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Analytic representations of simple Lie groups and their continuation

. . . . . o
to contractive representations of holomorphic Lie semigroups.

M. Lischer
II. Institut fiir theoretische Physik

Hamburg

Abstract: A unitary representation of a Lie group G is called analytic,
if one of the infinitesimal generators of G is represented by =T

times a positive selfadjoint operator. A simple Lie group G with Lie
algebra g has analytic representatioms iff any maximal compactly
embedded subalgebra k of g has nonzero center. Irreducible analytic
representations have a highest weight with respect to a compact Cartan-—
subalgebra of g. In case G has analytic representations it is also

a boundary group of a holomorphic Lie semigroup SG whose complex dimension
equals the (real) dimension of G. These semigroups are investigated in
some detail. It is finally proven that an analytic representation of G
can always be analytically continued to a holomorphic, contractive

representation of SG'

*) Work supported by "Deutsche Forschungsgemeinschaft"



I. A catalogue of problems analysed in this paper

Let begin with a simple example: given a continuous one-parameter group
of unitary operators U(t) in a Hilbert space®, then there exists a
eitH(Vteﬂ).Now suppose
in addition that H3 o 1i.e. (Jp)mb)zo for all tb in the domain of

selfadjoint operator H in¥ such that U(t) =

definition of H. Then there are operators T(@),2el, mz 20,

satisfying the three requirements:

(1) T < 1

(ii) for any ¢ & ¥ , the vectorvalued function = ~> T(=:)d

is holomorphic for Ilm= > o and continuous for Imz 20.

(iii) if m=t e R , then T (=)= U)

Clearly the above conditioms determine T(z) uniquely and in fact
T(z) = eizH The vectorvalued functions %t =~ U&)$  have thus the
remarkable property that they admit of an analytic continuation to the
upper half plane.

From (1), (ii) and (iii) it follows immediately that:

{1iv) T(z!)T(zz) = T(z]+22)

v 1) T(-2")

('I'(z)+ is the adjoint of T(z) and z* denotes the complex conjugate of z).
Thus the operators T(z) form a holomorphic semigroup with boundary group U(t).
This is clearly an oversophisticated way of looking at things, however from

the above formulations one is naturally lead to the following questions:

a) Let U(-) a unitary continuous representation of a Lie group G and assume
that some of the selfadjoint generators of U(s) are positive. This being
so, what can be said about the analytic properties of the functions U(g)é

(%ee) $ any vector in Hilbert space)?



b) If ¢ is a Lie group, what additional requirements are needed to
assure the existence of a holomorphic Lie semigroup S such that

G is some real boundary of $?

The notion of a Lie semigroup will be discussed in some detail in
section V. For the present (heuristic) purposes one may well think

of a Lie semigroup as some open submanifold of a Lie group which is
closed under multiplication.

Of course the questions a) and b) will be rather trivial if G is
abelian. I will thus restrict the discussion to Lie groups G which are
the "least abelian', in other words: to simple Lie groups. Now,

define:

. e & . . . o s .
Definition: ) An analytilc representation of G is a nontrivial, unitary,

continuous representation of G having some nonzero

selfadjoint generators positive.

It is then not at all clear that there exist analytic representations of G.

Thus:

¢) Which real, simple Lie groups G have analytic representations?

Assume for a moment, that G is a real form of some complex Lie group Gc.
Then, anticipating a result proved later we may say that question c) has
an affirmative answer iff G is a boundary of a holomorphic Lie semigroup §

contained in Gc' Remembering question a) it is then tempting to ask:

d) Is it always possible to analytically continue an analytic representation

of G to a holomorphic, contractive representaticn of 57

Having found the class of simple, real Lie groups G admitting analytic

representations, the problem arises

e) to classify the irreducible, analytic representatioms ef G and to

give explicit realizatioms of them.

*)I hope not to confuse representation theory experts who may think of
an irreducible analytic representation of G as a representation carried
by a space of holomorphic functions defined on a homogeneous space of G,
In fact there are strong indications that the two definitions are

equivalent (see sec. IV).



(Notice that an analytic representation always decomposes into a direct
integral of irreducible representations almost all of which are amalytic

or trivial.)

Question e) has been answered to a large extent. In fact the holomorphic
discrete series representations of G are analytic. The remaining irreducible,
analytic representations can be reached from the discrete series repre-
sentations by analytic continuation in the representation parameters

( [1} and references cited therein).

Finally I would like to mention on what earth the present work grows. The
earth is relativistic quantum field theory especially the countryside called
conformal quantum field theory DO] . In fact there one has to deal with
analytic representations of the universal covering 55?3:55 of the con-
formal group 800(4,2)/22. The positively rep;esented generator is the energy
operator. The associated contractive representation of the corresponding
semigroup S then helps to construct the conformal invariant analyticity
domains of the two point vectors AC) Bly)iod> (A,B any local fields 10>

the vacuum state) [2] . Moreover, for this case problem e) has been
completely solved by Mack [3] and leads to convergent globally valid
(Wilson—)expansions of operator products applied to the vacuum state. More

explicit explanations will be given in [é] .

This mathematical plant was also watered by some nuclear physicists seeking
information on how to construct contractive representations of diverse

semigroups [A].
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representations.

itions for a simple Lie group G to have analytic

Let U(x), xe G,

an analytic representation of a simple, cormected Lie group G

and X +# 0 an element of g, the Lie algebra of G, with the property that

L U(Xo) - (

U(X))

I use the convention: U(e ) = Then, of course, for

any xeGl, X, ,%, € ¢ such that “U(X) 2o (j=1,2) and )tjelR,fJ\i?O

(3= {,2) we have

T U,

(For, this relatio
for U(+)[6]and ext
on He to all vecto

Thus, taking conve
one obtains a G-in

as the cone genera

Adx X, + A, Adx-X,) > 0

n clearly helds on the dense set ¥, of analytic vectors
ends by essential selfadjointness of T U Adx- X, + A Adx-X,)

rs in the domain of this operator.)

x combinations of elements A-Adx-X, , x€ G, A>0,
variant, convex cone, whose interior V will be refered to

ted by Xo-'— For any X€ Y the associated selfadjoint operator

]

E U(X) is positive.

Lemma 2.1: V is an open, G-invariant cone in g. Furthermore V is nontrivial,

i.e.Vdg and V #

Proof: Let W=
Clearly LW is a G-

% .

{xe %IE xe X = Adx- X,} and LW the linear span of W.

invariant linear subspace o} g and hence an ideal o} g. Now

we have assumed that XO # 0 and that g is simple. Hence LW = g. But then

dim V = dim g and

Vv #g. If on the other hand V = g, then +uUX)zro0 and

1t U(-X)2 0 for any Xegq from which one easily concludes, that U(x) =

for all xe G
vig. B

. But the trivial representation of G is not analytic, hence

A necessary condition for G to have analytic representations is thus the

existence of an open, G-invariant and nontrivial cone contained in g.

Let g=k@p a Cartan decomposition,&:q — the associated Cartaninvolution
3 P P 3¢

and K< @ the connected Lie subgroup of G with Lie algebra k.



Theorem 2.2: The Lie algebra g contains an open, G-invariant nontrivial

cone V iff k has nonzero center c. In that case, ¢ is one-
dimensional and k = k' @ ¢ with k' compact.

Moreover V contains either H or -H where ¢ = R+H.

Proof: I will first prove that the existence of V implies that k has
nontrivial center. The center ’3 of G is contained in K[6). For any XeV
the function Kah —> Adh+X is in fact a function on K/% which is known
to be a compact Lie group. Let dulh) denote the invariant normalized

measure on K/%. Then the vector

z = gK/ duth) Adh- X
he

is welldefined and K-invariant. In order to show, that Z # O we may take
a hyperplane E in g passing through th origin such that V lies on one
side of E. Relative to an arbitrary euclidean scalar product<.,.> on g
this means that there exists a vector N satisfying:<N, Y>>0 for all YevV.
Since Adh- XeV for all he K/% it follows that

N2> = S% duth) <N, Mh-X> > 0
hence Z # 0.

But & commutes with Adh wek, thus Zk and zp arze separately K-invariant.
Since Ipplek we have AdZygqck and so (Adzp) = 0. But AdZp is diagona-
lizable implying Ade = 0 and hence Zp = 0. Thus Z is contained in k and
commutes with all of k. In other words, k has nontrivial center. Furthermore
it is easily seen that by construction Z € V.

