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Abstract

We have calculated the pey form factors in the timelike region from
simple loop diagrams. The results for the cross section et man 2n”
depend crucially on the model for the pion form factor. If pe - inter-
mediate states are neglected there, the calculated cross sections fall’
much below the data., If these states are included and the existence of

a p'-meson is assumed, the data are explained correctly.



I. Introduction

. 1,2 . . .
In two experiments (1,2) at ADONE, Frascati, a large cross section 1in

the order of 20 nb has been found for the reaction
e+e_ + 2ﬂ+2ﬂ_ (1.1}

+ = . .
around YS= 1.5 GeV (YS=e e c.m.—energy). A similar enhancement is

established in the process
+ -
Yp > 27 2w p (1.2)

. 3 P ,
at 9.3 GeV photon enexgy ( ). Up to now it is not completely evident that
the ohserved s-behaviour is due to an existence of a p'rescnance. The 7w—
phase shift analysis is still ambiguous in this region, and the electro-

(5)

magnetic pion form factor is, because of lack of statistics , not determined

well enough there to draw conclusions about possible resonant behaviour,
A nonresonant interpretation of the observed peak in (1.1) as due to the 0%
channel coupled to the tail of the p-meson has been given by Kramer and
Hirshfeld (6), where one of the ype coupling constants is taken, after a

("

Vector Dominance extrapoclation, from calculations of the eyy-vertex .

Assuming that the reaction (l.1) is indeed dominated by the quasi two body

reaction

e+e_ > pos . (1.3)




it is natural to try to calculate the corresponding amplitudes from
triangle diagrams with low mass intermediate particles, such as in

fig., la) and 1b). Here the blobs denote renormalized vertex functions,
and the propagators are taken as dressed ones. The electromagnetic Tw-
and mw-vertices of course contain the p—pole. Recently &) we have worked
out a field theoretic model for these vertices, which also determines

the pion propagator via the Ward identity+). From this model also the
pam vertex and the pTw vertex can be derived, which appear in fig, 1,

The enw vertex however is unknown except onshell (as determined by

B crr ) and we have to make simple guesses. We note that due to the

ponm and emn vertex functions the triangle diagrams are not divergent.

The diagram la) taken alone would not lead to a conserved current, and

it must be supplemented by diagrams where the photon couples not to pions.
For a p-meson without internal structure (with a constant pmm vertex) a
contact term is needed as in QED for scalar mesons, If one adopts a Bethe-
Salpeter model of the ladder type as in I, one has to couple the photon to
the internal lines of the p~constituents, which are nucleon lines in our
model. Since the nucleons are not pointlike, such quasi contact diagrams
are s-dependent, i.e, have form factors, in agreement with recent

(9

observation . We have analyzed the s—dependence of such diagrams
(see fig. in sect. III) and then replaced it by simpler diagrams. The

overall normalization of the contact term is then derived from the required

*) Ref, (8) will be quoted as I henceforth.



absence of kinematical singularities of one form factor in the

(10)

following way. According to Kramer and Walsh we write for

the pe current matrix element

> rw A _ .
<fzgﬁ£|4/})lo> -§£r(s)(§~s-7ﬂe.q)
(L) ¥ (].4)
¥ gsy (8)(%&6'7"16%6 -9 )

Here @M

(¢) four momentum, According to perturbation theory the form factors

denotes the p polarisation vector and q)“ (ﬁ‘/‘)the photon

1 2 . , . - .
F(Ei(s) and F(ei(s) are free of kinematical singularities, since the
elimination of a third form factor via current conservation does not
create new singularities. We alternatively can express the current matrix

element by helieity amplitudes ’; (s )
i 4

\ 1%
<&J‘!’\5”&‘ ,4,\3,’°> B :23’,\5 (95,19,-#)) /:13 (5) (1.3)

I3
with the p helicity Ap= 0,1 , and the p angles \9) (p are taken relative
(

to the beam axis. Then from the relations 10) (m = p-mass = g-mass)

@) T s-am? [ M
B (s) » shm [ 2 L= 2 ’o“"’],
(1.6)

