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Abstract:

A study of final states in hadron-hadron collisions in the transverse position
plane (b-plane) is presented. First we discuss the elastic processes. The
results here are generalized to describe inclusive reactions. The introduction
of a production radius typical to each type of'produbed particle allows us to
relate the pL-distributions in inclusive and ?xclusiﬁé'two—to-two processes.

An argument is presented that the elastic pL-distribﬁ;ions should be controlled

by these production radii even at large We then present evidence for the

Py
. R . . . + = vy s .

hypothesis that the characteristics of hadronic production in e e annihilation
are those seen in transverse distribution of hadron—hadron collisions. The

e e inclusive distributions are described in terms of two components, a cluster

. . + =

component which contains the e e resonances, and a parton component. The

decay of the cluster is described by the same production radii as those

observed in hadron-hadron collisions. The parton component obeys asymptotically

Bjorken scaling.
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1. Introduction

In the description of final states near the forward direction in hadron-
hadron collisions either of the exclusive two-to-two type or in inclusive
processes it is well-known that a characteristic length scale appears. In
Regge models it is the slope parameter, vu' , and in geometric models it is
the interaction radius. With the recent data on particle production at large
transverse momenta there is now evidénce that one can study the short distance
interaction or even point interaction and thereby probe the fine structure of

1,2)

strong interactions.

To study these problems phenomenologically in a well defined way it seems
an interesting possibility to describe the physical amplitudes in the transverse

position plane, where the above mentioned characteristics have a clear meaning.

The transverse position b of a particle is defined as the variable
conjugate to the transverse c.m. momentum, ;‘_, in the quantum mechanical
sense. The b defined in this way is fundamentally different from the impact
parameter , b' , usually considered for the description of small angle data at
high energies. The impact parameter, b' , for a two-to-two process is defined

at 'a fixed total ¢.m. energy, /s, by a Fourier-Bessel transform, A(s,b'),

of the scattering amplitude, F(s,t) ,3)
o0
Ay = \F AR Fon T, 0. .
)

The b'. is related to the angular momentum, £ , and the c.m. momentum, ¢ ,
through the relation £ = bg . 1In contrast the b—amplitude cannot be defined
~at a fixed energy and it is therefore mot related in a simple way to the angular
momentum. For the description of small angle data at high energies the b'

has proved to be very usefula) and in this kinematical region the b and the

5)

b' are similar for any practical purposes. If the physics at large

Py

is characterized by small distance or point interactions the b' may however
for this region not be a convenient quantity because here the interpretation of
b'" as an impact parameter is invalid. This was the main motivation in Ref.5)
for studying instead the amplitude structure in the transverse position plane.
Even though it seems to be a somewhat unfortunate name we shall sometimes in
the following, like in Refs.3, 6}, denote the transverse position as an impact

parameter.
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In Sect.? we discuss the choice of variables and derive the b-transform
for the process with two final state particles. In Sect.3 we give the connec-
tion between simple singularities in the b-plane and the corresponding p, -
behaviour. We study in Sect.4 the two-body reactions phenomenologically in the
b-plane and it is here shown how one is lead to the introduction of an inter-—
action radius. 1In Sects. 5 and 6 the generalization to inclusive processes
is given. It is shown that a unified description of pl.—distributions at not

too large in both inclusive and exclusive processes 1s achieved if we to

P
4
each type of particle assign a production radius.

The general structure of inclusive p, —distributions in hadron—hadron
reaction 1s summarized in Sect.7. The amplitude consists of two components
corresponding to two singularities in the b-plane. The radius singularity is
at b2 = - R2 s R = 0.5 fm. This singularity describes the pl_-distributions at
not too large values of p, . The other singularity is at b = 0 and it is
naturally related to the quark-parton interactions. The correspondence principle

7)

of Bjorken and Kogut is here invoked to explain why processes with 2 final
state particles apparently are dominated by the singularity given by the
interaction radius.

