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Abstract: We find all those unitary irreducible representations of the
%0 - sheeted covering group C of the conformal group SU(2,2)/Z,

which have positive energy Poa 0. They are all finite component field

représentations and are labelled by dimension el and a finite

dimensional irreducible representation (J“fl\ of the Lorentz group

SL(2€ ). They all decompose into a finite number of unitary irreducible

representations of the Poincaré subgroup with dilations,



1, Summary and introduction.

The conformal group of 4-dimensional space is locally iso-
morphic to G = SU(2,2) ; its universol covering group ¢ is an
infinite sheeted covering of G. Both G and @ contain the quantum
mechanical Poincaré group ISL(2€). It is of physical interest to
have a complete list of all unitary irreducible representations

02 0. They are at the same

(VIR's) of G with positive energy P
time unitary ray representations of G. In the present paper we
shall give such a complete list. We show that all the UIR of a
with positive energy are finite component field representations

in the termeinology of [11. They are labelled by a real number d,
called the dimension, and a finite dimensional irreducible represen-
tation (j,,J,) of the quantum mechanical (q.m.) Lorentz group
SL(2¢). Thus, 23,y 23, are nonnegative integers, There are 5 classes
of representations. They differ in their Poincaré content lm, sl,

m = mass, s = spin resp. helicity as follows:

(1) trivial l-dimensional representation d=j =j =0.

(2) 3,#0, jZ#O, d7j, +j,+2 ocontaing m> 0, s= 1J,=J,1 eeed 4], -
(integer steps)

(3) 3,3, =0y d7J,+j,+1 contains m>0, 8=] +J, .
%) 3, #0, 31#0, d=j +j,+2 contains m>O0, S=jl+jz .

(5) 3,3, = 0y d=J,+j,+1 contains m=0, helicity J,-j .

The proof of these results proceeds in several steps.

We start from the observation [2,3] that positive energy Poz 0
implies that also H2 0, where H = 4(P°+K°) is the "conformal
Hamiltonian", k° a generator of special conformal transformations.
Next we point out that any UIR of G with positive energy is very
much like a finite dimensional representation in that it possesses
a lowest weight vector and is determined up to unitary equivalence
by its lowest weight X = (d,-j ,~j,). In particular there is an al-

gorithm for computing the scalar product of any two*K-finite” vectors,



We then derive (necessary) inequalities for the dimension 4d
from the condition that the unique candidate for the scalar product
is indeed positive semidefinite. They come out as 43 J,+J, +2 if
i3, £0 ,and dzJ +J, +#1 1if J § =0, except for the trivial

l-dimensional representation which has d=j = j_)‘ =0,

In the last step we construct a unitary irreducible represen-
tation of G for every weight \ satisfying these constraints.Practically
all of them have been investigated in more or less detail before,
14,5,6 1, In particular, a careful study of the representations with
a>j +J,+3 has been carried out in Ruhls work {S5). The (uassless)
representations with d=J, +Jj,+1 have been investigated by Todorov
and the author [6]. For the remaining representations there remained
some open questions concerning either positivity or global
realization. In particular , for practical applications one
needs a clean construction as an induced representation on Minkowski

space. This requires particular attention to the center I” of d.

OQur representation spaces consist of vector valued functions
¢(x) on Minkowski space Mk with values in a finite dimensional
irreducible representation space of the ¢.m. Lorentzgroup sL(2¢).
They transform under g in @ 1like an induced representation

(TU)G) = S(g. 5 ¢ (g% fer ye &, xen (1.1)

The multiplier S is a matrix with the property that 8S(n,0) =1
(unit matrix) for special conformal transformations n ., Thus the
representations are of type Ia in the terminology of {1l]e The scalar

product is constructed with the help of an intertwining operator
("2-point function'),2-point functions have also been studied in [18,23}]

The result of this paper will be used elsewhere in the nonpertur-
bative analyéis of the axioms of quantum field theory with conformal
invariance {7,81. In particular it is crucial in the demonstration
that in such theories operator product expansions applied to the

vacuum are convergent.



2 A The Lie algebra

The group G SU (2,2) consists of all complex A4x4 matrices g

which satisfy the two conditions

det g = 1 , g-lfs = Bg" for B = (ﬂé ”Oﬂ) (2.1)

& is the unit 2x2 natrix, Let cg, the real Lie algebra of G.
For a neighborhood of the identity in G we may write g = ex ’ Xe%.
The Lie algebra %(,consists therefore of all complex b4xh matrices X

satisfring the two conditions
X =0 , =XB = BX*¥ (2.2)

The maximal compact subgroup of G is K¥x S(U(2)xU(2)). It

consists of matrices of the form

L= ( ke € k. € u(2) cot kk, =1
‘\ = \ 0 k H v 7 il
(2.3)

1i(2) is the group of all unitary 2x2 matrices. The Lie algebra

ﬁ of K consists of matrices such that A= -X'*, whence XB = BX*. 2elt)

Following Cartan,the Lie ulgebra may be split into a compact

and a noncompact part as
g =Kk +p (2.5)

where X €% if XB= -BX , and Xe# if XB= +BX. Explicitly ,P

consists of matrices of the form
> {'0 4 .
X e 7o lH X = with 2 complex 2x2 matrix =z (2.6)

We denote the complexification of o, kyp by o &é,rc
respectively. ¢f. consists of complex linear combinations of
elements of ¢} etc.

e choose a Cartan subalgebra fi of o‘} which consists of all

diagonal matrices in q . It is simultaneously a Cartan subalgebra



of g,and of £ . We may then decompose

e ) )
Y = (R A = ’gci- WP, 1T N, (.73

where wt (n”) consists of upper (lower) triangular 4x4 matrices
in tgc . In particular

¢ z) with a complex 2x? matrix z (2+7')

+ + += ’
Ktertap, ff X (o .
For such x* the adjoint action of keK of the form (2.3) is given

b

0 kizk;')

T +k—| .
ad(k)-X* = kX (D . (5.8

Vie see that $p n ntt transforms under an irreducible represen-
tation of K which restricts to the (5% of SU(2) x su(2).

Je may select a basis of g{
adjoint action of ﬁ., this gives us the commutation relations of

WiR
which is diagonal under the

in Cartan normal form.

0 -L

ge .
Let us choose a basis of 41R z uh consisting of
- 3 - a
L ¢ L [s ¢ :_L(o o) (2.9)
H“‘:%( )’H"’-co)'H* 2\e oy

53 is the third Pauli-matrix, o°= diag (+1,-1).
The possible eigenvalues of Hl 5 are + 7 for eigenvectors

L
. We will use them to label the basis X%ki J.k=t4

in N+nrc
Uf T(*ﬁ‘ﬁt.

Thus

I ot A T VA v

[Hc:xgk]’ xxak ) [“uxgk]‘éxa“ ’[HI'X&RJ“HJR (2.10)
can be chosen as

for the upper sign +. A basis for W AN Pe

- IET .
Xék = (X—j-k) y this gives (R (21c) for the lower signs = .



