DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

DESY 75/46 November 1975

Identification of a Possible $\chi(3.55)$

bу

Dental and H. Greeking

HAMBURG 5.2 . NOTKESTIEG 1

To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX, send them to the following address (if possible by air mail):

DESY Bibliothek 2 Hamburg 52 Notkestieg 1 Germany Identification of a Possible X(3.55)

bу

J. Daboul * and H. Krasemann

Deutsches Elektronen-Synchrotron DESY, Hamburg

Abstract

We argue in favor of an identification of the χ (3.55) as the paracharmonium $2^1 S_o$, η_c' . We predict the masses of the charmonium 2^{++} and 1^{+-} states and give estimates for the radiative decays of the ψ' via η_c and η_c' .

^{*} Minerva Fellow, permanent address: Physics Department, Ben Gurion University of Negev, Beer Sheva, Israel.

Studying the $\psi' \to \psi + 2\gamma$ chain decays, the DASP Collaboration 1 at DESY detected two narrow intermediate states, denoted as P_c , with masses of 3.41 (or 3.35) and 3.51 (or 3.26) GeV. The LBL-Group at SLAC 2 , measuring the decays $\psi' \to \gamma$ + hadrons, found two resonances in the same mass region, a narrow one at 3.41 GeV and a broader one at 3.53 $^{\frac{1}{2}}$.02 GeV, denoted as χ . The existence of such intermediate states was predicted by the charmonium picture 3 . It is plausible to assume that the $\chi(3.41)$ and the $P_c(3.41)$ are identical. If the mass of the second P_c is 3.26 GeV, we would have the three states 3.26, 3.41 and 3.53 GeV. But the more attractive alternative is, that the broad bump $\chi(3.53)$ is a superposition of two narrow resonances, the $P_c(3.51)$ and a new narrow resonance $\chi(3.55)^{2/4}$.

Within the charmonium model it is almost established that the P_c/χ (3.41) and the P_c/χ (3.51) are the $j^{PC}=0^{++}$ and the $j^{PC}=1^{++}$ cc states 2^{++} . So far the possible χ (3.55) has been presumed to be the $j^{PC}=2^{++}$ state, expected roughly at this mass 3^{-} .

In this letter we want to argue in favor of an identification of the χ (3.55) as the paracharmonium $2^1 S_o$ state γ_c . The χ (3.55) would then be the radial excitation of the already observed $1^1 S_o$ state γ_c (2.8) 5 :

i) Assuming that the S-wave ortho-para splitting can be described mainly by a term in the Hamiltonian 6

$$c \delta^{3}(\vec{r}_{1} - \vec{r}_{2}) \vec{s}_{1} \cdot \vec{s}_{2} + V_{T} \cdot S_{42} \qquad j \quad V_{\tau} \ll c \tag{1}$$

with the constant c, we are led to the following ratio

$$\frac{M(2^{3}s) - M(2^{1}s)}{M(1^{3}s) - M(1^{1}s)} \approx \left| \frac{\psi(2^{3}s; r=0)}{\psi(1^{3}s; r=0)} \right|^{2} = \left(\frac{3.7}{3.1} \right)^{2} \frac{\sqrt{\ell^{2}\ell^{2}} (\psi')}{\sqrt{\ell^{2}\ell^{2}} (\psi')} = 0.65 \quad (2)$$

where the last equality follows from the experimental values $\frac{7}{(\psi^+)^-}$ (ψ^-) = 4.8 keV and $\int_{\psi^+} (\psi^-)^- = 2.2$ keV. Using (2) and taking $M(\psi) - M(\psi_c) = 0.3$ GeV as input, we obtain

$$M(\eta_c') = M(\psi') - 0.65 \cdot 0.3 \text{ GeV} = 3.5 \text{ GeV}$$
 (3)

In view of the crude estimate it is not unreasonable to identify the χ (3.55) with the η_c '.