In Sect.8 we apply these ideas to an analysis of the recently measureda)
inclusive distributions in e e annihilation. The hypothesis is here that the
characteristics of inclusive distributions in e+e_ annihilation are those seen

2 that

in transverse distributions in hadron-hadron collisions. We conclude
the data can be considered also here as given by two components. The first com—
ponent which dominates at small p (p = c.m. momentum of the observed particle)
can physically be interpreted as describing a cluster or fireball, whose decay
is controlled by the same radii as those observed in hadron-hadron collisions.
This component include the e'e” resonances. The other component is dominating

at large p and is similar to the large component in hadron—hadron inter-

Pr
actions. This is the parton component and it obeys Bjorken scaling for p = o.

2. The b~transform

Let us first discuss the choice of variables.

> .
Consider the process a + b > c + d . Denote by b the relative trans-

verse position of particle ¢ and d 1in the c.m. system. Since the transverse
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position operator does not commite with the transverse momentum operator it
follows that it also does not commute with the total energy operator. Hence it
is quantum mechanically inconsistent to consider an amplitude A(s,b) as a
function of energy and b at the same time. The obvious variable to choose
instead of the energy is Py > the longitudinal c¢.m., momentum. Indeed we have

the canonical commatation relations

[bi )L']go 3 [b"P‘-J]al‘St.} ) [b;,P“]=o ) L,J:Ll (2)

where i,j label the two orthogonal transverse directions.

The b—amplitude A(pu , g) is given by the matrix element of the T-matrix

(§ =1 - iT) between suitably defined initial and final states

Ay BY =< fITIAY ®

Following the previous discussion we choose

£ = lp,b> . @

The initial state has to specify the lomgitudinal direction. This is achieved
by the condition that the relative transverse momentum, EJ‘, between. a and
b is zero. We furthermore specify that a and b before the scattering
(i.e. at . the time ¢t +—-«) were in some sense close together. This we do by
putting z = 0, where =z is the relative longitudinal position between a

and b  in the c.m. system. That is

. -
IL> = |lz=0,k=5> . (s)

As a side remark we note that by replacing 2z by the longitudinal momentum,
k.“ » we would in (3) just project out of T the usual scattering amplitude,
F(s,t), even with the form (4) of |f>.

To obtain the b-transform we express A(p“ ,g) in terms of the T-matrix

in the momentum representation, <3]T|§> , in the following way



e

A(Flht) = < F")b IT I Z=0 , Z.L=3’ >
*Zk <p ,L’I PP <[$,,,E | T Ik, If;,')(k“,ﬁf:lzwﬁfs)fm

Ps, Ry
As described in Ref.53) this gives the result

T

> (fe —LE"l .
A(F“,bhsd_l’_;ie " F oy o

(2

where F is normalized to the differential cross section by

ds, . A 2 (8)
ot = oy VF

The possibility of considering a b—transform similar to Eq.(7) was first

0)

mentioned by Chang and Raman,1 who did not, however, apply it in any analysis

of data.
The inclusion of spin in the formalism does mot present any problems.s)
Here and in the following we do, however, disregard this complication. We

therefore meglect any angular dependence in F(p“ s ; ) and Eq.(7) becomes
00

A(ﬁnl’) = -éj?t F.LJFJ- ‘JO(PJ.E) F('F"’Fl) )

where JO is the Bessel function of order O,

The b-transform (9) is similar to the b'-transform of Eq.(l) except that
the (energy)z , &, 1is replaced by Py in Eq.{(9). This has the important
consequence that the integration path in (9) is fully within the physical
region. It starts in the forward direction at Py = 0 and ends at scattering

angles of 90° for Py + o,

3. Singularities of the b-transform

Since the Bessel function of integer order are entire functions with an
essential singularity at « the impact parameter transform (9) will be an
analytic function of b with singularities controlled by the singular

behaviour of the integrand at p = « , j.e. by the character of the asymptotic
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behaviour of F(p“ > Py )y for P> at given Py -

In Section 4 evidence is presented for exponential behaviour in that limit

5, 11)

and one finds that the behaviour (p“ fixed)

F(Fu P~ M(Fﬂ' F:“ e”PPJ' , P> 0© (10)

with M(pi ) ~ 0{1) as -+ o will give rise to singularities in the

PL
b-plane at b = # b0 with

Imbo =F’

(11)
Near b = bo we have the behaviour
«-3/2

A (P“’b) e ( b- bo) + less singular piece (12)

If further M(pi.) tends to a definite non-zero limit as -+ « _ Re bO = 0.