Uy

The compact subalgebra ’% transforms of course according to
the adjoint representation (0,1) + (1,0) of SU(2) x SU(2).
Therefore we may choose X';k ¢ (ﬂ"'—}r{‘ ) E'L, with (J,k);(ui-.ki)J(-i:i,e)
such that

[Hc")(;k] = C ! [Hl,x-:kl",jx:}k ;[Hlnx‘ékl] = kXIJk 3

(2.11)
('J,k) = (o,tl\ o (fi.C)- '
¢
Explicitly the matrices X x may be chosen as follows: Let us label

4
the rows and columns of a 2%2 matrix by 3 , - 4+  from top to
bottom and from left to right. Let e(}k the 2x2 matrix with 1 in

the jk-position, and O otherwise., Thus

) 1(;) . _cc')e C'l\t ‘(CC)
{-12_1): - o {’ ! '5’(“11" ¢ 1. ' Ji'i C C,"" -.‘i.,li 1 ¢ (2012)

k

. . . . . 3
We z2lso introduce Pauli matrices <« y in particular o =¢

P
=i
N
Il
>r

The multiplication law of these auxiliary 2x2 matrices is:

e.- ¢ = (: e [ N :E:. P “S ¢ "E'Ux":gLe —S.'_i ef_l_,
N T L T L T SIS Y I A
'1[:3)
with ELJ' the Kronecker- ¢& . Define
ot ¢ o o SR € ¢
X = LJ kz) ' X K = (X, ,h.\ = (e LA
¥ ¢ c " 3 &qu
ety x50 @21)
ik, 0 c c €Ak S
£
and H,, H, H, as in (2.9). The matrices H, 6 X, given

thereby form a complete basis for . ., Their CR.may be worked

out by explicit computation using multiplication law (2.13). One
verifies in this way the CR. (2.10), (2.11); in addition one finds

. “ - N - IR N .
X, ;= *q = H rKH rilH,



- < e
[X"J , ka 1 = - g‘l_l Xk‘.‘_c "L’-k x"."}t( fc (L" N # (-k"t)
[Xc -'ﬁJ;-PS Xt )»X“ 3’1’*_‘_ s

C',.Z.k ! ;J - }’.’"J ke 2 A..V'C X"J = = Lk wa‘f_

¢ : ‘ . N »
[Xe,.“x;,] < M, [Xfm,xml SURS [/\M_C,xc'zjl .0 (2.15)

Egs. (2.10), (2.11), (2.15) are the CR of 9. in Cartan normal
form relative to the compzct Cartan subalgebra f, ot o The

generators -iHO,~LHl, and-EH2 of % commute of course.

The real Lie algebra is spanned by the generators
X.f—rx- ) J(X’--X \ (J:t‘—,"’\"—_i;) (QI{)
e A 2
r) gk rJ—k ’ Jf{ Jk
. I S VoL O ‘(C--IX'L‘ : x.t xe
£ -uHL, ime 2 ) xtcpx-u:‘t\xucrxfm)j Mot Gr*’t(cjf %1)'

Besides the compact Cartan subgroup expﬁiggenerated by HO'Hl’Hz’

the group G also possesses two noncompact ones. The most noncompact

Cartan subgroup can be exhibited as follows.'We make a basis
transformation,
A R . . W
§ = ugl with L = -+ (ﬂ' . ) (2.17)
Yooy o

The group G may be identified with the set of all complex 4x4 matrices

satisfying the constraints

whger ey e A (48

Le. (2.18)

The set of all diagonal matrices satisfying these constraints forms
a noncompact Cartan subgroup of G. Furthermore we may now exhibit in
a convenient form several important subgroups of G. To every
Yevector (xu) we associate hermitean 2x2 matrices x and X as

follows {( o® are Pauli matrices).

) C : K ~ ot Lk Kk
X = X 4 + X xFo¥ ;X = % 4 -L X o
o

(2.19)



To every A¢ SL(2C) there is associated a Lorentztransformation

such that
AT K AR LR ,
Ax o, A xA X with X7 =AY x7 (2.20)

With this notation, we introduce subgroups of G as follows {They are

all at the same time subgroups of G , 5. below), We omit the ~

henceforth,
. { A C o
M: Lorentztransformations m= | o Ae¢ Sniag)
NIV
N .
4 f ¢ )
A: dilations a = (I*('i o \ , laj=c
o0 qar e
A i - -ations n = ( LS ¢ \ ‘ n™  real (2.21)
o i/
i X
X: : X = (‘L Lv.\ , " real
NGO

The generators of M, A, N, X are denoted by ¥ » D, k" anda p*
respectively (after dividing by V-1 as is costumary in physics ).
The reader may work out for himself the connection with the generators

introduced before. One has in particular



2.B. The Lie groups,

Let us now turn to the universal covering group G of G. It is
an infinite sheeted covering and is given by « standard construction
(cp. text books, e.g. [91): G consists of equivalence classes of
directed paths on G starting at the identity. Two paths are equiva~-
lent if they have the same end point and can be continuously deformed
one into the other, By the group action in G a path may be transported
such that it starts at any given point. Using this, group multipli-

cation in G may be defined by juxtaposition of paths.

The structure of G is best understood in terms of its Iwasawa
decomposition (cp. text books, e.g. [210]). Let M= UA N_ the Iwasawa
decomposition of the gq.m. Lorentz group M. U= 8U(2) is the maximal
compact subgroup of M, A  consists of Lorentz boosts in the z-direction
and N is the two-dimensional abelian group which is contained in
Wigners little group 11} of a lightlike vector p pointing in
gz-direction., The Iwasawa decomposition of G is then {121

A, N as in (2,21). The subgroup Apr is simply connected, therefore
any two paths on Apr with the same end points can be continuously
deformed into each other, Thus

C = P<AT’N% , K = universal covering of X
Explicitly K > Rx(SU(2)+SU(2)) . Here R is the additive group
of real numbers, x denotes the direct product. The center I" of G
is contained in X . It suffices then to consider K and its coverings.
This gives the chain of isomorphisms

conf, group of ~ - -
( Minkowski space) - SO(#,E)/Zé B SU(Z’a)/z& ) G/22'% Z .

The conformal group of Minkowski space has trivial center. The center
I of G is thus isomorphic to sz 2 and has two gemnerating elements

. %
ith =
¥, and g, ¥ th ¥y e .
= - { n‘! ﬂl 0o } = i
boE ¥, '8, 0, my =t s o, e SRRt

g'is the rotation by 2n contained in SL(2,€). An explicit formula



q

for 3, will be given in the next section.

-~ Aur i
Finally, G is also a covering of G, viz G = G/T . rait ig

given by I' = | (x, 27", n:Ct1..}, The image P/’ of ' in G is the
center of G, it consists of the elements imI, M= 0eeed, I=bxh unig

matrix, i = V=l .



3. Representations with positive energy

Let T a unitary irreducible representation of G by operators
7(g) on a Hilbert space #. Suppose that it has positive energy,
7(P°) 7 0. There exists an element R of G such that Rt = KO,
Explicitly R =exp 2niH2. [}2 acts on compactified Minkowski space
like a reciprocal radius transformation followed by a space re-
flection. It hag been pointed out by Kastrup long ago that this is
an element of the identity component of the conformal group .1
Positivity of energy ?(P°) 3 0 means that (¢, T(PH %) 3 C

for arbitrary states in the G-invariant domain of T(P®). Consider

(0 T w) = 5 (8, TeOY) » 4 (¥, Tt
< L (e, TR ) e 5 (BT 5o
with % = T{(R % . Therefore we have the
Lemma 1: TP )z © implies T (H, ) z © for the
conformal Hamiltonian Hoo= & (P°r k)

This result was known before }{2,3], the proof given here is a

modification due to Luscher of Segal's argument.

Consider next the action of the center [ of G. It consists

ofA elements of the form

roroy ey, o, y ¥, 0 ReapmHe Loy =1
Since the Uf[R T ig irreducible

T3y = «w@) Y for all % o % (3.1)
with wiyg) = exp drind for y - y:n = EXM ATun Hc

d is some real number which is determined up to an integer.



It follows then from the spectral theorem for the selfadjoint
generator T(Ho) that all its spectral values are of the form d+m,
m some integer., Since T(Ho)z O by lemma 1, the spectral values
d+m 2 O, Ve may therefore fix the integer part of 4 such that the
lowest spectral value is d. This gives
Lemma 2: In a UIRT of G with positive energy, the generator T(Ho)
has a discrete spectrum, It contains a lowest eigenvalue d, and all

the other eigenvalues are of the form d+m, m positive integer.



k., Lowest weights

By a vector space V weshall mean a linear space with a finite
or countable basis such that the elements of V can all be written
as finite linear suwms of basis vectors.