Conversely assume that k has nontrivial center c. Let Hee¢, H # 0 and V the
open, G-invariant cone generated by H. As in the proof of Lemma 2.1 one can
show that V # g and I will prove now that V # g. Denote by B{+,-)
the Killingform on g. Then for any X€V we have B(X,H)< O,
Indeed, if X = Adx*H, x € G, then x = h-eY, h €K, Y€ p and

hence
AdY
B(x,H) = BlAdh- AdeH 1) = B(eMY-H) AdhTM M) = B(e -4 H)=

= F 5 Baa -4, w0

i
n=o h.



Now (AAYV™H e k and (AdY)Y" M ep. k and p being
orthogonal, it follows that

- 2w = = (:__D_h n h _
B(X,H) = Z goy BAdY) HW) = 2 o BlIAdY H,(AdYY W) =

== § oy IBUAY™H @) <o

n=go

By taking convex combinations of vectors AAdx-H  A>e, xe& G, the above
inequality still holds and thus B(XH)<o for all X € V. Especlally
-H%V} hence V # g.

Finally it remains to be shown that, if ¢ % {o} , then c is onedimensional.
Let Hec, H¥ O . With respect to the scalar product B(.,.) on p, AdH
is skew symmetric and (Adl-l)2 symmetric, hence diagonalizable. It is well
known that for simple g k acts irreducibly on p [7] Eence (MH)‘L\P-——-#- Idg,
MmER (Idp denotes the identity mapping of p onto p}. AdH has purely
imaginary eigenvalues implying m <o . By choosing an appropriate normali-

P
Next, the real vectorspace p is transformed into a complex vectorspace without

zation of E we may write (AdH)Zip = -Id .

changing its real dimemsion: for A= d & . s ER and X €
g By %pe 14

one defines:
A-X = ofX + s AdH-X (ep)

and one readily verifies that p has become a complex vectorspace. Moreover

k acts complex linear and irreducibly on p, thus by Schurslemma Ad2\9= ')\Id‘,,
re €, for any Z in ¢. But as above (Adi‘.)"}?-'-- AN Td, = — I Tdp thus
Adzlp=3NAAH\§Hence Z = £ NlH which means that c consists precisely of

the (real) multiples of H.

Concluding the proof of the theorem we remark that for any compact Lie group

with Lie algebra k one has k= Ek)k]@ ¢, Oe, k] compact ( T} 3.6.1/2). W



Consulting Cartan's list of real simple Lie algebrastheorem 2.2 selects

the following algebras (in Helgason's [7] notation):

Su(p,q) P21, g2
s 0% (2n) hz3
S0 (p,2) Pz3
SP (n, R) n 21

Col-m) ) ©3(-15)

These are exactly the real simple Lie algebras whose maximal compactly
embedded subalgebras have nontrivial center. To save words I will use for

them the name "hermitian Lie algebra". This notion arises from the following

fact: given a Lie group G with Lie algebra g and maximal compact subgroup K
then the coset space G/K is an irreducible hermitian symmetric space iff
g is hermitian {7]. Let me briefly recall the definition of an irreducible

hermitian symmetric space M [7]:

(i) M is a complex manifold together with an infinitely differentiable
hermitian (positive definite) metric.
(ii) Each x€ M is an isolated fixed point of an involutive, holomorphic

isometry of M.

(iii) The connected component of the group of all holomorphic isometries

containing the identity is simple.

Most remarkable is property (i), namely the statement that the coset space
G/K of a Lie group G having analytic representations has a complex structure.
This indicates the possibility of realizing analytic representations on
spaces of holomorphic functions on G/K. In fact such a construction is

standard for the socalled holomorphic discrete series of representations of G.



III. Search for holomorphic Lie semigroups

Let Gc a complex connected Lie group and G a connected real form of Gc'

The problem is to find a subsemigroup s© of GC that is alsoc an open
submanifold of GC and such that G is contained in the set3$ of all
boundary points of s°.

Assume that S° exists. Then the closure S of §° is also a semigroup.

If xe 38 then x-5% 8°. Denote by W the set of all tangentvectors X at 1,
the group identity, which are tangent to some curve fRYC G ,'Ee Ehﬂﬂh
dith B(oy=4 | ¥y e §°  for all £>0 ¥

) x ™ is of the same type. This means that W is G~invariant.

. For any #e § , the curve

Turthermore, if Xw, X, € W corresponding to the curves X‘(t) resp.

¥, (1) then A X, + N % €W (')\,J'A,_)vo) too, for this vector is tangent

to the curve ¥, (Xt} ¥;(A,t) . Hence W is a G-invariant cone in the
tangentspace at 1. This space can be identified with the Lie algebra g, of Gc'
Since G € S we have W + X = W for all X€g (g is the Lie algebra of G).
Writing 8. = %0"2 and correspondingly w-gel\l it is readily verified,
that V is a nontrivial, G-invariant cone contained in g. According to

theorem 2.2 the real simple Lie algebras g containing such a cone are
precisely the hermitian Lie algebras.

T will thus assume for the rest of the section that g 1is hermitian. Now

fix an element H # O in ¢, the center of a maximal compactly embedded

subalgebra k of g and let V be the cone generated by H. Consider the sets

. ' Xy .
{(3.1) §° = ixe Gc{’" -u,.g"x‘... ek ;ue&; XJ eV (Jsl,...)k)i k)\}
S = S°ug
Lemma 3.1: S and S° are semigroups and s° is an open submanifold of GC.

*)

Assume that such curves exist; this is clearly the case

if sY has a sufficiently regular boundary.



For a proof, see [8] .

I will show later that S° is nontrivial, i.e. s® # Gc'

Because any element of G is a limit point of elements of g° (and Gn s® =g}

we have G € 39S

Clearly one could also start with -H and -V instead of H and V respectively.
The semigrcups obtained in this way are the complex conjugates of s® and S
and will be refered to as S° and S . Moreover if se § then s'e §*

and vice versa.

The semigroups s® and 5°% ar minimal in the sense that any holomorphic
subsemigroup of Gc having G at the Gufficiently regular) boundary contains
either §° or %% (in general, e.g. for G = SU(2,2), there actually exist
nontrivial semigroups which are truly larger than SO). A proof of this
statement can be found at the end of the proof of Th. 3.3:J_I:Iext the
relationship between the semigroups S, s¥ and the cosetspace G/K is investi-
gated. This necessitates a detailed description of G/K. Following Helgason's
[7] treatment we choose the normalization of H such that (AdH)zlp = —Tdy.
Then the complexification Pe = peip of p splits into eigenspaces p4,p-
corresponding to the eigenvalues +i, —-i of AdH( respectively., The following

Lemma summarizes a few properties of py:

Lemma 3.2: [7] py and p. are abelian subalgebras of 9c and
Ceypel e pe j Theypdepe s p=po@p.
Let P+, P_ and Kc denote the connected Lie subgroups of Gc
with Lie algebras P p- and ko k@ik.Then exp is a
diffeomorphism of py(p.) onto P, (P.) and the mapping
(x_,h,x.ﬂ"* %:h-x is a diffeomorphism of T .XW.xP, onto an

open submanifold of G, containing G.