P
A
If, on the other hand, M(pi.) oscillates at @@ , Re bo may be # 0. Thus if

Y,
Med~mepy e ™ o | (1)

M (PO~ M (P cos (p,+ 3 )

with m(pJ_ ) approaching a non-zero constant, then we get
Reb, = & . (14)

4, The b-plane for Two—to-Two Processes

We have now the whole machinery set up for a study of the b-plane and in
the following we are going to study the structure of the b-plane for elastic

processes.

From Eqs. (8, 9) we see that the b amplitude is studied through data for

differential cross sections along lines of fixed »p On Figs.l and 2 such

i

t+ . .
data are shown for =p and pp elastic scattering.



In all cases we see at large a clear tendency for the data on

P
4
these plots to approach straight lines. Combining this observation with the
well-known expomential behaviour in t near t = 0 , or alternmatively, with
the fact that F is a function of pi (i.e. of ‘?ﬂ.[) we are lead, at fixed

p“ , to 2 parametrization of the form

2 -11R~JFi+rhz

IFI" = a e (15)
with real parameters a, R and m. It is found that the elastic ﬂtp data,
except at pII 2 0, 1is well described by the form (15), where the slope para-
meter R turns cut to be indpendent of p“ and of the charge of the pion.

TN
Similarly the pp data are well described by the form (15), where Rpp is

independent of Py - The values of the R's are

Tt

= - . = “+ -1
Ren = 106205 Gev Rpp =82 %02 GevV . (16)

At p, * 0 there is in the data an extra component which gives oscillations
i P 8

14)

around our form (15).

In conclusion the data for elastic scattering (¢ +d + ¢ + d) at large P,

appears to contain a leading contribution which has the structure of the

Py
type

| =
F(hnfﬂ ~ g AP y (17)

From the results described in Sect.3 we conclude that a dominant com-
ponent of the elastic amplitudes at fixed P, can be described by a pair of

singularities in the b-plane at b = + bO , where
b = A FZ l 18

and Rcd is independent of p“ . The precise nature of the singularity can-
not be determined from this study but the phenomenclogical limit on a possible

factor of the type p;é in Eq.(17) is that |a| % 1/2.

The interpretation of R as an interaction radius is based on the obser-
vation that the b-amplitude, resulting from a singularity of the type (12) with
o = 0 and at the position given by Eq.(18), is large in a range of b of the

order of R.
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5. The Inclusive Py -Distribution
Consider the process

Q,-rb—> c,-r-x,11~x.2+-'-+)o (19)

M-

where in the c.m. system the particle ¢ has momentum S = (pI , ;1. )y and
particle Xy has momentum ai = (ki’ ai). p“ and ki are the longitudinal

- >
components and pl and q; are the transverse components.

The energy is given by (neglect masses)

= F:+Fﬁ. + 55} J h?-rzi?

= :+ Ef. t ji lh&\

i=1

(20)

since on the average, phenomenologically, | aiﬁ << ki (see e.g. Ref.13)).

In the following we want to consider the inclusive process a + b + ¢ + X
only in the transverse plane and it follows from Eq.(20) that energy conserva-
T

. . . . . - . .
tion can be disregarded during integration over the q;'s- Then the 1inclusive

cross section is given by (suppressing longitudinal variables)

dc
dFl

where 5 in terms of the amplitude Fn for the process (19) is given by

Q+b—)c+X) Z ()—N(FJ_) (21)

~ 2) >\ 2
T )=\ Fv\.(ﬁs‘i“‘—iz,m)ﬂ/'\)] 5(}31* ZLC],;) “clﬁ:; (22)

L >, . . .
The transverse positilon bi is defined as the variable conjugate to the

- . . .
transverse momeéntum q; - With a technique similar to that of Sect.2 the

. 16)
amplitude Fn can then be written in terms of its b“transform A as

> - Zn+2 N 2y -\'.,be-’ —\,Zb
Fn. (PJ_’$1’-“)%’\) 2(%&) cfbc“ b C FL e CL x
) 5 P (23)
8 (be2b B)A K, b))
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> . ‘s . .
The bc is the position of the observed particle, ¢ . The d-function expresses
. . . . >
the fact that the scattering is a function only of differences of b's. Due to
_)- a .
the translational invariance in the transverse plane B 1s arbitrary and we

- -
choose B = 0.