ii) Our identification would imply that the DASP Group cannot observe the χ (3.55) in the decay $\psi' \to \psi + 2\gamma$. The radiative decay of $\gamma' \to \psi + \gamma'$ is highly suppressed, since this would be a magnetic dipole transition between orthogonal wave functions. In contrast, an identification of χ (3.55) as 2^{++} meson would lead to a ratio of $\frac{(\psi' \to 2^{++} + \gamma')}{(\psi' \to 1^{++} + \gamma')} = \frac{5}{3} \left(\frac{k}{k}\right)^3 \approx 1$ and together with the assumption of comparable branching ratios $\chi' \to \psi' + \chi' \to$

iii) The ratio of the P level splittings

$$R_{4} := \frac{M(2^{++}) - M(1^{++})}{M(1^{++}) - M(0^{++})}$$
(4)

depends on the

strength of the tensor forces. Without tensor forces, i.e. $V_{\tau} = 0$ in (1), the pure \vec{LS} term gives $R_1 = 2$. If tensor forces are deduced from Coulomb-like potentials, similar to the Breit approximation in electrodynamics, one obtains $R_1 = 0.8$ as in the positronium. This lower bound would give a mass of 3.59 GeV for the 2^{++} , which would still be higher than the assumed X(3.55). If one applies the same approximation to harmonic oscillator potential one obtains no tensor forces and therefore $R_1 = 2$.

We would like to assume in this letter that Ψ' is an almost pure 2^3s_1 .

Therefore, it is necessary to assume small tensor forces, which lead to $R_1 \lesssim 2$. Another argument which supports our assumption of $R \lesssim 2$ follows from the analogy to the ordinary P wave mesons, $A_2(1310)$, $A_1(1100)$ and $\delta(976)$, where

$$R_1 = \frac{M(A_2) - M(A)}{M(A_1) - M(\delta)} \approx 1.7$$
 (5a)

or, if we use a quadratic equation,

$$R'_{1} = \frac{M^{2}(A_{2}) - M^{2}(A_{1})}{M^{2}(A_{1}) - M^{2}(\delta)} \approx 2$$
 (5b)

These splittings, especially (5b), are described better by an ordinary $\vec{L} \cdot \vec{S}$ term than by the analogy to the positronium. Employing the same ratios as in Eqs. (5a,b), with $P_c(3.41) = 0^{++}$ and $P_c(3.51) = 1^{++}$, we get the following predictions for the $c\bar{c}$ 2^{++} meson

$$M(2^{++}) = 3.68 \text{ GeV}$$
 (6a)

$$M(2^{++}) = 3.70 \text{ GeV}$$
 (6b)

In both cases the transitions $\Psi' \longrightarrow 2^{++} + \gamma$ (or $2^{++} \longrightarrow \Psi' + \gamma$) are suppressed by phase space.

We can also use the above analogy to A_2 , A_1 , δ to predict the mass of the $1^1P_1(j^{PC}=1^{+-})$ state which corresponds to the B(1235) meson. Using

$$\frac{M^{i}(1^{+-}) - M^{i}(0^{++})}{M^{i}(2^{++}) - M^{i}(0^{++})} = \frac{M^{i}(B) - M^{i}(\delta)}{M^{i}(A_{2}) - M^{i}(\delta)}, i=1,2$$

we get for i=1

$$M(1^{+-}) = 3.62 \text{ GeV}$$
 (7a)

and for i=2

$$M(1^{+-}) = 3.63 \text{ GeV}$$
 (7b)

We note that the center of gravity (c.o.g.) of the 2³S and 2¹S states

(which corresponds to c=0 in eq. (2)) is 3.62 GeV. The c.o.g. of the

2S and the 1P states are almost degenerate, just as in the case of a Coulomb

potential. However, a spin-independent Coulomb potential would in a non-

relativistic calculation give a ratio of 1/8 instead of 0.65 in eq. (3).

The MI transition $\Psi' \to \chi_c + \gamma$ is suppressed, because of the orthogonality of the radial wave functions. However, the MI transition $\Psi' \to \eta_c' + \gamma$ is allowed, and we would like to estimate the radiative decay widths of Ψ' via η_c' . In the absence of a reliable theory, we shall use rough analogy arguments to obtain <u>ratios</u> of these decay widths relative to $\Gamma(\Psi \to \chi_c + \gamma \to 3\gamma)$. In spite of its narrowness, the cascade $\Psi' \to \chi_c + \gamma \to 3\gamma$ has been observed experimentally, and one finds $\Gamma(\Psi' \to \chi_c + \gamma \to 3\gamma) \approx 10 \text{ eV}^5$. Therefore, the comparison with this width should be useful as a guide for the feasibility of measuring the radiative decay modes of Ψ' via χ_c' . The above ratios depend crucially on the quantity

$$R := \left[\frac{1}{t_{ot}} \left(\gamma_{c} \right) / \left[\frac{1}{t_{ot}} \left(\psi \right) \right] \right]$$
 (8)

