions) except termwise in perturbation theory. The
characteristic feature of nonrenormalizable theory is that the cutoff

cannot be removed even in perturbation theory; we can only speculate on

what the resulting theory might look like assuming the cutoff could be

removed - and this assumption necessarily leads to a description of the
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theory that is mnot (ordinary) perturbation theory. This we shall show

in this section, and will also point out some further consequences,

Consider first the Lagrangean AA of (3.5). We can write it as

a = - 2 P e ¥
6.12) £, 0P - 1: g~ tg?

=0 sy le=1

Plps
+f 217 Chrsy /?)“"‘%E; C/ (”pf"‘¢§2”y (‘?/_,g) S~7+ 2 res-2/

75 E D

with

¢
6.16) C 2(2-res )4
( ) _,ﬂgu/Z,t:)z * EfC“,.sufz,S).

Since the Feynman rules described by the first two terms of L/,( do not
involve .4 , a sufficient condition for 7;’.—7 /. at least in a certain

expansion is that 4/1 -*Lwin the sense

6.2) Livm g, (gut28s) = Chg, C€)

~Ad - 0o

which, if satisfied, would yield for the limit of (3.6)

6.3) Joy ((8n; op e8¢ )=
-z /7/« ) fy (C2n) gt )

=0

since the integer powers of ?,/o{ in (6.1a) can be absorbed in the hj,

. ‘ . . -£ . .
which are power series 1in ?/‘4 . These functions, however, involve the
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unknown constants GCpsy (’;) , with the exception of.hO = hoo of (3.6).

From (5.22) and (6.1b) we have

()= =g (60077 o “E)*Z*Z/‘:,

{(6.4) 037
ondl. cont.
s v éf:fffwl 77/00&&:29 ?/u o ) 77/00&’5&&;/« EZ/

and similar formulae can be derived for the other .C?;,, (8) functions.

These functions have & -singularities by virtue of which the £ -singularities
at rational £ in 0 <£<3 of the ho term in (6.3) are cancelled, as they

are in (3.6) for finite . Indeed, omitting the lim-sign, the & -singularities
on the r.h.s. of (6.4) are .4 -independent since there are none in the function

Cg (2, ¢ )as emphasized earlier.

To make the singularities in c.

52, (€J) more explicit, one uses the expansion

(6.5) (_’,‘6/2,5)..-: Z Cé'k (e ) Zk

=3

and splits the integration region in (5.21) into O to 1 and ! to 2z , obtaining

60‘37 f [‘2"‘ (A~ 228_7A7Cgk(’£/+

(6.6) ~=3

_£)-2-2/¢ "
4~ /9/&, “-) o 7 couy. //W /
Erom €59 g oo

7/—;/ o2200. e ) —

-7 ' -
Leg=1te (00000, g« fe))
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The Ciap (¥ ) are regular in 0 <€<3 and so is the 1 -limitand in

(6.6); the explicit &£ -singularities in (6.6) are the ones needed for
cancellation of singularities in hD or hOD and are indeed A—independent.
Since ho is independent of the manner of regularization {(cp. sect. 7 below),
the values Cex 2k -—9—)*7), A2 are regularization-

-manner independent though the functions (g fi)are not.

In (6.6) the two terms in the square bracket have separately singularities

at £= /L ’ £ the number of loops, but these cancel. Thus, for £+%,

which secures that the integration leading to the first term onm the r.h.s.

of (6.6) 1s allowed, existence of Kd/'_/:"dm 747 /00&‘&00; g’/a*&; g/)

the limitand being there free of ¢ -singularities, implies existence of
C—;—_.,,, (z). Hereby we disregard the convergence problem of the sum in (6.6)

on which we cannot say much except that at least for £ 72 there is no reason

for nonconvergence. Since similar consideraticns apply to all the C—,..su (€],

the existence of the -C—r-su (e) in (6.2) is mot only a sufficient condition

for the existence of the N

o» at least in the form (6.3), but also a necessary

one.

There is another way to arrive at the expansion (6.3), namely by reintegrating
(5.14), hereby using partial integrations and the properties of the oz, & ).
Though in this way one in principle avoids perturbation expansicns, the
conclusions concerning /; are best summarized in the quasi-perturbation

expansion (6.3). For details hereto I refer to the original paper /1/.

It is obvious that for £ = 1 or 2, (6.3) will reduce to the expansion

6.1 L ((2n); e Cg, ¢ ) =

:Z /—[M/g/a-'f)]k/_,i/[gn);?/oc‘ig) = 7 or 9

P
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where again infinitely many constants definable by'limits similar to

the one in (6.2) enter. Onme is really only interested in positive integer
£ , and it is possible to derive (6.7) directly from e.g. the integer- £

form of 124. which does involve £é.4 -terms directly. This direct deriva-

tion 1s desirable since the condition of C65?27+g existence with generic £

is for integer &£ not directly sufficient and perhaps unnecessary.

7"‘1

We will derive some consequences of the hypothesis that ‘ec does exist.

From (4.15) we learn that :iz also exists, and it will satisfy the PDE

(4.4). In the familiar way (the quite nontriviallassumptions needed hereby

are listed e.g. in /12/) one argues that, if /3(§?a€/)has a first zerc for
positive giq,(b) , the family of theories with g:-< gix,fs)‘obeys asymptotic
scale (and conformal /12/) invariance with the anomalous dimension for the

operator ol T+ 2%7’??;’(%:4 QS) . Positivity reasons (rigorous

only for integer £ ) give zr-(/ii&,(ﬁg,a £ ) > O. (That é-9 éuo(s) implies

g 0o reflects that (3.7b-c) are unadmissible for a scale invariant theory.)