() 2 —
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one sees that

(1.7)

!
Q

7 (o)

We shall achieve this by the normalization of the contact diagram,

In I we were restricted in the s~region, where the wn-Bethe-Salpeter
equation could be solved numerically, Tﬁis came through the anomalous
singularities in the dispersion representation of pe~loops with a nn~
state in the t-channel., Consequently we had to extrapolate the pion form
factor Fﬂ(s) with a generalized effective range expansion into the time-
like region with s> mpz. The pe~form factors however have more complicated
analytic properties than Fﬂ(s) due to the large p—~ and e-masses., These
lead both to anomalous thresholds *) in s and to integration contour
distortions in the momentum integrals corresponding to fig. ia) and 1b).

We have eliminated these difficulties by making the external p- and e-masses
s dependent, such that they agree at a point in the physical region s> 4 m
with the physical ones. It is easy to choose the s-dependence such that no
anomalous cuts in s appear, and the extrapolation in s is not too difficult.
The calculated cross section for the process (1.3) depends on our model for
Fﬂ(s). If no pe-loops are included in F“(s), i.e. if pe-unitarity is not
taken into account, cur extrapclated form factors are much too small to
account for the experimental results. If however the pe loops are included,

the form factors are much larger than in the former case., The extrapolated

values are however rather unstable to technical details of the extrapolation,

+)

An extensive discussion of the analytie structure of EYS) has been

given by G. Kdépp (tc be published)



/
If we impose, in the extrapolation, the existence of a @ resonance
‘with mj" = 1600 MeV and l;, = 400 MeV, we achieve stability of the

extrapolation and agreement with the data within the (large) experimental

errers.

Sect, 2 contains the formulas corresponding to the loops of fig, la) and
1b). In sect. 3 we describe the evaluation of the contact term, and the

results for the @€ form factors.are displayed in sect. 4. Conclusions

are drawn in sect. 5.

II. The TF~ and the Wi -loops

In this section we consider the contribution of the diagrams Fig. la)

. . L L
and 1b) to the y&a" helicity amplitudes, which we call I:fs) and f: (s).
1f we denote, more generally, the two particle irreducible tramsition
amplitudes (or kernels) in the I = J = | state for TT-2 P& and 7nW -» ge&

2 2 2 2
by Mrr(k] ,k2 ,AS) and Mw(k] ,k2 ,,\s) resp., we have

L + i . v oa
’:y () = #—;!1-'3 /dmd %oi-/dé gJ[M’ (4, ﬁ,,l_, )Arfﬁ,‘) A,.('F‘-L)X

x 2/RIE(s b R.) +
(z.1)

e (82 82 39) L R)BL08 RIS Ep AR )]

The kinematics is as follows +):
_ VS L4 A we
1&.2“' (o) = A T (2.2)

£, = A
Apo = Aoy - Ve
IR | = IR

Throughout we put

+)




'
By Zﬁk(kz) we denote the dressed pion propagator taken from I, and the
[}
scalar part of the W -propagator st(kz) is taken equal to the pion
2.2 2
| ,k2 ) and Fﬂwa‘ (s,kl .

from I, The integration contour for k and cose may in fact be more com-

propagator, The form factors Ew(s,k kzz) also follow

plicated than indicated in (2.1) (see sect. 3). If the kernels are
approximated by one pion exchange, we find, including a factor 2 for two

possible diagrams of fig., la:

MT(&:; é:’,)‘f,s O) = 4V5gfmrjg”[§i /'é:/(@;(%hﬁ )t

(2.3)

*28, (4 e 14,1 8 (6, 8)]

1

My (8] A7 1) H0 Qore Geen 114/ (@ (4, 4,)-

. (2.4)
- @4, 4))
Mo (4 4 2,:0) - 2 B orin Jorn 214,1(Q4, 4,)-
Gk k) Y
(8 ) - B2 g LIRS
w 2.

- @(ﬁf,}lg))"lg;’/ @:(&U%)ﬁ_l"&ﬁ“”?]