And now to our analogy arguments: Assuming $\Gamma(\gamma_c \rightarrow \gamma_c) \approx \Gamma(\gamma_c \rightarrow \gamma_c)^{-11}$, we get $\Gamma(\gamma_c \rightarrow \gamma_c)$

$$\frac{\Gamma(\psi' \to \psi c' + \gamma \to 3\gamma)}{\Gamma(\psi \to \psi_c + \gamma \to 3\gamma)} \approx \frac{\Gamma(\psi' \to \psi c' + \gamma)}{\Gamma(\psi \to \psi_c + \gamma)} \cdot \frac{\Gamma_{tot}(\psi_c)}{\Gamma_{tot}(\psi_c')} \approx$$
(9)

$$\approx \left(\frac{145}{300}\right)^3 \cdot \frac{2}{3} \cdot \frac{R}{1+R} \approx 4 - 8 \%$$

Similarly, assuming $\Gamma(\gamma_c \rightarrow \gamma_c + 2\pi) \simeq \Gamma(\psi \rightarrow \psi + 2\pi)$, gives 12

$$\frac{\Gamma(\psi' \to \psi'_c + \gamma \to 2\pi + \psi_c + \gamma \to 2\pi + 3\gamma)}{\Gamma(\psi \to \psi_c + \gamma \to 3\gamma)} = \frac{\Gamma(\psi' \to \psi'_c + \gamma)}{\Gamma(\psi \to \psi_c + \gamma)} \cdot \text{BR}(\psi' \to \psi'_c + 2\pi) \approx \frac{(10)}{(10)}$$

$$\approx \left(\frac{145}{300}\right)^3 \cdot \text{BR}(\psi' \to \psi + 2\pi) \cdot \frac{\Gamma_{\text{tot}}(\psi')}{\Gamma_{\text{tot}}(\psi'_c)} \approx \frac{(10)}{(10)}$$

$$\approx \left(\frac{145}{300}\right)^3 \cdot \frac{1}{2} \cdot \frac{2}{R+1} \approx 0.002 - 6\%$$

Note that $R\gg 1$ corresponds to the upper bound in (9), but to the lower bound in (10). Note also that the width

$$\Gamma(\psi' \rightarrow \psi_c' + \gamma \rightarrow 2\bar{\imath} + \psi_c + \gamma \rightarrow all + \gamma) = \frac{\Gamma(\psi' \rightarrow \psi_c' + \gamma \rightarrow 2\bar{\imath} + \psi_c' + \gamma \rightarrow 2\bar{\imath} + 3\gamma)}{BR(\psi_c \rightarrow 2\gamma)}$$

will also be suppressed 10 if $R \gg 1$.

To conclude, if the SLAC experiment with better statistics will split the broad $\chi(3.53)$ into two resonances $\chi(3.51)$ and $\chi(3.55)$ and if the DESY experiment $\psi' \to \psi + 2\gamma$ even with better statistics will fail to see the $\chi(3.55)$, then it will be worth to look for the $\chi(3.55)$ in $\psi' \to 3\gamma$ or $\psi' \to 3\gamma + 2\pi$. If our assignment of the $\chi(3.55)$ proves to be correct, the charmonium spectrum will look as in Fig. 1. If, however, it turns out experimentally, that no χ_{c} exists in the mass region 3.5-3.6 GeV, it would be necessary to explain why. One possibility would be the existence of strong tensor forces 6 , i.e. V_{T} is no longer small compared to c in (1), which would in turn imply that ψ' is not a pure S wave but a mixture of $^{3}S_{1}$ and $^{3}D_{1}$.