Consider an irreducible representation of thé Lie algebra
9. (resp.‘%c) by linear operators T(X) on a complex, possibly
09 =dimensional vector space V. Irreducibility means that there

exists no invariant subspace of V. We say that the representation

T possesses a lowest weight vector () €V with weight X it
T(x )2 =0 for all X ¢ v’ (resp.X e nP_ ), and
. . (5.1)
THIO = A{H)M for all He h
The weight A is a linear form on ﬁx , viz A« ﬁ:.. A is

specified by the three numbers

A= ALK : We write A= (. N . )\,)

A classic result says that every finite dimensional representation

of g, resp.?c has a lowest weight. In particular, finite dimen-

sional representations of &c have a lowest weight of the form

A= (Xc;-j,.*Jl) with 2J,, 2], nonnegative integers. (4.2)

Infinite dimensional representations of e need not possess a
lowest weight. VWe will however prove below that representations
T of Yo whigh are obtained from a UIR of G with positive energy
possess a lowest weight.

Consider a unitary irreducible representation T of G on a
Hilbertspace# . It restricts to a (reducible) representation of K.
‘E is a direct product of an abelian factor isomorphic to R which is

generated by Ho' and a compact Lie group Kl.
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kK = RxK K, > Su{a)xsu(2) , R = {expioh, o neaf} (43)

Since T(Ho) has a discrete spectrum, 3 decomposes into a Hilbert

sun

® = ® V" (Hilbert sum) (b.4)
/Lq.

where v* is a Hilbert space that decomposes into copies of one and
the same UIR of E with lowest weight u. By lemma 2, all the weights
n appearing in (4.4) are of the form

p o= (d+N, =Jq, -J2) » N, 207, 2J, nonnegative
integers. (4.5)

Let us introduce the algebraic sum V of the subspaces v

Ve 5V (algebraic sum)
/Ll

it congists of finite linear combinations of elements of the Vu .

It is a standard result in the general representation theory
of semi-simple Lie groups with a finite center that all the V%
are finite dimensional when we decompose with respect to the maxi-
mal compact subgroup [13} . Consequently, V is a vector space.
Furthermore V is a common dense domain (of essential selfadjoint-
ness) for all the generators X of g. Thus there is associated
with the UIR T of the group an irreducible representation of its
Lie algebra by linear operators T(X) on the vector space V.
Conversely, any representation of ¢ by skew ~hermitean operators
on V can be integrated to a UIR of the group, and so infinitesi~
mal equivalence implies unitary equivalence ( [1.3), theorem 4.5,5.3)

We will take it for granted that all this remains true for the
representations of our group G which we wish to study here, even
though G does not have finite center I" , and the covering E of
the maximel compact subgroup ﬁ/ﬂ of E/P is no longer compact.
Yhe vector space V will be called the "space of i-finite vectorsH,
We say that the UIR T of G possesses a lowest weight if the
associated representation of its complexified Lie algebra Yo
on V possesses a lowest weight.

Let d the lowest eigenvalue of T(Ho)' Then there must
occur among the weights p in (4.4) at least one weight A of the

form N o= (C{Z'qu“sz (h ()

KX Note added in manuscript: A prﬂof is given by
K. Luscher in [22] .
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with some integers Ejl, 232 . There exists then in V A a common
eigenvector (1 of T(Hi)> i=0,1,2 , to eigenvalues 4, “dy0 =dos

viz,

T(H O = dO ;o THIa = g O k) w,g)

We claim that this is a lowest weight vector.
We have to verify that T(X) 2 = O for all X ¢ n~ .

Now 1w~ is spanned by X}-cl (k, = + %), ){_:'{ X

,5 ¢ =1

Consider then the vector 7 (x‘;P) L « We have

T AT = T (LR X, 10 T (x,

Yol ')

114 -

= (d-1) T (x )2

by C.R. (2.10), Since d is the lowest eigenvalue of T(H_ ) by
hypothesis, it follows that T(X;1)11 = 0.

Consider next T(xfl’o)fl. . We find from the C.R. (2.10) as
above that this is an eigenvector of T(Hl) to eigenvalue -j,-1.
since XJ; o ¢ % , the vector 0(x%) )0 will lie in V7
But since Vk consists of copies of one and the same UIR of i
with lowest weight A , the only possible eigenvalues of T(Hl)
are -jl, —jl+l, cesy jl . Therefore -jl ~ 1 is not a possible
eigenvalue, hence T(xfl’o)() = 0., One shows in th&é same way

e]
that T(xo’_l)fl = 0.

We have proven part of the following

Proposition. Let 1 a unitary irreducible representation of 6

with positive energy. Then T possesses a unique lowest welignt.
Any two such representations with the same lowesti weight are

unitarily equivalent.

Proof: Let Tl’ TZ two representations of the Lie algebra U
on vector spaces Vl, Va. We call them (linearly) equivalent if

there exists a bijective map between V. ang V, which commutes



with the action of b

We know already that any UIR T of G with positive energy
possesses a lowest weight, Consider the associated representation
of the complex Lie algebra Te on the vector space V. A standard
theorem ( [14] 4.4.5 Theorem) asserts the followingijbhe lowest
weight of an irreducible representation of Yy, on V is unique if

it exists. Let {1 the lowest weight vector and {Xi} ic1...6 @ basis
for v¢+. Then V is spanned by vectors of the form

) £ — L YA

T(x,) o i(Xé) O y By ponnegative integers. Finally, any two
irreducible representations of Ye with the same lowest weight
are linearly equivalent.

A

| It follows from this also that the eigenspace V" of T(H, )

to the lowest eigenvalue d carries an irreducible representation
of £.] |

Uniqueness of the lowest weight is thereby proven. As for
unitary equivalence it suffices to show that a.g-invariant
scalar product on V is unique if it exists, ¢p. the discussion
after (4.5). By a g-invariant scalar product we mean a scalar
product such that T(X) is skew-hermitean for X in the real
Lie algebra 9 of G.

Skew hermiticity of operators T(X) for Xe¢ implies that

T(Z-)k . r(/g,z‘a\f;l) for Z Egc (LI‘.B)

since every element Z of 9e is of the form Z =X+iY; X, Yw o - :

Let {Xi} the basis of n' c g, introduced before, and

consider vectors in V of the form
| s T (X)L T (X
Mg TP ¢ (5.9).

They span V., It may happen that Yy, = O . The scalar
product of two such vectors must then be of the form
(4.10)

() ) = (0 T (X0 ™)™ TlEXp ) T T (x0"0)



% ) - . )
If X.cwnt them AX pler hence T (3X, ') = 0
We may therefore use the C.R. of the Lie algebra (Sec.2) and
hermiticity condition (3.8) to rewrite the left hand side of

(3,10) as a sum of terms of the form

A

27 M, M, . mv i oy oy .
(O, HO W H )y = d g () (00

To this end one need only switch all the operators T‘QGXT[5I)
to the right and operators T(X;) to the left until they ani-
hilate (L .

In conclusion, there exists an algorithm for computing the
scalar product of arbitrary vectors in V (= finite linear span
of vectors of the form (4.9))if it exists. Therefore the scalar
product is unigue up to normalization and proposition 3 is proven.
Moreover, a scalar product can only exist if the bilinear form
computed by the above algorithm gives a positive semidefinite
norm squared Byt = (v, ¥} to all the vectors %
of the form (4.10).