Since Kc - P_is a closed complex subgroup of Gc’ the cosetspace GC/KC . P+
has a natural complex structure such that the action G_x G /%P, —> Ge /K Py
of G_ on G /K P is holomorphic. Let %1 G, ==> G./k P, the canonical
projection i.e. R&) = x-K.P.. Then it turns out, that G/K is diffeomorphic
to an open subset of Gc/KcP+ namely W(&). According to the above Lemma

(G} ¢ R (P.) which is diffeomorphic to p~. Furthermore it has been

shown, that X(Q) equals X{expD) wvhere D is a bounded open set in the
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complex vectorspace p.. This makes the complex structure of G/K manifest.
The G-invariant , hermitian metric om G/K is an assignment of a hermitian
scalarproduct QX(.,.) on the tangentspace at each point X€ G/ in a

differentiable manner. G-invariance means that for any heG,x€@/k and X, Y

in the tangentspace at x the equality

(3.2) G (X, ¥) = @, (dh-X, db-Y)

holds. Here h - x is the picture of the point X € G/« under the action
of h and dh is the differential of the mapping x> h-x . Eq. (3.2) fixes
Qx uniquely up to a real positive constant. For X= RN =o we may

identify the tangentspace at x with p. and choose

(3.3) Q,(x,¥) = B(BX,Y) ; X,Y € p-
Here, 9: 9e ~> Ye is the complex conjugation with respect to g, i.e.
(X, + 11X} = X —iXy for all X, , X, e 4qg. Given a differentiable curve

Pt , tele,] n G/K we may calculate its length, namely:

L

(3.4) Ly = { at [Qﬂﬂ(xm,xm)]y‘ ;0 Xy = %
[+]

Then (3.2) implies that for any heG: Ls‘.= e 0f course, for an arbitrary
differentiable mapping $: &G/K =% G/k this relation may not hold and a

natural measure for length invariance breaking is:

. L
(3.5) TV A
Lr*o
(if the supremum does not exist, set s = oo)

Obviously, for composite mappings §e$, we have

(3.6) I s,os, 4 < s k-Us,ll (5,1 < 00)

A mapping §: G/k —> G/k will be called contractive if (1) the closure
of ${G/k) is compact and (2) Hsh < 1.
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The semigroup S"‘CGC acts naturally on G./K.P, . A general element of
G_ does not leave invariant the open subset G/k & X(G) of G, [R P,

However:

Theorem 3.3: Under the natural action of S% on GCIK,_P.,, the open subset
G/ = (@) is left invariant, i.e. s-%(Q) € T(&)
for all s @ §¥%. Furthermore, for 8 & " the mapping

X-» & %X of G/K into G/K is contractive.

I would like to make three remarks:

a) The theorem states in particular, that the action of G on G/K can be
analytically continued te a holomorphic action of SO* on G/K.

b) By choosing the conjugate complex structure on G/K one would obtain
by analytic continuation an action of S on G/K. The present formulation
will however lead more naturally to the construction of analytic repre-
sentations U(*) of G with -‘l- UM 20 (sec., IV/V)

] . .
c¢) The theorem shows also that S and § are nontrivial.

onty the set of all s & G, such that s. n(a) ¢ %(a)
e

and such that the mapping X ~» S:X of Q/K & (&) into itself is

Proof: Let SOC

contractive.
-itH
e

First, I will prove that for 4+ > o € S:M, . To this end consider

a Cartansubalgebra R of 9. containing H. Because H does not commute with
any X € pe¢ we have heck,. Let A; the set of rootsol (with respect to h)
with ol (H)=+1i and X, the corresponding root vectors. Set X_g = (X)),

the complex conjugate of X, Then:
P+ = ‘Z‘A; € Xy ;o pem E_CX

(3.7) weay

P = 2 _ RIX+X.,)

o ¢4,

Lerma 3.4 {7} There exists a subset {d,,...,o{,J of a3 such that
the subspace

a = ,;-:; m(x“;-&- X))

is a maximal abelian subalgebra of p. Morecver for

L)
Z - ?—El t (Kdi-i- X-"i) we have :



(3.8 e? = R el . X+
dhere Xx = Z ghtXe 1 T E tn (chipXy , Xog,)

Observe now that x € %(§) iff there is an Xep with x = expX - X B
According to a well-known theorem ([6] 7.5.5) there is € in K so that
Ad4€ - X € a. Hence the decomposition:

n
(3.9) x = £-e " KB, Lek , Xo= I whly) X o €p

=

Thus
L o exple X)) ke =
xl
= £ K.Py.

where x' = Add - ﬁ'.l 'i‘g (de-\-x__d;l € p,
J=
-t

(3.10)  Hgh(t) = e  4gh(t) (t2o0)

Having (3.9) in mind it is clear that the bounded subset © of p_ consists
precisely of all vectors Z € p- of the form: £ = AdL- (3%. S x,_.{.)) , £ € K 2 eR,
l?\'ll < 4 . Now exp(-itH) acts on Z simply by multiplication with e U. Hence

exp{~it )X (@) is a relatively compact subset of R(G) (t>o0).

For any $§ € G, with s %(&) € T(&) let Ws¥ be defined as in

(3.5) with s(¥) replaced by s-¥. Then:

.11 st = S8 Hd(xh s} 21 . hmR= lq,(z,2)*

xX€Q
Zep ,lzl=1

x'€ G depends on s and x through XK P.= s-x-K.P,. . Note that

xls.x € K. Py and, as usual,dr is the differential of the mapping
% -_— % Of Gc/KCP+ onto Gc / K< P+

Especially for s = exp(-itH) we have

TN X,

X
e e v e

X . Y x“"-‘e-‘ . xt= { e -
|
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with t'j as in (3.10). Hence

ld(x"" s x)AdL - Zll = et (e Y expletx )2 | =

-t v
= ¢ "fidle™ Y- dp- 2§ ; mem
~t  AAO-YY)
But d(r)Z = Adr « Z ) = 2 and hence Wd(x'sx)Ade-Zll=¢ He Z2h.
projected on p.
n
Now Y-Y' = .'E' Aj [X,&j)x_“:‘] , A €®R Xy 20. The commutators
[de ,X_ﬂj] are elements of h, in fact,

Dy X ] = BlXay X_g)Hy, ) Blhy,Z) = &(2) for all Zeh

From Xaj= Xj-i.Ad.H-Xj
that B(x“i,x_dj) > o,

, X; € p, one easily concludes

Lemma 3.5: Let o, 8 € A}, and Hy € h such that B(Hy,Z) = d(=)
for all € h . Then B(H,) 2 0.

Proof: Consider the o-series of roots containing B ( [7] p. 143). This
seriescontains at most A,p~d, A-2d& . Hence AlHy)/ol(4,)20 and since ol(H)=
B(H, M) > 0 the Lerma follows 8 (Lemma)

]
If we now write the quadratic form HeMN-—Y-Eﬂzin terms of the orthogonal
basis {X_, ; € A;} of p. it will diagonalize with eigenvalues (e"tgd)l

where
Sy = expi- _E'Aj B(de,x-dj) d(de"} €1

Thus: Hexp(-{.ti-l)ll=e—t and consequently exp(-itH) € Sg,,.. In the next step

I'm going to show that SZontr is open. Let §, € SCuun and & a neighborhood
of s in G  such, that s-X(& ¢ C for all s€®, where C is a compact

subset of w(G). Now

[nsh~usca] € ¥, l0dxT s Z1 — NdixL s, )EZE]|
o rxe G s Se
Zep., 12I=1
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< SUR Fldixy™ s x) - dix ' se-x) )21
Z.Ey..,lllﬂ‘l

{
where xg K Py = sx-K P K‘S;K¢P+= S, % K P x; ) %g, © G.

Xo ¥ Xy

As above: X= € @ e , X_€ep., Xy €py, Yeik
and:
su Yo Xy
e i d(e’ e™IZHN <1
Zep , Zi=}
Hence

Pisu— asonl € SR I{dG4 s € - d(x' 5, Stz |
Z €p., 2=

The mappings x-K. P, —> xi- K Py(se®) may be looked at as mappings
from D into explp) € G. Since X¢-K.P, varies over a relatively
compact subset of R®(Gq) as X_ varies through D onese may extend
the relation X_—>xg by continuity to all of the compact closure

D ofD . Thus

si-vsou} € %y BlaGg-s Xy — dlts, T ED
Zep,lmi=

By standard arguments it now follows that the norm | | sl[ varies

continuously (s& &). Thus g°

o co
contr
the boundary. Thus the construction carried out at the beginning of this

is an open subset of G .
nty o

Finally observe that S is an open subsemigroup of GC having G at

section yields a cone Mg, = @iV o Since (~1)H €W, we have -VeVv__

(V is the cone generated by H). Now one easily shows that exp X, X & Weontr;
is contained in the closure So_ of §° . Let N© @ an open neighborhood
contr contr

of zerc such that exp': NxN— G according to exp'(X,Y) = expX expiY is
a diffeomorphism. Then if X€ =¥ AN there is some t>0 such that expith-expX =
= exp' (X', YD X'e ~-vaN ; Yie N. Hence expX 1s the product of

with an element of Eg and thus contained in g®

o
an element of S .
c ontr contr

ontr



_!5_

(o]