We have abbreviated

+ A

G (4, 4,) < - £ Joz I (Ch-A)IL R A )[R ) @

-1

2 (& K.
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For pointlike vertices and a free propagator, < /&,I/ E{g/ Q(, (&,, 153)
reduces to a Legendre function of second kind. The frﬂ'— and the T«

vertex functions follow from our model I (they are roughly equal),

whereas the ENT -vertex function is unknown. We assume it to be

equal to [;(k] ,ks) .

As discussed in I, our method for solving the BSE for P_;‘(s) works only

in the region (/u= pion mass)
(VS -pu)" & m e ut (2.8)

since for larger values of s the dispersion relations for the P€-loop
inside the pion f£.f. would develop anomalous thresholds. Therefore
we again have to calculate the helicity amplitudes r:lfs) in the same
region with high accuracy and extrapolate them to the physical region
$ > 4m". In the region (2.8) however the sinpularities of the pion
propagator in (2.3) ~ (2.6) lead to a logarithmic singularity in the

integration variable of at

dim X + hrpute G-t (2.9)
o7 i A Vs

These singularities require a deformation of the k-integration into the

+
complex plane ) in the unphysical region (2.8). We have circumvented this

) These difficulties are intimately connected with the anomalous singularities

€}
of the form factors }:}EJ’ (-S‘) as functions of s,



difficulty by making the external f and £ mass s~dependent:
. T
m ¢ - ma’(s) = :53_ (rmﬂ.z/,.)--z/» (2.10)
(=
. 2
with Sp > 4&m

Thus our extrapolated amplitudes agree only at the point s =Sp with
the physical ones. By this substitution the anomalous thresholds disappear,

and no other singularities are introduced, as it is evident from the

(11)

Nakanishi representation of the vertex with two equal masses:

4
Fs,m) < [Jop fon —ELEEL— @

where #/a,'“ =, I<°(ﬁ) -3 3/(,.," . With the replacement (2.10) only

the normal cut for Sgé/uf is present,

Before discussing our results, we have to explain the calculation of the

contact term in the next section.

IITI. The contact term

As stated in the introduction, the magnitude of the contact term (i.e. thuse
diagrams necessary to restore gauge invariance) is controlled by (1.7) which
follows from current conservation. Therefore we have to calculate the pion

loop contribution (2.1) at s = o with the physical external mass m, The



correct analytic continuation of (2.1) from the physical region s 2 4 m2

requires a deformation of the k-integration contour. Otherwise one of

the singularities of the exchanged pion (2.9) will cross the cos & —contour
for some k > o and will not return for k- vo{we do not consider here the
necessary distortions of the cos ®& =contour due to the propagator poles

in the intermediate pion states). A sufficient deformation is shown in

fig, 2. The departure of the k-contour from the imaginary axis is at

. - o
£ = B = o~ L '1‘1’!,7/-" (3.1

At this value, for s = o, the singularity (2.9) reaches the real o -axis

and is stationary. In order to make the cos ® -integration harmless, we

have expanded 6(k|,kg ) into Gegenbauer polynomials in cos o , whereby

(12) of the

only the lowest term will survive because of the 0{4)-symmetry
Bethe-Salpeter equation at s = o. Thus the calculation of the pion triangle

diagram at s = o is feasable and the normalization of the contact term is fixed.

For the s—dependence of the contact term we have to rely on Feynman diagram
considerations., It is physically clear that the contact term arises from a
coupling of the photon to charged constituents of the @- and & -meson other
than. pions. If we rely on our resonance model I for the ¢ , the nucleon
current will give the most important contribution. The photon coupling to

a nucleon running parallel to the pioms leads to the triangle diagram of
fig. 3a), whereas the coupling to an exchanged nucleon gives the complicated
structure of fig., 3b).The nucleon vertices can be taken as dressed ones,

since we are working with dressed propagators throughout, but we only consider




the X;‘—coupling of the photon. The ratio of the two diagrams is
impossible to estimate, since the coupling constant 3£Nﬁ'is poorly
known (13), and the calculation of fig, 3b)with vertex corrections
etc. is too complicated, We have concentrated our interest on this
latter diagram since in view of the large nucleon mass and the small
nucleon isovector charge we think it unlikely that diagram 3a) can
compensate the contribution of ﬁ?(s = o) of diagram la). An analysis