5. Necessary conditions for unitarity

Having established uniqueness, we now turn to the question
of existence: What are the conditions on R&v(d;ub 1)
that A\ is lowest weight of some UIR of G. We know already that
X {d, Jooti) with H,,ljl nonnegative integers,t4?0~
(5.1)
The last céndition comes from the requirement (lemma 1) that
T(H )z © , which implies that the lowest eigenvalue d of T(Ho)
is nonnegative.
We shall derive sharper inequalities on d. They come from the
requirement stated at the end of the last section: The bilinear

form computed by the algorithm of Sec. & must assign positive
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semidefinite norm to vectors ¥ of the form (4.9).

Let us introduce the vectors (inm v? ) defined by
(5.2)

T(x. )

¢ ¢

D, - Ll |

f i/”’ . "’m . tw

), } .r(..’b A f s o0 J LQ

~31. J,-rm.,)!%h.' (Jz,”"ﬁ.r

One knows from the theory of ‘angular momentum that they are norma-

lized if (1 0Q)=1 as we assume. Moreover the generators of K

act on them as follows:
T L, = Ay m, ; T{H )y, = i L, (k-1,2)

i

[(j,:;m,)(\j'l.ti‘n'ﬂ)j an‘rf,ml (5.3)

i
—
>

o
—
)

i

R - . I,)-
C‘Itr).Qm!'ﬂ). = ]-(J?-?’"N(Jz"—' mz.'*")] ng'mait

We shall distinguish 3 types of lowest weights A= (d 14 -'J‘z)

Ploase j. i, jl L : Consider the vectors
| -L J A
E R L b RN . - .
Y = C(Jv'i"ll"t ',Mf—-m',m')c(Jl,‘;,}l-l)_-,fdl--m“m;)
MM, mom,

el T
Y (xm‘m,_)'ﬂﬁ"f,‘-m,,”;"“:.

Herein C are vector coupling coefficients in the notation of Rose [i5].
We remark that this vector transforms according to the represen-
tation of K with the lowest weight (d+1y Jit s )"J'z."'Ji)

Since T(xmm 31N = ¢ , the norm of this vector is

TR N
(yl 2R yicbiohy L g T (can coefheionh)
WM, M M, '“4"“1.""1"":.
’ j)_ ! .l','r .I' i
( H,"M“M;_"“"g_ [ ( )T >] QH AM"\M{MD



We insert commutation relations (2.15) and evaluate the resulting
matrix elements with (5.3). With the vector coupling coefficients

(B.1) of Appendix B we obtain the final result

(wfr-"z'i;*z Wj,-’z-ifé

) = d-iie
kR
MM, } MM, 1

This must not be negative$ we obtain therefore the condition

dy fi+1,+2 i gt pto (5. ha)
2.nd case: ] $£0 , 1 = 0 . We consider the vectors
DA X
iiﬂé "::!: : ' ) o
= ! L M )
YMuM; ) % ¢ (j”i’]‘-i ’Mi m,m,)T(XmM’_) He=m, o

The norm squared ot these vectors is computed in the same way as

above to be

1% s fy-51 &
(W )
M, M, MMy

This must not be negativej we obtain therefore the condition

o7 g+ d 1 fo =0 - (5.4b)

é;rd case! ff:o ,quso . This case is just like the 2. case,

one finds the condition

od v oq, +1 ' 2 0 o
7 fa ‘{ I ' JL# (5.4¢)
L th )
" case: L =1z =0 . We consider the vector
LS 4
v o= I T(XT yT(X )ES!
mm, My, sy oo

We remark that it transforms according to the representation of K



with lowest weight (d+2% 0, 0). The norm squared is computed in

the same way as before. One finds
(v, %) = 8d (d-1)
This must not be negative, we obtain therefore the condition
dz=o o dyt f jeq,=0 (5.44)

By unigqueness, the special case d=]1=121 0 corresponds to

the trivial l~dimensional representation which is indeed unitary.
Conditions (4.4) are necessary for the existence of a UIR of G

with lowest weight A= (ds-j1,.i1 ) . We shall see below

that they are also sufficient.
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6. Induced representations on Minkowski space .

Let G the universal covering group of G = SU(2,2). As we
know, the center " of G is F:F;q with T = Zz. ,r"z = Z

It is well known that Minkowski space Mh = {yu} can be
compactified in such a way that it becomes a homogeneous space for
G, and therefore also for G. The conformal group of (compactified)
Minkowski space is isomorphic to 800(4,2)/22 b G/Zl} % é/r‘ . It
is compounded from the following subgroups

M/f Lorentz transformations yh /\""vyv y A€ S0,(3,1)
a dilatations yp‘ - Ia\yp' s lalt» 0 (6.1)
N special conformal transformations yu = d{y )ul(yp- np'yz),

with n" real, o(y)=1l~2ny+ n2y2

n n

X translations yu——»yu’ + x& , x" real

The need for considering a compactified Minkowski space Mz arises
from the fact that special conformal transformaifions can take points
to infinity,

The little group in G/r' of the point x=0 consists of
Lorentztransformations, dilations and special conformal trans-

formations. Thus Ml: i (G/F‘zf‘,)/(MAMIQ) ) oF

M: x EIQMAN . (6.2)
This is meaningful since M A N is simply connected and therefore

contained both in G and in G. Here and in the following we denote

by M the quantum mechanical Lorentzgroup, it contains the factor

I, of the center of G . On the other hand nx2 has a

generating element Yy, as we know { Secs. 2B,3)

r = {y"r N = o}t-l},..} , 3,_,-.-1?cupi1tH° ; Roxexp 2miH, . (6.3)

We leasve it to the reader to verify that the parametrization (2.21)
~ 6.1)
of G G/f’ induces the transformation law,on cosets,
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Let us now turn to induced representations on Mf: « To svery
A= (d;-471) we associate a finitedimensional representation

of LM AN by
A ¢ inNe_ip)
D (yman)=lat e DPm)  yith ¢ =d -2, for gzy:r , (6.4)

fere D'*M is the familiar spinor representation (4,-1,) of

MxSL (2 €), viz D}*“'(m)ED”"‘1 (A) for m of the form (2.21).

It acts on a (Ej1 + 1) (2'jm + 1 )-dimensional vector space EA.

e equip Ek with the natural scalar product <,» which is such that

phhm* )y - plrh () for me M as in (2.21) (64’

Consider the space 5)‘ of all infinitely differentiable functions

% on a with values in E)L which have the covariance property

¢ (qyman) = [a1> D (yman) " @ (9) (¢.5)

We make Eh into a representation space for 5 by imposing the trans-

formation law
(T(e)g) = ¢ (379" (6.6)

Since translations act transitively on the dense subspace

MLi C I-Ii:F x G /qr-{ A N, almost every element g of G may be

decomposed uniquely in the form

g = Xyman , xe€X | yman ¢ M,MAN (6.7)

Therefore functions ¢ in &4 are completely determined by
their values on X,
let x' and yman determined by x , g through the unique decom=

position

g x = x’yman geGj x,x',e){v,yma? €l MAN,

(6.8
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The transformation law (6.6 ) becomes then by virtue of the covariance

property (6'5)

(T(@p)x) = 1ar’D (yman)™ @ (x) | (6.9)

Note; translations xe€X are in one to one correspondence with
cosets x = x [y M A N . Both may be parametrized by Minkowskian
coordinates x“, L = Ov..3.Functions ¢ may thus be considered as
functions on Minkowski space sx“} with values in the finite
dimensional irreducible representation space Eh of the gq.n.
lorentz group M . We call them "finite component wave functions

{or fields)". Eq., (6.9) is the typical transformation law for

an induced representation on Minkowski space, induced by a finite
dimensional nonunitary representation of the ( nonminimal parabolic)
subgroup of stability T M A N . Eq.(6.8) says that % s
determined by x* by the usual action on cosets , x! = gnli '

which is explicitly given by (6.1).