. the
contr L orem)

This proves that s%% s

To give the reader a feeling of how the semigroups s© may look like,

I will briefly describe three examples (see table). They are all

constructed along the same scheme: Gc is a holomorphic, pseudoalgebraic [_7]
subgroup of Gl{(n,€). The group G then consists of all elements x & G,

leaving some hermitian, nondegenerate sesquilinear form (.,.) on €" invariant.
With the help of an nhxn-matrix 3 one may write: (z,,2,) = z‘fT- J-%, , 1,3,€ "
(27 denotes the transpose of the columnvector z). The cone V generated by H

(as listed in the table) then consists precisely of all matrices 26% with

(3.12) (2, =) < (=2) for all ze " 240
and S° is exactly the set of all A€ Q. satisfying
(3.13) (A2, A=) < (2,2) for all z€C" | =#o0

Shortly, while the elements of G leave the hermitian form (.,.), invariant
those of S° contract it.
The three types of semigroups s° described above have a remarkable property:

they admit of a polar decomposition. By definition this means that

(i) the map (u, X) - u-expiX of GxV into s® is a surjective diffeomorphism
and
(ii) there exists a neighborhood Neg of zero such that exp': NxN —% &,

“ﬁ(K,Y)*e%eiY is diffeomorphic and exp'(X,Y) & §° i Ye V.

The proof of polar decomposability of the semigroups discussed here is

carried out in appendix A.
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IV. Existence and classification of irreducible analytic representations

of simple Lie groups.

Let G a connected Lie group with hermitian Lie algebra g. I will not assume
that G has a faithful finite dimensional representation. Demnote by K the
connected subgroup of G with Lie algebra k, q= ko p being a

Cartandecomposition of g.

Lemma 4.1: Any irreducible, unitary, continuous representation U(+) of G

in a Hilbertspace H is K-finite.

This Lemma is wellknown when the center of G is finite. However the hermitian

Lie algebras are precisely those simple Lie algebras allowing infinite centers.
A proof of Lemma 4.1 is given in Appendix B.

For the reader's convenience let me briefly review the notion of K-finiteness.

It is defined by: ['6]

(i) Under the restriction U(:) |1.< of U(.) on K, % decomposes into
;‘;g H(8) (unitary direct sum) where ¥(8) is a finite sum of
irreducitle representationspaces of typesﬁf(. (Q is the set of
equivalence classes of irreducible finitedimensional representations

of K)

(ii) 1f v € H(3) for some & € K then the mapping X —» UKV | x € G,

is realanalytic on G (i.e. v is an analytic vector for U(*')).

Loowle, e Tiko o dn Ylemm S.L sor
- E SOl ety e e raqen b
‘RK SGQ ’R(S) (a4 SO0 A

‘R.K carries an irreducible representation of 8o the complexification of g
(define U(X+iY) = U(X) + iU(Y) for X, YE&).

Let h a maximal abelian subalgebra of k. h contains the center €=R-H of k.
Define he ke, pe to be the complexifications of h,k, p respectively.
hc is a Cartansubalgebra of 4c - The set of nonvanishing roots A corresponding

to hc splits into Aku A? as follows: o€ n, (dedny)
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iff the rootvector Xy is an element of Y (pcl .

We may choose a Weylchamber Pcih such that L)y 2 0 for all positive
roots o € at (H as above , see also sec.III). In fact &(H) = O for

deal = Ay Al and id(=4  for d € L= ATnA,.

Let k=k@&c¢ , k' compact (theorem 2.2). Then Ak is the rootsystem of kg with
respect to h'c'= he o ke (k(': the complexification of k'). Definme a linear form

Ay on h_ through Ay (Hl =1 Ay(z2) =0 Lor oll Z € h, .

}

Theorem 4.2: There are two branches of nonequivalent analytic representations

U(-) of G, namely those for which -{-U(H};o and those with +uUM)¢ 6.
There exists an invelutive automorphism A of G such that

%x— Ua) is of the second type if U(:) is of the first type

and vice versa.

If U(.) is an irreducible analytic representation of G with

"-;U(H) 2 0 then the representation of g,on “K has a highest weight A
with respect to (h.,8%). Furthermore A= dAy+ N where

deR ,d»0 and N{Hr=o0, N b dominant integral with respect
to (h}, At y .

Clearly then , two irreducible analytic representations with
‘%’U(H) 2 0 are equivalent iff their highest weights with

respect to {(h,, At)  coincide.
By definition, the representation of 8, On *, is said to have highest weight A if

(i) there is a vector £L & ¥, such that U(Z)4 = AN(Z) L0 for
all 2 € hc. and U{X,}LL=0 for all root vectors X&) oLeat,
(11) a'eK is the linear span of the vectors obtained by iterated

application of the operators U{(X) Xegq. K onit.

Proof: I will first show the existence of A, namely of an involutive
automorphism of G such that Ale®)=e® for Zeh . Set u= k® ip-

Then W is a compact real Lie algebra and h a maximal abelian subalgebra of w.
Let A: w— u be an automorphism of w such that A(X) = -X

for ail Xeh ([7] p.332). Then A extends by linearity to an
automorphism of I that will also be dencted by A.
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If e A we have: AlZ X 1 = UBEIYAX, = = [Z,A%X] (Z €h.),
hence AX, = ay X . Furthermore AlX X 1= = a,a_g Xy, X_a) and

o
since [Xg,X_ 41 € hg it follows that ay- a.q™1 so A2 = 1,
Now if ot € A}  then —« € A and if o €Ap then -l €A, . Thus
Akc = kc » Ape = pe and because Au = u A leaves k and p invariant.

This implies that Agcg i.e. the restriction of A to g is an automorphism of g
and I will use for it the same symbol. Let T the universal covering of G. -

A then lifts uniquely to an automorphism A of G such that K(epr) = exp AX for
all Xe 9 [91. 1et T the connected Lie subgroup of G with Lie algebra h and

"t c E {the center of E) a discrete (normal) subgroup of ¢ such that Q= E/n.
Then ™ ¢ ( [6] 7.2.5 and 3.8.3)}hence R(Py e . For any x=X ™ & §
we can therefore unambiguously define Afy= A(X)[. This vields the automorphism
looked for,

Next, assume that there is given an irreducible, analytic representation

U(-) of G. The arguments of sec II then imply that either -;-U(H)B- ¢ or

-31- DIHY £ O. Choose a representation with -%-U(H)bO.Now e" " (e 2y

is a central element of G since Ad{e"*™™)= Id (using the normalization

¥
(AdH)}] = =Tdp ).  U() being irreducible this implies
P

(4.1 Ulexp n2zk) = e "4 deR , nex

50 ]T U(H) has discrete spectrum d + £, € € Z . We may choose d to be the
lowest eigenvalue of %U(H). Thus the spectrtlm of -:TU(H) contains at most
the points d, d + 1, d + 2, ..., d20, Let 8& K such that H(8)#$ & and
%U(H)'v =d v for any v€ H(8) (such§ exists). Fix a subspace #'(8) in
which U(-)|K acts irreducibly. In fact H'(8) carries an irreducible
representation of K', the connected Lie subgroup of K with Lie algebra k'.

k' is compact and %'(8) finite dimensiomal, hence the representation of k,

on #'(8) has a highest weight A with weight vector 0. Set A = d Ay t N
(through A (d) = o, A is identified with a linear form on hc). Then

Uiz)n = A(m) 0. for all & & hc. Furthermore if o € AT( then U(X,}=o
by definition of Q. If & &%  then + UG UKD N = UIH XN +

+ U tua A = (1 o)+ d) UK S

Now -': o(H)=—1 by definition of A; . Hence U(X 3L = O because d is the
lowest eigenvalue of %U(H). Using the algebraic irreducibility of the

representation of g8, O1 RK the theorem follows. W
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Naturally, there arises the question for what d;o and A dominant
integral an irreducible representation U(*) of G actually exists.