Eqs.(22,23) obviously have quite a complicated structure. It is f. ex.
clear that the P, -behaviour of Fn in principle depends on not only gc but
on all the gi's too, simply because, as expressed by Eq.{23), the scattering
is a function only of differences of b's. In Ref.6) it is however shown
that in the case where one on the average has many particles in the final state,
then the averaging over all the unocbserved particles gives the result thaf the
Py -dependence depends only on the b-structure of the observed particle, <.

To obtain this result one has to infer a smoothness assumption on the
impact parameter amplitude. Since hadrons are assumed to be extended objects
with spatial extension of the order of 1 fm, we also assume that An is signifi-
cantly different from zero only in a limited region in g-space with extension
= 1 fm. We furthermore assume that n 1is big enough so that An » 45 a

. 7 . .
function of bi’ is approximately constant over a range of the order of 1 fm/n.

From this assumption one can show that6)
)
1 2, 2 L (24)
¢ (p) =~ Iy &y
n PL @Y n Abz Abnl ‘%ch‘].o(l’LE’JAh(b,,lbf'ZE [,I’I): ’E‘)l
o 1:2 ", }

and we see explicitly that the -behavicur is now completely determined by

Py
the singularities in the bc-plane.

6. Unified b-plane Structure for Exclusive and Inclusive Procesgses.

In order to unify the description of Py ~distributions of inclusive and
exclusive two—to—two processes we summarize what are the b's pertaining to
inclusive and exclusive scattering. The b appearing in Eq.(9) is the relative

distance between the two final state particles and we have (see Fig.3)
arb—c+X :  b=b,

atb—c+d b= bo—b‘;

(25)
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From here it seems plausible that the RCd of Eq.(18) should be composed

of two terms
R =R + R (26)

where Rc and Rd are some characteristic lengths (production radii) associated
with particles ¢ and d. We here already implicitly made the assumption that
RC q are independent of the particles a and b in the initial state.
L]
The result (26) is obtained if we associate singularities to the position
b. at b, =i Rj' From Eqs.(25) we then get the singularity bo of Eqs.(18,26).

] )
. . _ ' . v _ -~
We also get singularities at b = % b0 with bO 1(RC Rd). If RC Rd
this interaction will however be very central (almost point-like) and we expect
such terms to show up at much larger values of Py than the contribution

given by the singularity bo.

It is now clear how, within this scheme, one is able to relate the P, -
distributions of inclusive and exclusive processes. From Egs.(25) the impact
parameter, b , for the process a + b+ ¢ + X 1is given by the impact parameter
bC of the observed particle, ¢ . bc has singularities at =i RC and these

produce a -spectrum of the form

Py

do ~2R_ b

II?T (ah>crX) ~ e (27)

In the whole discussion of inclusive distributions we have considered only
the transverse variables. In addition to the transverse position b (or the
transverse momentum p, } we choose the longitudinal momentum , pu , and the

missing mass, M , which for each process (19) is given by

M = Z v hf-\- Eﬁf’ (28)
A=A ?

as the variables specifying the inclusive amplitude. This we do because b
commutes with pll and M and not, for example, with the more conventional

variables v¥s and x = 2p“ /Vs or the scattering angle. RC is therefore in
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principle a function of Py and M. We have, however, in the analysis of
elastic data seen that RC is independent of Py and since we mnow assume that
Rc is independent of the other particles we must have that RC is also inde-

pendent of M .

From Eqs.(17,26,27) we can relate the inclusive to the exclusive P, -
distributions. It is clear from the observed P, —-distributions at ISRI) that
the form (27) only works in a limited P, —range. On Fig.4 we compare the radii
as found by fits to the ISR data in this P, —range with the pion and nucleon radii
as calculated from Eqs.(16,26):
1

3.25 £ 0.25 Gev = Rp

2.05 + 0.05 Gev ! (29)

==}
[

On Fig.5 the inclusive data at s = 52.3 are compared with the fits of the
form (27). The fact that we look at data at a fixed energy instead of at a

fixed missing mass is unimportant since in practice here +s = M.