A, intertwining operator

As a prerequisite for writing down an invariant scalar product on E;\

we shall first define a map {or operator)
Y &y > ¥,
+ T A

where '}; is a space of generalized functions § on G with

values in E" having covariance property

¢(ggman) z lalzbk(yman)*d)(g) 7{0!’ (cjeg , yman €l MAN (¢.10)

it is made into a representation space for E by imposing the

transformation law
(T(r4) (3" = $1(g7g") (6.11)

b . .
The map A+ will be required to commute with the action of the

group, viz .

8 Tigre = T(PA ¢ fr €y (6.2)

Because of this property, A:_ is called an intertwining operator.
The construction of A+ parallels to a large extent the construction
of the intertwining operator for the Duclidian conformal group as
described by Koller[17,see also 18] .

Consider the special element W of 5 introduced in Sec., 2.

It has the following properties:
the i ﬂwwqu ‘RmWJEECM %rmcM’

‘Ra\’c'4 = A #r €A . (6.13)

Working with the parametrization (2.21) of M one has m = (m*.)-l,



A

therefore

* (6.14)

DJ‘L]'I (YT"l) - 'I)j"i‘ (h‘l)-1

pY
We define the map Ai, by a generalized Kunze Stein formula [19]

qS(g) = A:,(p(ﬂ) = n+()\) &dx cp(gnx) (615)
| CX

n is a normalization constant. Integration is over the subgroup
of translations, with Haar measure dx = dx°... dx3. One may ask
under what conditions the integral makes sense (it may need regu-
larization) . This is a difficult question which we postpone. For

the moment we proceed formally.
Let us verify that ‘# has covariance property (06.10).

4;(35”7"1“) = n, gdxl(p(ﬂxlﬂanRK') = h+SdK}(p(%7?X;1a—'KX’)
X

with x = R,n‘Rfl € X . We introduce new variables of integration

-1 1 ! d x" = |a\"}+ d x?

x" =@ma  xx'am

This gives

b

blgyman) = n, lat® felx" @ (qrex"yima™)

A

e n, dal? o™ DY (yma ') {eIx" @ (grx")

= n*lallbx(yman)*cf)(g)
Js Lo d.

In the second line we used c¢ovariance property (6.5) and in the
third line we used (6.1%4) and the definition (6.4) of - p* .
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Let us next express the map A+ in terms of the restriction of

functions f to X . We have

P(x) = n N Sclxrgp(x’l?x')
X

L
Using the decomposition (6.7) we may define x , yman as functions
t

of x by
Ry ' = x"s" ) 5= ¥yman £ P,_MA"{ (616
] H |
The jacobian of the transformation x —> X will be found below
with the result (cp(20 b))
1 "

dx = IalL} 4 x

Thus

(6.17)

$(x) = n, N de”(p(xx"(gman)") - n+<x>&dx”|aﬁb"(ym)«,o(xx”)
X

]
Let us reinterpret (16) as an equation which determines x , s = yman
1"
in terms of x , Viz

R x| s x"yman (6.194)
Define the intertwining kernel A:_ (x) by
(6.18b)
‘-\:.(x”-d) = mlz‘Dk ("'mah) ¥Yman depending on x" through

the unique decomposition (6.18a)
Writing multiplication in X additively , viz. x - y 1in place

of x y"l , Eq.(6.17) becones

p
d(xy = n,(N) Sobg A, (x-y) ¢ly) (6.19)
X



Since X may be parametrized by Minkowskian coordinates [x“} .
b
the intertwining kernel A_}_ (x) may be considered as a matrix-

valued function on Minkowski space Ml}.

Qur next object will be to derive an explicit expression for the

kernel (6.18).

To this end we must evaluate yman . Write Y = x:; ¥, the

generating element of I, introduced before, viz. ¥, = Rexp inH,
Let us first consider Eq. (18 a) modulo r’ , i.e. as an

equation between elements in = G = é /r” . We write x in place

H
of x . Using parametrization (2.21)} we have

-4 e ry
pA-P bAn tP5A\‘

’ N
X yman =t _ . B -1 i,

t‘)-lA.;" pA where A =(A7) ,¢7 lai

and

_ (o
wlix 5 |
NERY
- L]
The solution of the egquation W lx = Xyman (mtod O A') is found

by comparing both expressions. From comparison of the second column

we have

go= (M p"x’ﬂ

~

We take the determinand of the first
-2

equation and use det A =1 . This gives ¢ = =N et X ¢ But

§5= det x = xuxu ] x2. Inserting in the second equation gives the

final result n= =X ' and

W .
AT L T O s gkt (6304

1K
-

91= lal = |x*

' -1

dx = laf'dx  (6.20b)

i
>
P

X o= X "y - x”“:-x/u/x"’ , dx

It remains to determine Y = y?_"r « This is done by applying both
sides of Eg. (6.18a) to the identity coset in N G /M A N .

The necessary computations will be done in Appendix C. The result is

N = N(x) = ©x})mynx® (5.200)
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Inserting this into formula (6,18 b) for the kernel we obtain

-2 ime N .- -
A: (-x) = ng O IxH 2ec o WENDD plaks (¢ Ix 2 x' )

We extend the definition of the representation pll of SLt’ZC}‘bGLUC)bj

! . 2y, %+ 24, ]
D 1 (PA) I J,:Dh.l (A
Using X = X*%”' we obtain the final result (d=2+c)
-y -
A: (x) = n, (\) (_x1+i£xo) Wl Dlzh (i%) (5.12)

The matrix elements of D"l'(i %) are monomials in the coordinates <,

B. Scalar product

For functions in SA we introduce a sesquilinear form by

((P,, ) (P’-) = SO{XIO‘\(Q_ <(,01 {x,), A:_(X,-Xz) (pL(xL)) (6.23)

Herein < ,> 1is the scalar product on the vector space E>‘ intro-
]
duced with (6.4 ). We note that the sesquilinear form (6.23) is

formally G ~ invariant:

Let qS = Ax(p . Because of the intertwining property (6.12) of Ax
X + Ta +

(T(g)gp1 , T(%)gpz) = de1 4 (T(ﬂ)(ﬂ)("«) , (T(ﬂ)‘h)(x:’?

Let g_l X, = xyman , Whence d x; = a =4 d x . Then this is=s

Splx <D (yman) @ (%), Dlyman)* g (x)y = de <@ (xy, P x) Y

L]

o

((Pd’(‘pz) q.ead-
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It remains to investigate the question under what conditions on by
the candidate (6.23) for a scalar product is well-defined and positive

semi-definite (for suitable choice of r, (M) .

Ideally, the scalar product (6.,23) should be well defined and
positive on all of the representation space 3; . We shall be less
ambitious for the start., Functions ¢ in &y are infinitely diffe~-
rentiable functions on G . It is therefore clear that their
restriction ¢ (x)to X defines functions on Minkowski space {x"}
that are o differentiable in the coordinates x", That is not all,
however. In addition ((x) must admit certain asymptotic expansions
when some or all x¥ —» 00, We will not write them down explicitly,
but we note their existence. They come from the requirement that CS)
are oo differentiable also at those points g which map x* = 0

into points of Mg at infinity of Minkowski space Mh.

Consider now the subspace U& of vector~valued Schwartz
test-functions on X {or Mh) with values in E>. They can be extended
by covariance equation (6.5) to o differentiable functions on @
which vanish with all their derivatives at points g in & that
map x" = O into points at infinity, Thus ¥, ¢ £y is a proper
subspace of ¢  which is not G - invariant., Indeed it is
clear that £, is the smallest @ - invariant space containing J, .