A partial answer to this question is well known: if Nis arbitrary and

d large enough (the bound will be specified later) then there exists
an analytic representation of the universal covering T of G with
highest weight A= dAy + A’ and this representation belongs to the
interpolated holomorphic discrete series. For completeness, I will now
describe these representations (e.g. [1] and references cited therein).
Let Gc be a complex Lie group and G a real form of G, with hermitian
Lie algebra g, k, p, H, p,, P-s K, KC, P, P_ as usual. Furthermore let
E, 4 , ‘Rc be the cornected universal coverings of G, K, KC respectively.
Denote byV, the unitary irreducible finite dimensional representation
of ¥ in the complex vectorspace E, with highest weight A= dAy + A\
Now G¢ P_- KC-P+ i.e. for any xe @ we have x= X_-k{x)-X,; in obvious
notaticn. The mapping =x + k(x) uniquely lifts to a mapping % > R(x) of

o ~ -
G into Kc such that k(1)

1. By analytic continuation WV, extends toc a

£ + .4 4
holomorphic representation of Kc' Define

(4.2)  <vwrp g * CVa(tga ™ v, Vali(gaV " w>  for all v,w e EL

¢.,.» being a ¥-invariant scalar product on E, and 4z € a such that
z=g Xe E/Q, With the help of a T-invariant measure 4&{&} on G/X
(it is unique up to a constant) one is able to define a Hilbert space H(A)
consisting of holomorphic functions ¢@on G/ % G/K 2D (compare sec. IT)

with values in E, such that
a. . [+ N
4, = ¢
(4.3) ﬂéllA SG/Kd/A{.l) ﬂ@.z}ﬂAia < oo

Harish-Chandra has given mnecessary and sufficient conditions forA in order
that H (A) is nontrivial. If W -{d.,...,nl,.ﬁ is the system of simple rcots for
the Weylchamber P we may assume that X n A"" = {a,}. Let¥ be the largest
root when ordering A lexicographically with respect to m (for any root &,
B>0 iff B = é:l a oy | My,e,n, =0 >0 for some k). Obviously ¥ € A’;
and Hy = tH + H\ Hit € (W (Bl B=¥(=) for all & € hg). Harish-Chandra's

result iz the following:
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HIA) is nontrivial 1£7 (A+ Q) M) <O

where QP = %E& ol . According to Lemma 3.5 QP (H‘.) >0 and
'3
ANug) = (d.,r\H + A.'NH‘) = «d + A (u*'), Because A is dominant

integral with respect to (h}, A+) and B(M,. Hyx)zo we have AN 2 o.
¢ k o, )V ¥ ]
Setting d. = A‘(H"}+ ?? (#y)  one finds dc> 0 and a nontrivial H{AY iff
d > do . In this case H (A) carries an irreducible representation of G
which belongs to the interpolated discrete series of G. The unitary

operators Ulx) j x & 'G, are defined by:

(4.4) (UACo Yy = 5, (x,2) $(x"=)
where

! ~ ~e -1 ~ ~
(4.5) Salx,m) = V,(k(ga)) V(& (x" g (8= ge X, qued)

I will prove now that SA(x,2) is indeed a holomorphic (matrix-

valued) function of z. Let 1‘{;2‘ the prejection of P_ x Kc X P+

Identify G/K with the open subset eP of P_. Then G acts on e® x K. x P,
by left multiplication and this action may be lifted to an action of G on

[ ~
el x K.C x P_. For any two elements x, v of G we have:

kix'y) = g Loyl = Sig (' Tyl

(1 =1x1x1e L x Kc X P+). Especially for y = g, we have gz(]) =

ex"-‘cq, Xo = X @eD a holomorphic function of z and qe '\2,:_% LAY

Clearly:

g, [x™ (%;(4))] = ‘R’QG[ X! (eX-Y] - ;;.Ec]_‘q]
and hence:

~ -3
Sp (2 = VA[T(QQ(q)} -VA[ﬁﬁ‘(x"'(ex“'n - )\Qc(q)'] =

(4.6)

-1
=V, f’ﬁ'ic(x"' (e*-1]

~
on K .
C
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Since the action of G on emx'ﬁcxP+ is holomorphic and so is the projection

?{Rc ) S, {(x, =) depends holomorphically on X_ and hence on z.

Theorem 4.3: If d > dc then the representation U, of G on H{A) 1s the

analytic representation with “; U{H)» © and highest weight A.

Proof: (sketch) It is known that for d>d. W(A)contains the constant functions
,(2) = Vv € Ea - The closed subspace of all these functions carries the
irreducible representation of K with highest weight A, in fact:

U Y by = V(&) v (Le K ). Taking { to be the vector with highest

weight in this subspace we have U, (Z)IfL = A(ZE)L fern all Z € We .

To prove that { is also the vector with highest weight with respect to

U (¥, x € E, we have to show that U (X)f=ae for X € p. . Now Xé%
which forbids the direct calculation U, {(X\& = i’: Up(exp tX) £ ltso'
However U (X) is defined for all X€ . by complex linearity and

a glance at (4.6) shows that for fixed a € G/K 1i.e. fixed X_.one can

analytically continue S,(x,%) into a neighborhood of 1 in GC. Thus

(U 0 b )y = %CSA(e*x,EW)Lc:o = 0

since ?L"ic (e-tx(ex‘ﬂ =1 for Xe€ep.. §

We have thus seen, that a simple Lie group has analytic representations iff
its Lie algebra is hermitian.

In that case the holomorphic (interpolated) discrete series are not empty
and these representations are all analytic. It is known and is a subject of
present mathematical research that the representationsl may be analytically
continued (after multiplying with a convenient meromorphic factor c(d)) in
the variable d to values smaller than the critical value dc [1] . As far as
I know no complete answer to the question of determining the lowest value
of & (for fixedA ) has been given yet, For the group gﬁm) the problem

P S
has been solved long ago and more recently for the group SU(2,2), too [31.
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V Coverings of polarly decomposable Lie semigroups

Let G be a real, conmnected Lie group with hermitian Lie algebra g,
q=kep a Cartandecomposition and K the connected subgroup of G with
Lie algebra k. Assume that G is a real form of a complex, connected

Lie group GC and define the semigroups s% and S as in sec.ITII. Define

the center %S of S by

:bs= §$G SI sx = x-s for all xeS}

Lemma 5.1: The center of Gc equals ’asand 'bs is also the center of
G (in particular:%sc &)

Proof: Fix a maximal abelian subalgebra h of k and set u=k ®ip.

Then h is a maximal abelian subalgebra of a .

Let U resp. T be the connected subgroups of GC with Lie algebra w resp. h.
T is a maximal torus of the maximal compact subgroup U of GC. Thus the
center %Gc of G, is contained in T ( [6} 7.2.5 and 3.8.3). Since T is
a subgroup of G we have shown that %G;_C ’bG . Conversely, if Z € %‘G

then xz = zx for all x€ & and by analyticity in x it follows that

z € %G'c , hence %Gc= %G' B

This lemma shows, that the universal covering 6C of Gc contains the

largest semigroup of type S that is constructable along the scheme
explained in sec. ILIL. In fact, let % the connected subgroup of Ec with

Lie algebra g and ¥ the corresponding semigroup (é is not simply-connected).

Clearly then:

Lemma 5.2: There exists a discrete central subgroup® of % such that
G =& /r,c=28r,s=25%r.
c c

The question now arises of how to construct a holomorphic semigroup in case
G is not a real form of some complex Lie group Gc’ e.q. for €, the universal

covering of G. Of course, the appropriate framework for dealing with such
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groups would be a general theory of Lie semigroups without refering to a
complex carrier Lie group. However in dolng so one encounters some
obscurities concerning the local and global differentialgeometric structure
of the semigroups and it seems to be difficult to obtain practically valuable
results (especially in view of the "continuation theorem", sec. VI). I will
thus make the assumption that § is polarly decomposable (GC,G,S like above).

This restricts the discussion to semigroups associated with the Lie algelri

Suin,m (nmx1) ; sF@zn) (n23); spin, B (nz2 D

and by isomorphism

£0(1,2) ; =0(32); so(h2); o (6,2)

(maybe all the holomorphic semigroups of sec. III are polarly decomposable;
however...)

Let V be the open, G-invariant cone generated by H (k = k'@R-H, k' compact).
Then S° = G x V where ¥ denctes the surjective diffeomorphism (X)) € GXN >
ue.;XGS‘.Obviously the universal covering T of 8° is diffeomorphic to G x V.