The inclusive kaon slope Ry is over the ISR energies comsistent with

Rg = 2.5 GevV | . (30)

This taken together with the Rp of Eq.(29) gives us a value for RKP = Rk+ RP.
This is in Ref.6) confronted with the 90° cross section for the process
kfp-?l(+p. The data for this process are not by themselves good enough for

a determination of a slope but the comparison is satisfactory.

In conclusion the comparison of slopes in inclusive and exclusive P,
distributions works well over the whole range of ISR energies thus confirming
the simple factorization property of the contributions from the radius singularity
expressed by Egs.(17,26,27). We furthermore consider this result as strong
evidence for the physical significance of the production radius RC associated

with each type of produced particle, c.

7. General Two-Component Structure of Inclusive p, — Distribution.

As mentioned earlier the description of the inclusive data in the whole
Py ~range of the ISR experiments requires an extra component in addition to the
radius contribution of Eq.(27). In Ref.l) is presented a parametrization of

the inclusive data which at pll = 0 can be written as (here we use that Vs = M)
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.‘Ji . "Q-RF.L £(x.) 9_£4_
E ‘PF - C(M) e + (Pf,{_mz)N ; X = M , (31)
1}

The second term of Eq.(31) is dominating at large values of P, and M.I The
particular form of this term is discussed theoretically in the constituent inter-
change model of Ref.2). For the production of pions, kaons and nucleons the
parameter m 1s in the range 1.0 £ m £ 1.2 GeV and £(x) is in a limited range

of x gilven by

| P
{m: (1_«,)‘/';; e X (32)

with v * 12, The power N is N I 8.

Whereas the first term of Eg.(31) in the b-plane is described by a

. . 2 2 . . . .
singularity at b = - R the second term is described by a singularity at

b = 0, see Sect.3, and the natural interpretation is, like in Ref.2), that we

here see the effect of the point parton interactions.

The parton interaction is by Egs.(31,32) seen to descrease monotonically

with decreasing M at fixed value of P, - Application of the correspondence

7)

principle of Bjorken and Kogut ’ then implies that the exclusive two—to-two

Py - distributions {(low missing mass) should be dominated by the radius

singularity over a much larger p, ~range than the inclusive QL —distributions.
This is in agreement with the results discussed in the previous sections, where

no significant trace of an extra component at large was observed in elastic

P
4,
data in addition to the pure radius contribution of Eq.(17).

. . + = . . . .
8. Application to e e Inclusive Distributions

In carrying over the general ideas presented in the previous sections to
e'e” annihilation there is one obvious change. Since efe  annibilation is
thought to proceed via one photon exchange we are lacking the preferred direction
which we had in hadron-hadron collisions. If there is any similarity between
the two cases one would therefore expect the inclusive p-distributions (p =
total c.m. momentum of the observed particle) in e’e” annihilation to be similar

to the'pl;—distributions in hadron-~hadron collisions.



To explain the inclusive e'e” data several models have been proposed. They
fall roughly into two classes. The quark parton picture and the cluster or
thermodynamical picture. The cluster models give p-distributions of the type of
the first term of Eq.(31) and the parton models give contributions like the
second term of Eq.(31), where now Py is replaced by p . In comparison with

data none of these models work: either they fail at large or at small p 17).

£D)

In the following we argue ' that the data at presently measured emergies contain
. . . . . . + - ey . .
both components and that the inclusive p-distributions in e e amnmihilation have

the form of Eq.(31) with, however, replaced by p.

Py
First we show that the invariante e inclusive distributions contain at
low c.m. energies, vs , indeed a large cluster component with the same radii
for w , K and p as found in hadron-hadron collisions. This is illustrated
on Fig.6 by the DASP datas) on the ¥(3.1) resonance of inclusive production
of m's, K's and p's. The data are excellently described by the cluster

component

E. Ad-cwsrez "ZRLF

N ;;;—— (316ev)= Ce (33)
and we emphasize with the same radii as found in hadren-hadron collisions,
Egs. (29, 30).
8)

The SPEAR group now has data in the energy range between 3 and 7.4 GeV 7.