. + 2 . . \
of the spin traces also shows that for é-(A M” the main contribution

with respect to the spin structure is, for both diagrams, of the form

<%3,%&!c{%(0)}o> ~ e/f.{'(.s) (3.1

in the notion of (i.4), Therefore the neglection of diagram 3a) will not
influence the ratio of [38) and EZsJ very much, We have analysed the
s-dependence of fig, 3b and its average off-shell momentum of the nucleons,
including all spin terms, but with free propagators and bare couplings except
for the ‘yNﬁ vertex. This was done with Feynman parameters and numerical
integrations, The gNﬁ vertex was simulated by differentiation with respect

to adjacent nucleon masses. We found, besides the dominance of the spin
structure (3.1), that the energy dependence introduced by the nucleon spin
terms is less than 10 7 between s = o and s = 4 Mz. We consequently replaced
the diagram 3b by the simpler structure of fig. 4a) with scalar particles, the
3{? spin structure being given by (3.1). The value of the mass Mczx,S M2
ensures that the average nucleon off-shell momentum is the same as in fig. 3b).
This is necessary to get the correct nucleon off-shell form factor. We have

taken into account only the pion current contribution to the nucleon form

factor. This leads to the diagram of fig. 4b with a subtraction for the

+) P] & nucleon Mass
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nucleon vertex:

c Z-;(E‘) / . ; 3 c PR ! .
G (8) = 25 /d‘““d'wﬁ“i/"" (&, 2 )8 (&)

-1

N A;fﬁ,t)/gf/t '(5, ﬁ:{ &:) (3.2)

f‘:“hfen

Mo (26) Qu( B b, MBI RIE,,,, (o847 |

1 ‘Iuhn“fn, ’

Here we have for the scalar box diagram

[TCB 8 2:1) = g, Jotens 4444/3/017 928y (R7) A (72)

(3.3)
x QO(B,J%&M:)CZ(RI&”M‘),
MC. ) kY i - ___\/E_ < 2 7 i (3-4)
(&,}A}Ay-o) e TT(AL A 220 )
+4
— . , _ .
QR ke, M) - - 2 Jde o (BaI)B(r 4) [ 4,). ©
-
_ / ;
The propagators (th(T{} and gh{(;#; are dressed propagators with
masses M and MC resp. The kinematics is
?40(30) = 7 sz@ - g ef’ (3.6)

VYR Ealt




The amplitude M:ub( Af) entering the subtraction term is obtained
from (3.3) by omitting ao(pl’k!’Mz)' The renormalization constant’

2 . .
Zi(ﬁ ) and the subtraction momentum K are the same as in I.

The coupling constant g, is now determined by (see (1.7))

<

i’ L(o) + (0 ) = .0 , _ (3.7)

4 1

1

IV. Extrapolation into the physical region and numerical results

e have worked with the following set of coupling constants:

* 1
derr | 4.5 and Genor . 2.4 . (4,1)
a4m L

The latter value corresponds to [:ﬁﬁ = 500 MeV for mg = 700 MeV.

The coupling constant gpﬂm is taken from the width of the w as (14)
E S
dewn 4308 . 4.2)
47

The sign of gpwﬂ with respect to the other coupling comstants is determined
. , 2 R

by the consideration, that for s = mp and vanishing ¢ four momentum the €

acts as an mass insertion into positive definite ‘f self energy diagrams.

Thus the s-wave contributions from la) and lb}must have the same Sighe.

In the actual calculations we have multiplied the diagram fa) by 3/2



to account for intermediate KK pairs, and the diagram 1b) by 2 for the

various KK¥ states. We have also given the exchanged pion an effective
-2

mass of/u. = 3}!? as an average between the 7 and K-mass. Our results

are not very semsitive with respect to this value.