The set & = Gusd® is then made into a topological space by defining @ ¢ E

to be open iff T(®) is open, where T: % + 5 is the natural projection

($ is given the subspace topology, i.e. 8€3 is open iff @ = SA®', ¢' an open
gsubset of Gc). When looking at ® as a topological subspace of % the ordinary

topology is recovered, since:
Lemma 5.3: G is a closed subgroup of Gc.

Proof: Let €: g~ g¢ Dbe the conjugation of 8. with respect to g. Then &
iifts to an automorphism of 'éc such that §(expX) = exp6X. By lemma 5.2

G, = "(':l"‘,_/r"‘1 P a central discrete subgroup of %. Hence @P'=1 which
means that 8 can also be defined on Gc. Now one easily shows that G is the

connected component of {xeG | 8= x} containing 1, which is closed.®
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Obviously EO, when equipped with the natural topology arising from its
differentiable structure, is alsc a topological subspace of 3.

The local structure of § is furthermore clarified by the notion of charts.

There exist two types of charts, both are made up from an open set 60c3d

and a mapping @. & —> R (n = dimg). In the first case @®=®*and @

is a homdomorphism, i.e. (@¢) is an ordinary chart of %°. In the other case
@ = R" x {(vuliel) and by giving this set the subspace topology from r"
4 is alsc a homBomorphism. Obviously ¢ (R"x{e}) = On & and @ (WxV)e
cgo. In fact, (Gng, CP]OnE) is a chart for G.

Theorem 5.4: S carries a unique semigroup structure such that the

. . . . . ~ ~ ~ o,
multiplication viewed as a mapping from § x § = S 1s
0 =0

continuous resp. holomorphic when restricted to 5% x %
and such that
N(s, 85) = () W(s,)
for all  s,;s,,5s € 5

Eere, 1 denotes the unit for the (canonical) multiplication

in G which coincides with that inherited from g.

Proof: (scetch) With the help of the monodromyprinciple (9] one lifts the

mapping m: 5% x 59+ 5%, m (81,52) = %(s,)- X(8,) to a mapping f: F x % »%°

such that

F((1,10, (1,9) = (1,2X) , XevV,

By a ccnsideration of charts one easily shows that m can be continuously
extended to a mapping from T x ¥ into ¥ and this is just the multiplication
looked for. B

The existence of the simply connected semigroup § gives rise to semigroup
'§/r', M a the
%G x V has

[ 2]

SG for any Lie group G with Lie algebra g, namely by setting SG

central discrete subgroup of G with G % &/r . Clearly then §

[plRe}

the came local differentialgeometric features as g.
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Let Gc’ G, S be as usual. Then the following antiautomorphism of GC

leaves S invariant:
X —» X = 6(x™")

(8 is the conjugation of GC with respect to G, see proof of Lemma 5.3).

Clearly:

= -1

Xty = Xz'-il and %X =% {‘or x € &

This antiautomorphism lifts uniquely to an antiautomorphism of S such that

T = 1, and thus may also be defined on any semigroup SG' because I = T
(@' = G/T).
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V1. Holomorphic, contractive representations of polarly deccmposable

semigroups and the continuation theorem

Let G be a connected Lie group with hermitian Lie algebra g and assume
that the semigroups associated with g are polarly decomposable. Thus there

exists a holomorphic semigroup SG having G at the boundary (sec.V).

Definition 6.1: A holomorphic, contractive representation of SG is a

+ L(K,#), ¥ a Hilbertspace, L{¥,%} the

mapping T: SG
space of all bounded, linear operators in ¥, having the

following properties:

(1) T(s1 . 52) = T(s]) . T(sz) for all S1» sze S
(2) |{lt(s)!] $ 1
(3) T(s)T = T(3)

(4) for any € H , Tsd$ is a continuous vectorvalued

G

for all s ESP
i)

function on S. and when restricted to the interior

G
Sg of SG this function is even holomorphic.

+ . .. .
(Here, A denotes the Hilbert space adjoint of the linear operator A and

§-» % is the antiautomorphism defined in the preceding section.

Of course, if ome restricts a holomorphic, contractive representation of SG

to G, one obtains a unitary, continuous representation of G. This representation
is an analytic representation of G, in fact %U(x)zo for all X& V., Indeed

the elements (exp(Rez X),mzX) e Gx {(Vuiel) = Sg (ze €, Imz >0)
build up a holomorphic one parameter semigroup which is represented contrac-
tively and holomorphically by T. Hence its generator is represented positively
(modulec ¥=1).

Conversely we have:

Theorem 6.2: Suppose U(x),x€&, 1s an analytic representation of G in a

Hilbertspace ¥ such that %vU(H))(L Then U(-) can be analytically

continued to a holomorphic, contractive representation of S¢-
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(As usual, H is a central element of a maximal compactly embedded subalgebra
k of g and V the cone generated by H). This theorem is in a way the converse
of a theorem stated and proved in reference r8] on the possibility of analytic

continuation of contractive representations of a "euclidean' semigroup.

Proof: We may assume that G is simply connected, i.e. G = G, SG =%

(if SG = g/I’, G = G/T then T is represented trivially). I will henceforth use
the letter G for a Lie group with Lie algebra g being a real form of a complex
Lie group GC. Let S be the holomorphic semigroup contaimed in Gc that is
generated by G and V. Then there are open neighborhoods NcN'c% 0of O such

that:

(i) exp' : N'xN' > G | exp'X Y] = eX. e'Y i: a ciffcomorphiom

: Gy ; -0 . .-
and exp (X,Y) € 57 1ff Y eV,

(i1)  exp' (NN)Y - exp'(N,N) € exp' (N N')

(iii) AN ¢ N' jor all A € [o,4]

(iv) there exists a dense set Dc¥ of equianalytic vectors for U(x), xeG,
such that U(x)$ has an analytic continuaticn to all of exp' (N',N") for

all ¢en [5], (81 [11].

For X€ Sn exp (N"JN') define bounded operators T(x} in the

following way: set x = exp'(X,Y), XeN', YeVAN' or Y = 0. In the latter

case put T(x) = U(x). If Y # O set T(x) = U(expX) °* e“%U(Y). Clearly T(x)

is well defined and HT(X)H £ 1. For any deD ) Ui (x €eexpN') can be
analytically continued to all of exp'(N', N') and the value of this continuation

at (X, e N'xN' will be denoted by ¢ (X, ¥).

Lemma 6.3: If X &€ N‘teN'nV or Y = 0, we have ¢(X,Y) = T(exp (X, ¥)) &.
Moreover for any Y€ ® T(IY 1is a continuous function of

xe8 A exp® M) and a holomorphic function of x & S$% A exp' (N, N'.

Proof: If Y = 0, clearly 9(X,Y) = T(e.xp'(xl*{ﬂtb- & YeVnaN, then
Ulexp X} e.x?[il-U(\')] & , Wz > 0, is a holomorphic function of z that is

continuous for imz N O . Moreover there is a comnected open neighborhood 8¢ €
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of zero, such that expX-expzYe& exp'{N',N'} for all 2€® and 1 € 8 . Now
2€0® —> expX -exprY € &, is holomorphic, hence by uniqueness of analytic
continuation: &(X,¥} = U(expX) exp WYY $ = T lexp' (X, Y) ¢.

This also proves that for b€ D y TG ¢ is continuous resp. holomorphic
for xa Snexp(NN) resp. x€ S°nexy(N,N') , a statement which extends by uniform
continuity of T(*) to all of ¥.§ (Lemma)

We may choose N so small that if x & exp' (N,N) then X = &(x™" € ex.p‘()l')u’).
For x€ $n axp' (N,N} we have
6.1 Toat = e U Yiexpexn = ulexpl-x)). e VIAAEPX YD o (g,

(where x = exp'(X,Y)). Hence for xe §°nexp'(N,N) , ¥ €H, Tty is an
antianalytic function of x that is continuous for Y -~ o(Ye&V), For any
¢, v e H the scalar product

(Teo™ ¥, Ty $)

; Xy € Sn exp'(NN)

is jointly continuous (resp. holomorphic) in x, y and so is (% T(x-y)$)

Moreover the two expressions coincide for X,y € G n exp' (NN}, Again

by uniqueness of analytic contipuation one concludes that
(6.2) Tx) Tl = Tlxyd for ol xy € 5 n exp' (N,N)

Putting everything together we have found a local holomorphic, contractive
representation of S and hence of S. Although ¥ is simply connected the
extension of a local representation of § to all of § is complicated through
the fact that one can only continue T along special paths in S namely the
causal paths. A path+) ¥4y  telol, is called causal iff for o $t,<t, §1
3‘(1'.') < ¥(ty) i.e. there is some $ € '§'° such that ¥H,) = 5-¥@&,).