In (5.14), the 1.h.s. will wvanish for A oo, Thus, because of (5.18) and
(5.13), the contributions from the i = 4,5,6 terms on the r.h.s. of (5.7)
and (5.10) will vanish for Z-» oo if only gf?’%ﬂﬁhef,f)is for large =
bounded away from —-1. It follows that 7;;2_and 7:Zg.wi11 exist, and (5.7)
and (5.10) will hold with the i = 4,5,6 terms omitted i.e. as if the theory

were unregularized.

7. Discussion

Renormalizable theories, defined by perturbation theory, have the following

features
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a) they proceed with a finite number of expansion parameters

b) all terms in the expansion have, within logarithms, the same large-
momenta behaviour (om and off the mass shell, for gauge theories in

renormalizable gauges)

¢) it is not possible, for given "particle species”, to increase the

number of parameters without violating b)

d) unitarity and causality are formally satisfied (in terms of validity

of e.g. GLZ /14/ or Epstein-Glaser /15/ systems )

e) these theories can be obtained from local Lagrangeans using a cutoff

and letting A1 -7 09 termwise in the perturbation expansions.

In the construction of ;:; in the form (6.3) a), d), and e) in a modified

way are satisfied, while b) i1s wviolated and c¢), therefore, empty. The same

will hold for integer—& theory in the form (6.7).

Ordinary BPHZ renormalization theory (see Osterwalder's lecture for

references) or the equivalent Epstein—Glaser construction /15/ will lead

to theories satisfying d) above but neither e) nor the, in our approach

closely related, a).

One may impose a) also by demanding that in the BPHZ comstruction, 2%/1(..5

remain the only expansion parameter. This is equivalent toc replace the
é:kng (€) that appear in the .Z-» &0 limit of (6.la) by functions

of € that have the & -singularities needed for cancellation of such
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singularities in the /:; but with arbitrary finite parts (e.g., for
62r37 (€ ) this means keeping the singularities on the r.h.s. of (6.6)

but changing the nomsingular part arbitrarily), and is effectively the

proposal of Blokhintsev, Efremov, and Shirkov /16/. What is being gained

by satisfying besides a) also e), as we assume to be possible?

Loss of b), as is almost certain for expansions (6.3) and (6.7), will

lead to results of no direct use, since higher—order terms will increase,
by powers, more and more strongly in momentum space, and it is only at
large momenta 2,//% g?"dygthat the characterizing features of the theory
can show themselves at all. Thus, a resummation will be necessary to bring

that increase under control. The less there are undetermined coefficients

in expansions such as (6.3) or (6.7), the better are the chances for imaginable

resummation procedures to be successful.

A particular case in point is unitarity. While a general nonrenormalizable
BPHZ or Epstein-Glaser theory has no reason to be free of indefinite metrik
(if one resums such as to obtain something meaningful at all), we believe
the theory gotten by the .4—» 00 process has a better chance since formally
it then has an ordinary (i.e. unregularized) Lagrangean. This latter claim
is somewhat substantiated by the differential relations discussed at the end
of section 6, which for /;: take the form they would for an unregularized

o
4+ g Lagrangean.

The big problem is, of course, resummation, and it has been attacked by
Parisi /17/ from an entirely different starting point. His proposals,

which T shall not discuss here, rest on anomalous dimensions; they are
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mainly made for theories of the class conside;ed here, but with the
condition that the renormalizable (€= 0) theory be "asymptotically

free". It is indeed likely that for theories of this type, Parisi's

method (cp. also /18/) might lead more easily to physically meaningful R
approximations than the detour we are taking, of which the "resummation".
part is nonexisting still, It ought to lead also to anomalous dimensions,

as discussed already in section 6. - The most radical way to proceed is,

of course, to start directly from anomalous dimensions and to comstruct
directly the scale - andconformal invariant theory {cp. /19/ and references
therein); the é; < fia,(bjtheory is then the preasymptotic one /12/ hereto,
In contrast, the present approach is relatively old-fashioned and elucidates
why nonrenormalizable theories are not renormalizable in ordinary perturbation
theory; it is akin to T.D. Lee's methods /20/ of "summing leading terms',

which it confirms as far as these have been developed.

There is the question of ambiguities in our method. The sole ambiguity so

far lies in the choice of regularization in (1.la). For instance, replacing

<
4+A-9"g vy /7 (7+ Q-ZA_ZD) would lead for A<evto a

=7

dependence of all functions on R and the ratios of the &, and this
dependence might persist for A -»eo0 | (E.g., for £ = 0 it leads to

a different g-parametrizations of the same family of theories as menticned
in sects. 4 and 5, the g-parametrization not being available). At present
we have no clue as to whether this dependence would lead to different

theories satigfying the conditions (3.7).

The class of theories to which our method is, in principle, applicable

was described in sect. 1. A condition is that the continuous increase of
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dimension does not pose difficulties, as e.g. the well-known gg; one

in spinor theories. In that case, one could still treat the thebr&

directly at positive-~integer £ as mentioned in sect. 6, whereby e.g.

the gz; problem is avoided. (This was pointed out to the author by

P.K. Mitter.) Theories of interest are mainly four-fermion theories in

four dimension, and perhaps, for study purposes, 956 theory, renormalizable
in three dimensions, instead in four dimensions. In any case, the next, and
still formal, step will be to develop the method directly for integer space-

~time dimension.
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