As stated in sect. 2, we have to extrapolate the amplitudes [:?3) /VST'

and I:'!?s) with variable mass m{s) from the interval .-m;ﬁ-,s &m‘; to

the physical region. We shall do this with a generalized effective range
expansion as in I. Héwever, the extrapolation is complicated by the fact

that the pion loop fig. la) leads to a very strong variation in s which

is not due to the p-pole. This is shown in fig. 5, where the ratio of c&)/};(S)
is displayed. Clearly simple vector meson dominance considerations (6)
will not work in this model. In order to facilitate the extrapolation,

- -p
we have introduced comparison amplitudes f:(s) and i:(s) , which are

obtained from (2.1) by the replacements

#*- 4 M
+r o aAME

Rls k) h) = e N4 #%e )

Erwg(sf’f*:&:) = 1 b _'f'__’__l*_@_/(,,_w%afq‘) (4.3)

[ N ¥ PL
with Fr o 2"— /'&:1‘- %:} - :65; . (4.4)

These comparison amplitudes can be calculated in the physical region s >4m
L
by careful numerical integration of (2.1), and they match the ratios /:' (5)/5(.5)

rather well., The form (4.3) has been choosen to simulate Fﬂ(o,klz,kzz)

closely.



s -

We now can extrapolate the helicity amplitudes from the interval

-q»§ ¢ § & 4v§ with the ansatz

Ne, Zn Mo e e
£ Z bk L)+ D)/ |
NOY "‘?‘;a ~ 5 (@:5)

4a A, z‘_’ b &, Lk, e b A (h)

41:

< L ¢
with corresponding forms for [: (s) (:1(6) and Cﬂ(’§j.

2

We have set

&

T

b, = 4 [s- ( poem,)¥ (4.6)

i
+jen
!

b

i

Jra) s 4 oo 2Bz W
‘ 2h - W-ig

1 T
With Na = Nb & Nb = Nc = 2 (11 free parameters) we could fit 14 data

points with a relative accuracy better than 4.10“6. The extrapolated
amplitudes did not change by more than 15 % in the region ¥s< 2 Gev

t
if one of the Na o Nb was changed by one (with an important exception -

to be explained below). We shall discuss the cross section

f;" ot NS 4m’ (I /;:.(s)+ l:'c(wﬁ 2 IC’an[‘"rf)}l) (4.7)

ete- —b‘gc=

for two versions for the pion form factor F“(s). The first one, which is

version B of I, has no contributions from long range pion exchange forces



- 16 -

due to the pe-channel. It gives slightly low values for Fﬂ(s) in
the region s > | GeVz. The second one is essentially the version

2 2

C of I, but with g2 g~ f1én” = 5,23 instead of 3.74 as in I, In
pam Senw

. 2 ,
the cross section formula (4.7) we have smeared m over the p— and e-width,

. , 2 . .
1) We show in fig, 6 the results for - o + - of the first version as
3 e e ¥pe
a broken line and compare them with the data of refs. () and (2). It 1is
evident that the theoretical expectation is too low by an order of magnitude,
L] l * 1’ I3 .
There is no free parameter to adjust except 3snﬂ/hﬂ , which is already
close to its upper limit., The s-behaviour is not compatible with experiment,

(6)

These findings have to be contrasted to those of ref, , where a much

larger cross section followed from a VDM extrapolation. This extrapolation

is probab1§ not justified in view of fig. 5. It is interesting to notice that
the contact helicity amplitudes C:;;)/Vg' and Cﬁ;) are roughly proportional

to Fﬂ(s). Their contribution reduces the amplitudes in the physical region by

1/5. The whole situation changes drastically when we turn to version C.