+ ~ . . =
)By a path Y in § I shall always mean a continuous mapping ¥:le,i1 —> 5.
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Lemma 6.4: For any path u(t) in T and any X4V the curve ¥{tI = (’«.(ﬂ,t)() €
) ax(Vu{o})ﬁ % is a causal path in s.

Proof: Let o0& t, <%, ¢1 A= t,-Y Do . Then

H
(uig) , 12 X) = (ulkz),0) (1, AX)-(4,¢X) =

= (alty, 0} (4, 8% (k™ o) (ult), o34, 4,X) =

= 8 (uy, £0X) 5 8= (e, ax) (usy™, 0) € 8.

Hence ¥(t) is causal.® (Lemma)

Set @+ (expN (NAaVIuiel) € G x(vouioD)2 S and 6'= (axpN',(NaViuiel).

An allowed subdivision of a causal path ¥@),t&lo)], is a sequence §o= 3(0),

s;2¥}, ..., §, = ¥(4) such that ¥{th e O $; for tﬁ[tijtj_,_ﬁ],

(i=o,..,n=1). From continuity and causality of ¥ it follows easily that ¥

has allowed subdivisions.

Let x& S° and ¥t), t€le, 1), a causal path in T with Be) =1 , 3 = x.

By Lemma 6.4 such a path exists. For any allowed subdivision Sy Syrece S

n
define
(6.3) Texy = Tl Tl 3 TR
1 . . .
where the r, 8 are defined by: &= fj-sj_l 2 1= Leeyn
Observe, that o e« & and so T(#s) is well defined.

Lemma 6.5: Ty(x) depends only on¥ and x but not on the particular choice of the

allowed subdivision.

Procf: Given two allowed subdivisions CHPRPR and s('),..., s:t, of ¥ one can

n
build a new allowed subdivision of ¥ by superposition of the given ones. Using



_31._

(6.2) it 1is then readily verified that the products (6.3) corresponding

to the three subdivisions of ¥ are equal. ¥ (Lemma)
To show that Tydoes in fact not depend on ¥ too, I need one more Lemma:

Lemma 6.6: If¥%and %' are two causal curves in & such that $e)=¥r=14 and
2 = (1) = x then there exists a continuous mapping

¥: [o]xlo,1) = § satisfying:

(i) ¥(,M =1, ¥(1,0=x for all % &[o,1]
(ii) for fixed A €lo 1] , ¥(t2),telp,1] is a causal
curve in S.

Yl o) = B 5 ) = BN

(% will be called a causal homotopy)

Proof: Since 5 & gx(\(u{o}), ¥(t) may be written as (u(t), X(t)), where
u(t) is a curve in G and X(t) a curve in Vv {e} . Note that ¥ () € g
for t ® 0 and so0 X)€WV for t>0 and X(o)mo. For (£,A)eleoilxlen]

set
3(t) A=0
d,A) = (wey, X0  2do , telonl
%) x*o , te[n1]
Then 43({:,?\) is a causal homotopy such that

01 = X&), @) = (ul), £-X{(1)
The same can be done with ¥' yielding a causal homotopy #'(tﬂd such that
$' £,y = ¥@W , @, = (W, kXA

Because G is simply connected and wm(e) = w'(e) =1, w(1) = w) one can

deform d)'(t“l] into &(%,1) by another causal homotopy and by composition of
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the three homotopies one obtains ¥(ta) § (Lemma)

Let ¥, 8' be two paths in 5 having common endpoints 1 and
X € §o and let W(-i.—,k)‘{:,me[‘o,«] 2 causal homotopy such that
Y(t,0) = ¥(t) and W{(t,1) = ¥ (B.If we can prove that for any A€ (o]

one can find a positive number € such that

(6.4) Tw(,‘a’ (%) == Tﬂ'",?‘)(x‘ for all ,\’ [ 3 to"‘] with ‘N—-Xl < £

then clearly Ty(x) = Ty (x) = Tix).

The topelogy of Gc can be described by a right invariant distance and this
can be done as well for 5. Since the set [0,1] X [0,1] is compact, %(t,2}
is uniformly continuous with respect to the right invariant distance.

Hence there are positive numbers w,8 such that

if -t cw | IA=-a1<8  and FEA) < YLD

then ww,m € O-Y{t,N.

Now fix A=A, € [o,1] and choose o=t,, %, ,...,t,, =1 such that
o< tj-bl""tj < @4 and set Sq; = '\P(tzjl Ao) . Obviously Se,S8s, -, San
is an allowed subdivision of % {t,A,) . By construction

"\'({:m‘_“‘)‘JEG"- LA ®%denoting the interior of 8 (k = 0,%,..., n-1). Because of
continuity of Wk ,A) there exists some sk>o such that "P(tn«_“m) e 0°% 6, for
-2 l< Sk_Set

€ = wmin 15,8 8, ...,8,}

and let ANe&flo1] | A=Al <E. Define Sqp,, = W{tgee,, ).

Then $0,54,8

1385, Senets S2n is an allowed subdivision of the curve W(t,n).

b (t,a)

it
fot ho)

-
Ll

G' ‘ak
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Define #, through S, , =%, {(k=0..,2a-2) and %o, by S, = - Sz

{k=0,..., n~1). The fh'c and ?u:s are all elements of & andé they
satisfy:
'
Fuert” T2 ™ Sanany Tue € C te=0,4,0; n-1)
+ e @

Ty Samop T Pan-a
hence by (6.2):

T e YT = Ty, ) Tim)

T ('1“1“_‘)"‘- (91“‘_1) = T(*tﬂ"z)

Thus by induction ome proves that

Ty )Ty g) e Tr) T (s) =

= T(?““) : T(#ﬁk—l) . T('f-z_k..n_)' v 'T(‘r;) ‘T(“"o]

for k=0, 1, ..., n -1 and then

T(‘ch_‘]. T(*?_n.-_‘;} Lt T(».;)-T(SJ == T(.f‘“__:} . T(.‘.m‘““) S _T'(“f,) . T('*o)

But the left hand side of this equation equals -11%(3A3(x3 and the right
hand side 12#&,&,)(x" This proves (6.4) and thus establishes the inde-
pendence of TB(x') cn ¥ .

Set T(x) = Ty (x). Obviously ’T'(x)-T(u.&) = Tlx-y)

for all X,u € 33 and since T(x) is continuous near ! we can define T(x)
for all xe § by continuity. Furthermore T(x) inherits all the properties

. .. . + —_
concerning holemorphy, contractivity and reality (T(x} = T(x)) from the
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local representation K (Theorem).

Let me briefly describe how the representations of ¥ are realized in the
irreducible analytic representations U, of G carried by the Hilbertspace
H(A) (sec.tv), This is most easily seen by using the reproducing —(Bergman-)

kernel W, (=21 which is defined by

(R, (2,9, ¢), = ¢(2) {or all de HIN |, z e Q/E
Now, applying WU,(x}, x & E’ yields (see(4.4))

(Kp(z,), U0 8 ), = Waddemy = 5. (x,2) dix" =)

By the above theorem, the left hand side of this equation has an analytic

continuation namely (KA(Z,-),TA(x}d’)A to all x& S, Choosing
JP(;_z_)-c v = constant it follows that SA(x)z) has an analytic continuation
to all x € S and for this function I will use the same symbol,

Next, recall theorem 3.3, which said, that s* = S“1 acts on G/K from the leit
in a holomorphic way. Hence for x € s , de R ¢ (et =)

is well defined and holomorphic (continuous) in x & e (E].