J& is however invariant under the Poinchsubgroup with dilations,
and it is also invariant under the Lie algebra %,of G which 3Fts
by differentiation with respect to g on functions ¢(3) on G.

Elements of Y& possess a Fourier transform (F.7.)

¢ = Sobx e P g0 (6-24)
with  px E'?Hx“
We see from (6.22) that the intertwining kernel is a distribution

X / X
in j& and possesses therefore also a Fourier transform.

We are now going to determine it.
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Let ';3 =(E, 0) and U=3 U (2) the g.m. rotation group
U< M, it leaves p invariant . The generators of U in the {(j;,},)
representation of M will be denoted by Te(3"3%3%)
lie may decompose the vector space Ex into irreducible subspaces

with respect to U

{6.25)
 E R PN
pY S »>2A 5 O NI
e 5 TTUE s0 that 3 TT E = s(s+)T E’
5:[1‘..-311
r . . . . .
T are projection operators that project on the irreducible
subspace of E)‘ which transforms according to the 28 + 1 - di-

mensional representation of U.

_ﬁ_s . T“Tsn , _T:rs:t:r-t - gﬂﬁ.s (6.2€)
. 13
For - i Y, , the open forward light cone, define TV (p) by (627)
2

TTS(/\(M’T;) - ,D]zj1(m-4)*_l,rs j)""h (m-l) ﬁ" meM,ﬁ:(E,g),

For reasons of dilational and Loz)'entz-lnvariance, the Fourier

transform of the intertwining kernel will be of the form [)\- (ohj =14 j,_)

as usual'l

-~ . PRI
B (py = fobce P A% 00 = r(dge gt T« Tty
$= 1141,
-2+d -
where gp"){_“ = 0(p*) 0(py) (pY) 2ed for oy +),+1
(6.28)
(Pz)|.+tz TFS(‘p) are polynomials in ’p/* ; Bi (p) is there-

fore an integrable function for the indicated range of d. We will

fix the normalization factor wn_(X\) in the intertwining kernel
by imposing the

normalization convention a{j o, = 1 [6.29a)
1 3
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The c¢- number coefficients ‘mgtx) will be determined in Appendix D,
the result is
(d'14'1-z"2)--- {cd-5-1)

ol (M) = for s = cA ey Mgy
: (d4)4)qm2) (d+s-1) TOETIAG ATy 0 B

A= (o =407 4, (6.29b)

The sesquilinear form (6.23) becomes now

Wl - g card L
(,,%,) = Tld-31,-07 2 _%‘“3"”13 ¢ NG e, TR 6>
V.

szl1.-1,!
Wl A (6.20)
The boosted projection operators T are positive and the
integral exists for d> 4+, +1 . Eq. (6.30) will therefore define

a positive semi-definite scalar product for d in this range if all
oAy (MY %0 ', From the explicit expression (6..9) we see that

this will be so in the following cases

(o, @Yz o0 for all QeJ, if
- (¢.31)
either fak O , 9,40 , d7,31+11+2.
or j1 =0 andfor 1,0 , d> j,+ jL+|

In the second case there is only one term in the sum over & in (6.30).

It remains to investigate the limiting cases 1.0, of [

and 11=0,d=11+f.

Suppose {, =0 . Then Tri* =y and
2. h Vi ] Py + 1
(pH "' (py = DTAP) > TTM (p) as p'—o0 (6.32)
(4
""Arauah vV,
Hers Tl'hl‘l is the covariantly normalized projection operator on the

b}

—
unique eigenstate ( l-dim.subspace) in E" of the helicity 3;’/?9

to eigenvalue |, . It is normalized according to



J d - J
To verify the first of Eqs.(6.32) take m of the form (2.21)
- i
with A = (p/brpa)hL and use the fundamental formula (2.20) of spinor
-] | - L
calculus, viz. A lpA 1 . A(A)p . The second assertion of (6.,32)
is well known from the theory of massless particles [11].

The second case jl= 0 is analogous. To take the limit in
(6.25) we use a standard formula for the § —function [16] and insert
(6.32)., The result is

A ' .
A, (p)= 9(P°)TT:M1‘(;>)%(F1) for X = (dy=J,.=3,) (6.33a)
d = ;jl-t-ja-s-l; jlmo or j20.

The scalar product becomes then

(o) E?if'*? Sty <G (p), T n MR G ipr> 30 (6.33b)

for dnjl+ja+l ' ;jl=0 or ;]2=0 .

It is positive semidefinite since also TTgel(P) is a positive
operator.
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C. Poincaré ~ content and irreducibility:

Using the positive semidefinite scalar product ( ¢, , ¢, )
int#oduced in the last subsection we can complete .)'l\ to a Hilbert-
space ?(’k after dividing out zero norm vectors. The elements of X,
will be equivalence classes of functions, the equivalence relation
will be denoted by ~ and will be explicitly given below.

To exhibit the Poincaré content of ¥, let us define to
every P in the forward lightcone V. a boost L{p) e SL(2€)
which takes '}3 = (Y:Fl,-(;’) ) to p . Explicitly we may take

L(p) = (‘Rfﬁ:‘)llz since then. L(p){a L (p)¥ = P (5.34)

by the fundamental formula of epinor calculus (2.20) .

To every (¢ j‘; we associate a Wigner wave function ¥ (p)

with values in E’\ defined for peV, by

) @
Yip) = D (Lp) @ (6.35)
Let us introduce a basis ey, in E? which consists of ortho-
Y
normal simultaneous eigenvectors of 3% and 3% (? + generators
of the rotation group) to eigenvalues s(s+)) and m respectively.

We may then expand

11+ 1,

. sm
’Y(P) = Z‘ Y (P) eSM'v 1
S=lf- 1 (6.35 )
with complex functions Yem . They transform under homogeneous

Lorentz-transformations in the Wigner way,
sm' 5 - " L
(T E)" (@) = I, Dy (LI ALAR) E™ (A7)
. m

*
'for m = (A 0* |>€M 5 /\ﬁvs A(M)Fv' Lt oFASYATS peV, . (6.36)
0 A
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p® is the (2s+l)-dimensional representation of the q.m. rotation

group SU(2). We leave it to the reader as an exercise to rederive

(6.36) from the transformation law (6.9) with g" = meM

The label & has the physical significance of Lorentz-invariant spin.
We can reexpress the scalar product (6.30) in terms of the

Wigner wave functions ¥ (p) . Since TT+ Esm = S.si: € oim we
obtain for the norm

Wl s24l

(0,6)» P (dg-tp-0) "L o b (g B 1 a1

selyetd oy, (6.37)

Consider first the case when o>} +|,+2 or ), =0 , of > j, 44,41

Then all o (X)) >0 . Thus (¢, ¥ ) = 0 1if and only if
all Y (p)so for pevV, . Translated back to wave
functions £ , this means that the Hilbert space d, consists
of equivalence classes of functions with equivalence relation ~

as follows:
R R {ﬁ (ﬁ,é(P)*O i{br all 'Pe\,/+

provided o=(o;-y,712) ol d’Ji*h,"l 41 Mz'oid’J."l;‘”

If ]4-114:0 and o = J1 +Iz+2. then dj,'f],_:i but o =0 7’“‘“}1"),_'
A 14
Thus (@, ) =0 ifg T T ¥(p)=0 . Translated back

this means that K)\ consists of eguivalence classes of functions

as follows

Hy: @~0 iff TTJ'”*(P}(P(PHO for all peV,

in the case 114 o, 11_*.0 s d':]ﬁj,.*‘
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Lastly consider the case o = Jit ittt = O - We see
from {6.3%) that &, consists of equivalence classes of functions

: 41 ~
#H ¢ ~0 iff TTh:a "(PYG(p) =0 for P'=0 , P,> O

A H
in the case 447 = 9 o= g,41, 4 |

From Eq. (6.3%7) resp. (6.33) we can also read off the Poincaré
content of the repreaentation'spacelﬂl » The result is as

indicated in Sec. 1.