2) The helicity amplitudes of the second version do not differ very much
from the previous case in the region -GWk’g s ¢ LM; , since the pion vertex
Fw(s,klz,kzz) is only slightly different, The extrapolated values for

/";7 ‘Zs)/ﬁ and /:E;) however become very unstable with respect to Na. . 'Nb"
and sometimes a pole develops. Optimistically one can interpret this in the
sense that our model favours a resonance around 2 GeV which couples strongly
to pe but weakly to 77, since Fﬂ(s) is stable and shows no bump (see 1). The
position of such a resonance cannot be taken from our extrapolation. We

therefore imgose the existence of the p' with (15) mp' = 1600 MeV and

[, = 400 MeV and extrapolate the amplitude
s

[7Gs) - (s-50 vy b £ (4))]T5 -5
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: L
and similarly for [:(5), in the notion of (4.6), with s, = 2.44 GeV2

2 . .
and y = 0.35 GeV' . The extrapolations become now very stable agaimn,

and we obtain the full curve in fig. 6 for 2—0 + - . This curve is
3 e e e

in reasonable agreement with the data, but possibly somewhat low above
the p'. Thus, if we disregard our indications for the existence of a p!

based on the extrapolation, we are able to calculate the product of
(Ag) |

oo s;,
occurrence of a second Breit-Wigner pole in the amplitudes is assumed.

coupling constants from simple loop diagrams, once the

Finally we can determine the angular distribution of the @ with respect

- , .
to the e e beam axis as given by

ogg& - ot (A4 b wdtd)
with b = (Gl [T .
[ Do) s [Desol
We find at s = m,‘s";
b = 0.08

i.e, almost complete isotropy.

V. Conclusions

(4.9)
(4.10)
(4.11)

We have calculated two loop diagrams in which the Q& state is connected

to the wk and the §uW statesvia one pion exchange. We gave arguments that

the diagrams which are necessary to restore gauge invariance have large

internal masses, and they are roughly proportional to Fﬁ(s). The loops with



pion exchange are not proportional to Ef(s), i.e. a simple ¢ -pole

will not adequately describe their s-dependence. If we extrapolate the
amplitudes without intermediate @& loops into the physical region, the
storage ring data for the process e+e_->2n+zw“ cannot be explained. If

the P& loops are included in FF(S,RIZ,kzz) and if we impose a Breit-

’ in the extrapolation function, we can explain

Wigner pole for the ¢
the above cross section within the still large experimental uncertainties,
These PE loops lead also both to distortion of the mr p~wave effective
range plot and to deviations of Fp(s) from the © pole formula above | GeV
as discussed in I. The evidence for a gf from our model of course cannot

be convincing., Better techniques for solving the Bethe-Salpeter equation

directly at large s are urgently needed.

Our picture for the '9' would correspond to a Q¢ scattering state with
a mixture of s— and d~waves. The s-wave part, i1.e. a ¢ plus something
radially symmetric with the quantum numbers of the vacuum, has to be

(16)

confronted with the quark model interpretation of the S)'as a radial
excitation of the @ . The difference is that in our model the fermion—
antifermion triplet s-wave content of the @ has no nodes in its radial
wavefunctions, We do not know a decisive test between these pictures.

Our cross sections without a ¢ are considerably smaller than those cbtained
by G. Képp (unpublished) and by a recent "sideﬁise" dispersion theoretic
treatment by G. Kramer, G. Schierholz and K. Sundermeyer (}7). This difference

may be due to the presence of vertex functions which are necessary in our

approach to avoid divergences.
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Figure Captions

Fig. 1 a) Pion current contribution to the ¢ transition form factors.
2 2 . .
F‘?r (s,k; ,k2 ) denotes the renormalized electromagnetic off-shell

plion vertex,

b) Omega-pion current contribution to the @& transition form factors.

{s,k 2

F'tmg | ,k22) denotes the off-shell nwx-vertex.

Fig., 2 The broken line indicates a sufficient deformation of the

k-integration contour of eq. (2.1). The point B is at k cet VM‘—/A‘ .
Fig. 3 a) Contact term diagram arising from the photon coupling to
constituent nucleons.
b) contact term diagram arising from the photon coupling to

exchanged nucleons,

Fig. 4 a) Simplified diagram for the contact term .

b) Resolution of the nucleon vertex in the diagram a).
L
Fig., 5 The s-behaviour of Re(r:‘ (5)/F;CS)).

Fig. b Comparison of version | (dashed line) and version 2 {full line)

with the data of ref, “)G)and ref. (2)(%-), The curves show %‘-6;*2_—’9“,
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