(T denotes the cancnical projection of % onto S). Collecting all these

-arguments yields for all xe€ $:

(a0 d)(z) = S (2 - ¢ (R0 =)
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VII Conclusions and unsolved problems

It has been shown that the general definition of an analytic representation
given in sec. 1 is a powerful onme. Only a restricted class of simple

Lie groups actually have analytic representations. More precisely, analytic
representations occur iff the Lie group G has a holomorphic (interpolated)
discrete series of representations. Representations belonging to this series
are analytic. These are however not all irreducible analytic representations
of G ( [1], [3} }. Irreducible analytic representations are.representations
with highest weight A, If they do not belong to the discrete (interpolated)
series they can be reached from the latter by analytic continuation inA,
The problem of giving explicit realizations of all irreducible analytic
representations is not yet solved completely (see however ﬁ] ).

Simple Lie groups G having analytic representations also have the special
property that they are boundary groups of certain holomorphic Lie semigroups SG'
These semigroups act in a natural way on holomorphic homogeneous spaces G/K
which play a key role in the construction of the holomorphic (irnterpclated)
discrete series of representations of G.

The holomorphic semigroups S, cannot always be embedded in a holomorphic

Lie group GC of the same dimgnsion. Therefore the problem arises to give a
general definition of a (nonabelian) Lie semigroup, a question which is open
to future research. ’

The existence of analytic representations and holomorphic semigroups are not
unrelated. In fact it has been shown in the preceeding section that the
holomorphic, contractive representations of SG all arise from analytic
representations of the boundary group G. However this result could not be
established for all Lie groups G with hermitian Lie algebra g, namely the

Lie algebras so(n 1) {n> G)ﬂ and €g(-) , @4(-15) were excluded. The missing
step is a proof for the polar decomposability of the corresponding semigroups.
The polar decomposition is to some extent a noncompact version of the global
Cartan decomposition and it is extremely likely that it holds generally.

Once the continuation theorem holds, it follows that the vector valued functicns
Uix)d , x€ G ,(IJ(-) an analytic representation of G) are boundary values of
holomerphic functions defined on the huge domain SG' Of course, it would be

interesting to have some explicit, holomorphic parametrisations of SG.

+ . . .
1The case n = 5 needs a special argument to prove that 1ts semlgroups are

polarly decomposable.
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Appendix A: The polar decomposition of some semigroups.

Let Gc be a connected simple Lie subgroup of Gl(n,€) that is defined by a
set of polynomial, holomorphic functions Fi y 1=, 0,m on Gl(n,€)
through: A € G, iff A€ Gl(n,€) and Fi(AY =0 , j=4,... m.

Clearly then, Gc is a complex closed subgroup of Gl(n, €). Assume that
there is a hermitian, nondegenerate sesquilinear form (.,.) on €" such that

the group
(A1) G = {[\E c-;cl (Az,, Az} = (2,2,) for all 2 ,x, € C“}
).

is a connected real form of GC. Denote by q.(q)the Lie algebra of Gc(G)+

obviously ge=g@®ig . Define

Vo= {26%] (,iZ =z} <o for al zeC", 14-0}
(A2)

= {xe Gc‘ X o= A etx'-...-a‘xk;

MEG ; X, ., X, EV; k2]

Theorem: If V # @& then V is a nontrivial, open, G-invariant cone in g and i
consists precisely of those elements A€ G, with (A=x,Ax) < (%,%)
for all = & Cn, 2 40 . Moreover s® admits of a polar deccmposition

(see sec. III),

Proof: The first statement is trivial. Next let X & V . Then

}t (expitX 2 ) expitX-2) = 2(expitX = iX-expitX-z) <0 (=0l

Hence (expitX -% ) expitX-2) < (z23) (>0 , B #0) so that

SPc 50 & {AeG | (Az Az)< (22) tor oll € €" =+o}.

For any endomorphism A of €" define X through (Ka, 2,)= (2, A%,)

for all %,,2, € ch, . We have ¥ = -X for all X & 9 and if N € G,

then A € G..
~ R P
Let MNe S° and set A= A-A ; A€ G, and A=A,

)gc and g are identified with their canconical nxm —matrix representation.



Because ('i!_. Az) <(z3,a) (4 0) one can diagonalize A: there exists a basis
z,,..., 2, of ¢" such that

—

Ahzp = %= A E R, Az, E) < (2,3
(zljz—_i) = O (C‘+i)
(zi;ii) = =1 (L=1,..,p

(2;, 2) = +1  ({=p+1,..0,n)

The quadratic form (EJAE)';' (Az‘/\a) has the same signature as (z,z) has.

For j =1, ..., p necessarily 7\3 > 1 and hence o<k:\ <4 for
i = Pl ., N Thus one may write A = eX for some matrix X, X = ).
(z,Xz) < 0 for all z # 0. Let me now show that X € Qe+ Clearly, for

all te R | exptX € Glin, €) and for k€ Z , expk¥X € G¢.

Hence Fj(expkX) = 0 and thus Fj(exptX) = O,t€R (see e.g. [6] 3.2.7) proving
that exptX € G and so X€& ¢ . Because X = X and (2,X3)< 0 for all
z # 0, -iX is in fact an element of V. Now set w = l\-exp(—-*',:)() and we
have by definition of X: f-m = 1 , ™ € G, hence u € G.

This establishes the inclusion §°c $° and therefore $° = s°.

It has also been shown above that any A € 8 may be decomposed into
u<ex?‘txlfueﬁ))(e\/ and this decomposition is unique. The fact that the mapping
(u, X} —> au-expiX is alsc regular can be proven by doubling standard
arguments (e.g. proof of 3.2.10 in [6] ).

Finally let a.expiX € E§°l ueh, X€ - Then also expiX € §°
and -therefore one can diagonalize X yielding as above X & V. Hence the local

condition (ii} for S° to be polarly decomposable is valid, too.B



Appendix B: Proof of Lemma 4.1

The notations are as in sec. IV. The proof presented here is not at all
original but consists of collecting a bunch of results stated in Warner's

book {11] . Without loss of generality one may assume that G is simply
connected,

First notice that U(-) is topologically completely irreducible ( [I 1] 4.3.1.7)
and hence quasisimple (4.4,1.5). From Schur'sLemma (4.2.2.3) it follows then
that U(z) = ®E) UM @ e €, x € % , the center of G. Special elements
of’é are exp (n 2t H) (compare proof of Th. 4.2) thus proving that {U(HJ) hos
discrete spectrum[d + £ ‘ L e ?L} , dER fixed. Set [ % fexp(n2¥H) | ne21.
Recalling XK = K' x T, K' the compact subgroup of K with Lie algebra k' = [k,k]
and T the one parametersubgroup of K generated by H, one observes that Kir

is compact. Now define:

Vi) = Uy e 2on b= h.exptd € K, W &K'

In fact, V(-) is a unitary representation of ¥f, i.e. V(z) = V(1) for all
-~
2 € M. Let K/p the set of all equivalence classes of finite dimensional
o
irreducible representations of K/p. For § € K/ define Xg(-) resp. d(8) to be

the character resp. dimension of any representation of type 8 and set

P(S) = d(8) Sk/xg(m* V(R dn
r.

dh being the normalized Hear -measure onlq.. .

Lemma Bl: 1)the P(§)'s are projection operators in ¥.
2) # = ‘? Gn (B 5 H(H=POR (unitary, direct sum)
3) Every #(8) is an algebraic sum of irreducible representations

of K/pof type 8.

Proocf: see [11] ,p-261 and [12].
The set of all analytic vectors 3, for U(+) is dense in . Defining

9!&,(8\ e R nHE) we have:



Lemma B2: 1) 3¢ ,(8) = P& ,
2) the linear space ¥, =3§6 () (algebraic sum)
lies dense in €. F

3) %, is stable under the action of U(X), X € ge.

Proof: 1) If a € ¥, then by definition of P(5): (x e &)

»
Ol-"",a

Voo P8y a = d(8) | dan

| at X?(H-eﬂ) e-uﬂ' Uixh et a
K _

%

Since h' and e'bH\-rary through a compact region in G,U(x'h'»etH)-a can be
analytically continued in a complex neighborhood of x uniformly

in h', t and in such a way that this continuation is jointly continuous
in x, k', t. Applying a standard result ( [9] 13.8.6) now shows that
PBla € M- 2) follows from 1) and Lemma Bl 2},

Finally 3) is proven like 4.4.5.18 in Warner's book IBE

Lemma 4.! is now established by copying the proof of 4.5.2.9 G1] using

the quasisimplicity of U(-).
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