Let us next turn to the question of irreducibility. If either
313, = 0 ord = j$i,*l irreducibility of ¥, is obvious since
the representation restricts to an irreducible representation of
the Poincaré group with dilations, It remains to investigate the
case d ¥ +{,t% , JJu*O .

We start from the infinitesimal form of the transformation
law{6.9). We denote the conformal generators obtained from T(g)
vy k¥, P*, M*’
dimensional representation plah of the Lorentzgroup will be

, D as usual; while the generators in the finite

denoted by s MY ~ they act in the vector space E> .

The infinitesimal form of the transformation law(6.9)

reads then as follows ( g% e 3 )

Pl (x) = 3Py 5 MPE( =i (x*3%- xV3N i) k)
D(X) = i (k-o+x,3") ¢ (x) (6.37")
KX x) = & (((8-2d)x* £ 2xAx¥3, =X 20k, L) g (%)

In view of the general result of ['] it suffices to check validity
at x¥ = 0 (identity in X), everything else follows then from

covariance. We have from (6.9) and (6.4)

(T(M)QD)(O) - :Dj'j"(h‘l)(p(o) ‘ﬁgr m eM (6.38)

(T (aygp) (o) = la1? ™% g (o) for achA (T (n)g)0) = o) for neN



for Lorentztransformations m, dilatations a and special conformal
transformationstrespectively. The infinitesimal form of this
is (6.37) with x" = O,

Tet us introduce matrices LJl, J2, J3) = 3', (Nl, Nz, N3) = ;;

Nk = I.Oh

‘ k . )
3" = 1 & kZ.’ , (Awwwm.pe.akdmo&cu y €z = | Y
We wish to derive from (6.37") the action of infinitesimal special
conformal transformations K# on Wigner wave functions ¥ (p)

Tt is defined in terms of the action (6.37) of K" by
KA DIN (Lip) () = DN (L) KX w(p)

We have
0 —t M
L(p) = exp —te'—%?} = qﬁ? (PR 4.

where P - (Po,:g) ) m::\l’Pl , Al‘hﬂg - I]s,lz/m

A straightforward computation leads from the PFouriertransform of

(6.37) to
Y (Feo) = (-2d3°-2p"3,0%4 pP O+ N Y (Fa0)  (6:39)
K (P00 = [-2d3 -2p, 38 -2 (TxF )+ 5 [l N - TN )y (Bro).

It suffices to have the transformation law at f?= 0 since

k" transforms as a k4 -vector, viz .

M - M
Tm) KA T (m} " = A(m)yvaor Lorentztransformations m € M (6,40)

ind we know from Eg. (6.36) that Lorentztransformations do not

make transitions between spin states. Neither do dilatations nor

translations,



we insert the expansion in basis vectors (6.35') and make use
of the explicitly known action of the generators .;,ﬂr on
basis vectors Cyim of E) (cp. Appendix A).
As a result we obtain

K3y (5= 0) = KPZ g 42" (Bao) (6.41)

. v ' Yy
= '\'.r}i‘ 2 { (2-d—s)(5'm)ll(5+“‘)l Cs €ymym ™
PTosm

! ) -
-~ (3_5,{...5)(3+mu)h(_s—m»f!)”'z Cb+|es+1n” +..0; ysm U?:O)

where the dois stand for terms proportional to €4y , and
Cy = C:ll’ are the constants given by Eq. (4.1) of

Appendix A.
4
We see that X~ makes transitions between states with different

5. The coefficients of €34 m and  €gyy do not

vanish (identically in m) for d>y +|,+2 unless

s = ;h“% = ij’ill resp . &= Spayw = 1t 1,

Therefore there exists no invariant subspace and the representation

is irreducible.
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D. Integrability

So far we have demonstrated existence and positivity of the
scalar product (Qg,(ﬁ) only for Schwartz test functions (p An y;.
But unfortunately j& is invariant only under tha’action of the
Lie algebra ¢ of & but not under the group G itself
(¢p.Sec.6B). Therefore we are faced with the question whether our
representation of the Lie algebra is integrable to & unitary
representation of the group g . [It follows then a posteriori
that the scalar product is defined and positive for functions

¢ in & , since &, is the smallest G ~invariant space
containing 5&]. This problem is solved by the

Lemma %. Suppose the scalar product

(6,0, « (o §d'% <G 5y, Ay (pI G, (P>

exists and is positive for functions ¢ such that

—Pos +LPX

(;;(P) = SO’S Sdlx e

£50

X (5,%X) ’]for pz»o,povo.(s.ha)

x an infinitely differentiable function with values in Ex
and compact support contained in the half plane s>0 .
Then the representation of g is integrable to a unitary

representation of G.

This lemma is a corrolary of the theorem of Lﬁscher and the author
on analytic continuation of contractive Lie semigroup represen-~
tations (generalized Hille Yosida theorem) [3]. A proof of the

lemma is implicit in Sec. 4 of ref. 7 .

Remark: In purely group theoretical language what is invelved here
is this: Functions of the form (6.42) with supp X in a given
compact subset of the upper halfplane $> 0 form a dense set of
equi-analytic vectors for the hermitean generators of E.

Integrability follows then from a classic result of Nelson's [13, 21].
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1t is evident from the explicit form (6.28), (6.33a) of the
e}
intertwining kernel A’  that the hypothesis of the lemma is
fulifilled. We have thus constructed unitary representations of the

universal covering group G of 5U(2,2).

E. Another realization:

Let ?; the space of (generalized) functions of the form
b

5; is the function space introduced at the beginning of this

section. T,‘ is a representation space for 6. Since the F.T. 3:: (p)

has support concentrated in Y+ , the closed forward lightcone,
4>(X) are boundary values of holomorphic functions in the

field theoretic tube domain. In the limiting cases {,1,30,

of = Jit 2 and 147, ¢ 0 cl=j,+1k+| they satisfy

in addition certain differentisl equations. For instance

(T84 G s o o g 20 5 dzgrit
{(6.43)

Since ¢ fixes uniquely the equivalence class of @ in ¥, ,
the scalar product (6.23) makes ?i into a Hilbertspace which
carries the same unitary representation of G constructed before.
In practical applications it : can be useful to deal with
the Bpace ?R of generalized functions instead of the spaces

of equivalence classes of functions in 5x . Rﬁhlls work deals

with functions in T; .
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As our last task we should show that the UIRlE of E in
the Hilbertspaces Jy constructed so far have lowest weights P
1f so, it follows by the uniqueness theorem of Sec. i, that we
have constructed all the 1nequ1va1ent UIR s of G with positive
energy. We shall instead refer to Ruhl & work [5]. It follows
from his results (and the remarks above ) that all our represen—
tations constructed so far are (1inearly) equivalent to analytic
representations that have explicitly known lowest weight vectors
(viz.constant functions) with the right weight A .

We mention one last result without detailed proof.
A UIR of a semi~simple Lie group G is said to belong to the
discrete series if (and only if) its matrix elements are square
integrable on the group. It is known that the discrete series
is nonempty iff G has finite center I and possesses a compact
Cartan subgroup {12]. Guotient groups G IP with e P of
our group G possess these properties if their center I"IF is

finite. This motivates the

Definition: . unitary irreducible representation T of the
semi-simple Lie group G with denumerable center [T is said to

belong to the interpolated discrete series iff

(dg [ (w,Tigr 1" <o
G/r

for some nonzero vectors 1?,4> in the representation space. (dg is
Haar measure on the group GIm).