Unfortunately they have made no particle separation and we have to choose an

average radius (R), RPé <RY & Rg , in order to describe the charged particle
inclusive distributions. With the choise {RY> = 2.5 GeV_], see Eqs.(29,30),

we compare the experimental data on Fig.7 with the cluster component

do, -2<R>P

E :I;Fiﬂ__u_ = Ci({;ﬁ) €

The strength, C(Vs), is obtained by normalization to the data at p = 0.3 GeV.

(34)

It is seen that the low p data are nicely described by (34) even at the highest
energy, Vs = 7.4 GeV. The function C(vs) is shown in Fig.8 and compared with

Iof , from where we obtain
tot

C (J;) :. (10 GeV-z) G;t(\rs_) . ' (35)
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It is clearly seen from the peak in C(¥s) near 4.1 CeV that the cluster
component includes the resonances and this is just what one would expect if our
physical picture is correct, where the cluster component describes the isotropic

decay of fireballs.

The remaining part of the cross section should be the parton component
E dc}%RTON/ij and similar to the second term of Eq.(31). It is an interesting
question to see whether this contribution obeys Bjorken scalingls) for p =+ =,
If this is the case we have N = 2 and on Fig.9 we plot
(p2 + m2)2X~2 EquARTON/d?P as a function of the scaling variable x = 2p//s.
The significance of the factor x is discussed in Ref.9). The mass para-
meter m is chosen as m = 1.2 GeV, i.e. in the middle of the range required by
the various particles at ISR, see Sect.7. We see that the plotted quantity
does indeed scale (within appreciable errors at large x) and it is furthermore

well approximated by an exponential, cf. Eq.(32). This means that

JGP“““ 2, 2 -~ax &3 Y- %
S dx =D F’+m‘ % =D (x'-* 4_S_m_’)°'e (36)

where D = 1.83 x 104 nb GeV2 and a = 6.05. Here it is explicitly seen that
the parton component asymptotically obeys Bjorken scaling where the approach

to scaling is set by the mass m.

To summarize the main points of this seciion we have seen that the e e
inclusive p-distributions can be described by a sum of two terms, a cluster
component and a parton component. The full line om Fig.7 represents the sum
of these two contributions as given by Eqgs.(34,36). As seen by Eqgs. (34~36)
the parton component becomes more and more important as energy increases and
eventually one is left with the pure scaling parton component. TFor the further
discussion of the interesting physical quantities <E_,,> and a7 the average
energy per charged particle and the average multiplicity, within this scheme

we refer to Ref.9).
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Figure Captions
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1:

+*
Differential cross sections for ﬂIP -"n"F at given values of Py -
Data from Ref.12). Curves are parametrization of data of the form (15).

The lower scale is used for all given values of p"

Py
Differential cross sections for pp=» pp at given values of Pu
Data from Ref.13). The straight lines all correspond to exponential

~-8.28 p,

behaviour e The lower p, scale is used for all given

values of Py
Impact parameter for inclusive and exclusive processes.

The % ,K and N radii. The bands give Ry and RP as
calculated by Egs.(16,26) from N and pp elastic scattering.

The points are the radii as estimated from the ISR 90° gpectra for
+ - + - -

(), T (o), K (a), K (8, p(s) and p(4).

o]

The ¥, K, p and p spectra at s = 53 GeV and ecm = 90

compared with the contribution from the radius singularity, Eq.(27}.

. . . . + - . 4 t
Tpvariant cross sectioms for inclusive e e production of L. K
and p at s = 3.1 GeV. The full line represent the cluster

contribution, Eq.(33), with the slopes given by Eqs.(29,30). Data

from DASPB).

Invariant cross sections for inclusive charged particle production.
The dashed line gives the cluster contribution, Eq.(34), the dot-
dashed line the parton contribution, Eq.(36), and the full line the

sum of these two contributions. Data from SPEARS).

The strength, C(/g), of the cluster component, Eq.(34), compared with
o} (/g). Data from SPEAR 8).

tot
The scaling parton cross section. Data from the energies {E = 3.8,

4.2, 4.8, 6.2, 7.4 GeV.
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