References and Footnotes

- 1. DASP Collaboration, Phys. Lett. 57B, 407 (1975)
- 2. SLAC-LBL Group, Phys. Rev. Lett. 35, 821 (1975)
- 3. C.G. Callan et al., Phys. Rev. Lett. 34, 52 (1975)
 T. Appelquist et al., ibid., 365 (1975)
 E. Eichten et al., ibid., 369 (1975)
- 4. Talks given by G. Goldhaber and F. Vanucci at DESY, Hamburg
- J. Heintze, DESY 75/34 (1975)
 B.H. Wiik, DESY 75/37 (1975)
- 6. A strong tensor interaction $V_{7}(\tau)$ S_{12} where $S_{12}:=3(\vec{S}_{1}\cdot\hat{\tau})\cdot(\vec{S}_{2}\cdot\hat{\tau})-\vec{S}_{1}\cdot\vec{S}_{2}$ would lead to an S-D mixing for the Ψ' , and also to a reduction of the ratio R_{1} of the P level splittings (see eq. (4)) from the value $R_{1}=2$ expected for zero tensor force. In this paper however we want to assume that Ψ' is a pure or almost pure $2^{3}S_{1}$, so $V_{T}(\tau)\ll C$.
- 7. V. Lüth, Invited paper presented at the Int. Conf. on High Energy Physics, Palermo (1975) and the review given by G. Feldman, SLAC-PUB 1647
- 8. Assuming $(2^{++}) \approx (1^{++})$, we get $\frac{BR(2^{++} \rightarrow \Psi + \Upsilon)}{BR(1^{++} \rightarrow \Psi + \Upsilon)} \approx \frac{\Gamma(2^{++} \rightarrow \Psi + \Upsilon)}{\Gamma(1^{++} \rightarrow \Psi + \Upsilon)} \cdot \left(\frac{0.46}{0.41}\right)^3 \approx 1.4$
- 9. See, for example, H.J. Schnitzer, Brandeis Preprint (July 1975)
- 10. Because of charge conjugation, η_c and η_c' can decay into hadrons made up of non-charmed quarksvia $\mathcal Q$ gluons, whereas the Ψ and Ψ' need at least 3 gluons. Using Table I of Appelquist et al. 3, we get R \approx 400 and BR($\eta_c \rightarrow 2\gamma$) \approx 0.02
- 11. This assumption holds, if the increase in phase space is roughly compensated by the spreading of the wave function.

$$\frac{\int_{\text{tot}}(\psi_c')}{\int_{\text{tot}}(\psi')} \approx \frac{\int_{\text{qc}}(\psi_c') + \int_{\text{hadr}}(\psi_c')}{\int_{\text{tot}}(\psi')} \approx \frac{\int_{\text{w}}(\psi') + \int_{\text{hadr}}(\psi_c')}{2 \int_{\text{hodr}}(\psi')} \approx \frac{1 + R}{2}$$

Using this result and the experimental ratio $\frac{7}{\Gamma(\psi')}/\Gamma(\psi) \approx 3$ we get $\frac{\Gamma(\psi_c)}{\Gamma(\psi_c')} \approx \frac{\Gamma(\psi_c)}{3\Gamma(\psi)} \frac{\Gamma(\psi')}{\Gamma(\psi_c')} \approx \frac{R}{3} \cdot \frac{2}{R+1}$.

. .

. .

.

.

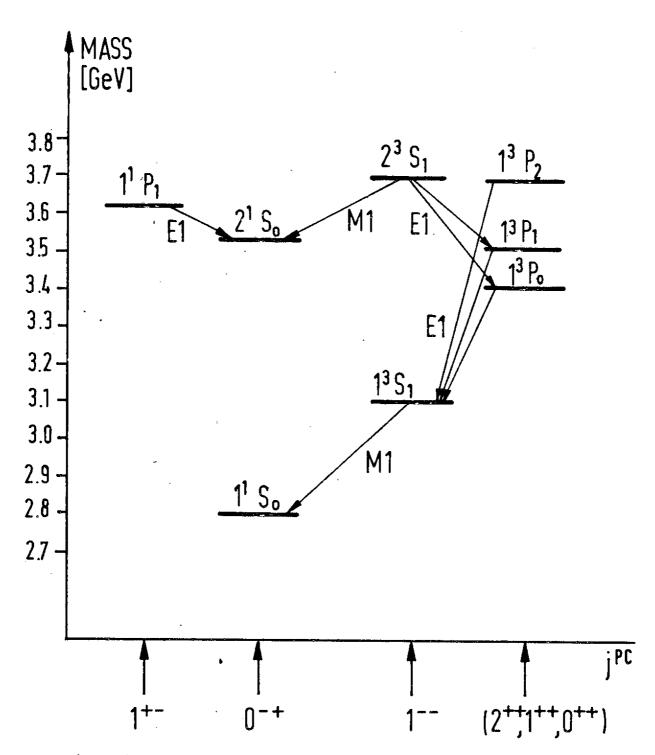


Figure 1. Masses and not suppressed radiative transitions of charmonium