We note that the definition is meaningful since the integrand
is invariant under ¢ - 4¥ for g€ ¢ , yer (cp. Sec.3).
It can therefore be considered as a function on G/r‘ .

The representations of @ constructed in this paper belong to
the interpolated discrete series if and only if

ol > fy44,+3 (G )
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Sketch of vproof: There is a canonical way of recomstructing unitary

irreducible representations as(irreducible parts of) induced

representations on E/K. [Here we may consider the space of

functions f:(ﬂ) = (nm ,7(3-4)4{,) ) malm,my) CDe Sec.51 .

Representations with lowest weight give rise to analytic represen-
tations in this way. Square integrability furnishes a scalar
product on this function space. Runl has constructed the analytic
representations on E/E and has found the condition (6.h4l) for the
scalar product in question to converge [5]. Alternatively, result
{6.44) may also be derived from Harish Chandra s classification

of all discrete series representations [e.g.l3].

Acknowledgement: The author is indebted to M. Idscher for discussions,
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Appendix A: Finitedimensional representations of sL(z2c).

d -
Let 7 and N the generators of rotations and Lorentz

boosts respectively. They satisfy the usual commutation relations

B . . 3
[35,2%)«i3% [V, N} =-ia® [0, NPT =N and cyclic

Write 3 = 0 N s N'siN®

Finite dimensional representations of 5L(2¢) are labelled
by (1a012) 3 s 2, nonnegative integers. A basis in the
representation space may be labelled by &,m, with s(s+l) the
eigenvalue of 31 , and m the eigenvalue of o RANEE-ENFIEE MR
14tdy o M= S in integer steps.

According to Naimark[20] the action of the generators on the

basis vectors €3, 1i8
’

f/l 3
Jyeqm =1L (sgm)(stmen)] " eg ey 5 I Csm = MEsm

and for the boosts

Y
Ny esm *® :‘_‘[(S;M)(s:m-n)] 1'Cses-:,m:tl
)
'[(Sim)(Sim*'sjhAsegmti

1
t [ (S:thNSim-pz)lh' Coar Coar,med

!
Nlemm = [(S’M)(5+M)JIZCSeJA,m

Y
-m Ac €5, — [ ($+H1+l)(5—n1+l)] 2 Copr Csat,m

ke

s(s¢1y 1 7S

{ (s k*)(s* ¢t }1/1 (4.1)

- L
s st -

C= Je+f, ¢t , K= §,-17, 4 S= k... c-1 in integer steps.
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The aign of the square root in Cs is a matter of phase conventions.

It is costumary to have the generators l‘\."‘E , and therefore also

CB , change sign when one interchanges (]1,11’ - (7:,'11) .
> -y '
examples: (1501,) = (£,0) + 3 =.5.§ ,N;-'-_’_'g
-p — e d [
{10120 = (0, %) .45, N=Li3
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Appendix B: Clebsch Gordan coefficients for SU(2).

The vector coupling coefficients C (i,,-;_-,jr'i ; M-m,,m, ) in
the notation {and phase convention) of Rose are given by [15]

4T m+ & ]’/1

Clin 3 d-simad oty = 3 { 2j, + (B.1)
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Appendix C: The homogeneous space M = G [MAN
Let MAN the nonmimamal

parabolic subgroup of G
consisting of Lorentztransformations me M ~ §L(2C)
0 EA

, dilations
and special conformal transformations ne N

MAN is simply connected and therefore also contained in G.
Consider the Iwasawa decompositions

5*‘2‘\1"”? and Ms UA N,

with A_Pc.AnAju:‘P, NN (see Sec.2)
It follows that the homogeneous space
M =

-

G/MAN = Kju = Rxg3

83 the unit sphere in. RY «. Thus

A

M  may be parametrized as

M = {(r,f_“)J-po<t4oo y g = (e'eed %)
Elements of K ~ RxX K,

a unit 4-—vector}
and rotations of e

act on M

as translations of T
. In particular
lo
e Ho T—+T+o y &£ &
r : T-»T E»-¢
The center F=0rn of G acts therefore on M as follows: r, acts
trivially, while Tr, consists of elements of the form é,:'r
83=Re£’rH° takes T = T+7T

> 8-t
A domain F contained in M

is ¢alled a fundamental domain
(with respect to the discrete subgroup

r.)if

UVF.) anr: ﬁ
Yer,

for y-,*.eu'ur"z



A4 fundamental domain F may be chosen as follows:

Fs[(r,a)e;\ ST <T<T ,§5>—mt}

It may be identified with Minkowski space Mq through the repara-
metrization

C e . et
x® . 22 .y x' = 3

(i=123)

translations x € X map F into itself. They translate coordinates L

For further details see eq. S3ec, 7 of ref. 3 .

Consider now the equation encountered in Sec. 6A.

R - x’yman, 3 x,x’fﬁu X , man ¢ MAN | ysya_hrel"z

We wish to determine N as a function of x ,
Apply both sides of the equation to the identity coset ¢=(0,¢)
g = (000,1) . Evidently, by what has been said above
x’yman,é € y:.f-_
Since we know that the integer N is a Lorentz~invariant, it suffices

to consider % cases for the right hand side

x’"xﬂ <0 : take X° O then xé:(OJg) with £5<1
therefore R~'xé= (o,-g) with -£5>-| = -0,
Thue R 'xe € F whence N'= 0

x"xﬂ>0,><°>01 take ?=O,x°>o.7ﬂcw Xe = (T,g)m'lf» O<T<T,
%hcre,eore. R¥'xé = (v,~¢) wih 0<Tem <2n £%2 - (-£%)=1
T Ye“‘xé €y, F whenee N3 1

X%, 50 X% <0 ¢ T Hie Aame wa Oﬂt-fr'no[s N= -

/H )
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Appendix D: Fouriertransform of the intertwining kernel.

ar )\
Our task is to determine the intértwining kernel A _{(p) in

momentum space. We know already that it will be of the form (6.28).

Consider

)
A-r

(») :Dh!. (L(P’)* E: (P)'ZDJ"J' (L(P5)

(D.1)

- r§ o ay2+d
P (dege )y 1) Do (DT (Y]
Instead of working out the Fourier transform of (6.22) it is easier
to work out the coefficients oy from the requirements of

infinitesimal conformal invariance, In particular, we must have

L3732 IR
for arbitrary Wigner wave functions A (p)= X €5 m ’\Psm .

A

K, is given by kq. (6.39) or (6.41), and k3 is obtained
from it by substituting d-—»h-d and reversing the sign
-y
of boost-generators N . This is in accordance with the trans-
. % . .
formation law (6.10) of 4: w A+ ¢ ¢ Tx which differs
from (6.9) for ¢ ¢¢&, .

The projection operators

aB -
moeg, = sz Es,m

From Eq. (6.41) we find

A

A d
Ai(P) Kf\t(f;,':O) =
d % I,
T { ., (2-d-s)[(semd(sem) ] *Cy egy
- gy (3-d+s)[(s m 1—\)(5-»1-”)]’{‘LC‘_,’+l €orr m

+oe }?Sm 3
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: "3/ "
while K™A (p)Y(p=0)
1
=~ X (P”):'-% s).:_u.ofs {- (OI-Z-S)[(S-M)(S-I-m)]”' Cs €51, m
+ (d-1+s)[(s+m+l)(s-m+n)]”‘§H1eSHJH

. }'Wsm

The dots stand in each case for terms proportional Cg ke .
Cs are the constants [for the (3211) representation] given in
Appendix A. By comparison we find two identical conditions on o ,
viz .
-2 -5
Ny = 2I2TE g
d-2+5

for s = (- h 0¥ gt

This is a recursion relation whose solution is

(cl-2-9-1,) (d-s-1)
(d-2 4 v ]y) e {das-1)

As = 4y, 0 S= el it (o 3)
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