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Abstract

We attempt to refine and extend the predictioms of geometrical scaling
by describing deviations from a simple geometric pomeron picture in the

P1ab region above 20 GeV by the effect of a real, energy—independent,
‘Re A

- - - » . L r r ———
relativistic potential. Our model predictions for g To Al t=0

do d =
tot® d¢ @ P

are in fair agreement with existing pp data. The extension of the scheme
to pp scattering is also presented. We work within an impact parameter
framework which renders a convenient symmetric impact parameter state
formalism by the use of proper canonical variables. The latter are applied
in a phenomenological study of differential cross sections, so as to ob-
tain information about the analytic structure.of the scattering amplitude

in the impact parameter plane.



I. Introduction

The ever increasing amount of experimental data on pp scattering calls
for a flexible phenomenclogical analysis as well as preferably simple
tﬁeoretical frameworks. The main points of current interest include the
behaviour of total cross sections from intermediate energies up to ISR
energies and in the asymptotic region beyond ISR, the detailed structure
and energy dependence of the differential cross section and the energy

dependence of the scattering amplitude phase.

For Ep gscattering experiments do not extend so far up in energy and
consequently the analysis of the transition between the asymptotic re-
gion, where pp and pp scattering are expected to show similar features,
and intermediate energies is not so clear. Also at lower energies, say
below Plap - 50 GeV spin effects in pp scattering should be apprecia-
ble and more complicated models involving the different helicity ampli-
tudes have to be constructed to fit the available polarization data ]).

In the following it will be assumed that corrections due to spin effects

can be neglected. The concept of geometrical scaling (GS) 2) has been
*
successful in describing some gross features of %% for pp scattering )

*
) It should be noted that the forward diffraction peak, down to the

minimum, can be described by a universal energy-independent and also

process—independent curve even at very low energies if the quantity

dg , do -1 . do -1
I ( 35l e=0 ) is plotted versus e t=0%1

and 5.M. Roy, Phys. Rev, Lett. 24(1970)28 and Phys. Rev. D1(1970)2638.

, as shown by V. Singh

This feature extends also up to ISR energies, according to private

communication by Professor V. Singh.

such as the energy variation of the dip and second maximum position.

With further assumptions one may alsc see a connection with KNO sca-

3). Although the range of validity of GS has been studied exten-—

4)

ling

sively its theoretical basis is not quite clear. If cross sections

behave asymptotically like lnzs there exist rigorous results 3) actu-
ally proving GS. At present it is hard to distinguish between a lns or

a lnzs behaviour experimentally, although our fits to the data seem
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to favour slightly the latter possibility.

Being a geometric concept GS is naturally formulated in an impacf pa-
rameter space (using however a mixed representation), Physicaily we in-
terpret GS as the effect of a geometric pomeron which dominates the
scattering at asymptotic energies and thus characterizes the rising
cross sections. The effect of the geometric pomeron may be extrapola-
ted downwards in energy (as exemplified by the smooth T for pp scat-
tering) but at lower energies it will be changed by other effects gi-

d

ving rise to the detailed structure of o and E%' In a Regge approach

tot
these corrections would be determined by the contribution of the dif-
ferent Regge trajectories. In spite of the popularity and good agreement
with experiment of Regge models they have two important draw-backs:

a large number of unknown parameters and a rather unnatural position

of the pomercn among the other Regge trajectories.

We will attempt to describe the corrections to GS by a relativistic,

6)

energy—independent potential . This may of course be thought of as
connected with the p-meson Regge trajectory exchange. However in this
language we find that appart from the Regge pole term there must be
at least one Regge cut which actually gives a stronger contribution

than the g-Regge pole,

: . 7). .
Essential to the impact parameter approach ) is the use of canonical

6,8)

variables so as to be in accordance with general principles of
quantum mechanics, leading to a more physical phenomenological analy-
sis. We choose impact parameters which make the scattering formalism
symmetric with respect to incoming and outgoing impact parameter sta-
tes and display explicitly the time reversal invariance of the ampli-

tude.

The plan of the paper is as follows: In section II we define the impact
parameter approach in terms of our canonical variables and construct the
scattering theory. Some further details are given in an appendix. The
relativistic, energy-independent potential is introduced in section III

and the expression for the scattering amplitude is derived in the eiko-



nal approximation, This contribution is added to the GS part and the re-
quirements of crossing symmetry are discussed. In section IV we give the
parametrization of the GS and potential parts as fitted to some appropriate-—

ly chosen 0 and do data. Subsequently the model predictions for o

dt tot?
do and p = Re & are compared to the experimental pp data. The more
at Tm A|t=0 P P P .

experimentally inclined reader may jump directly to this section. The
corresponding extension of the model to pp scattering is discussed in
section V. A phenomenological analysis of some pp data is performed in
section VI using our impact parameter variables. Finally in section VII

follows a discussion of our approach and results,

IT. The Impact Parameter Formalism

In the classical theory of scattering the concept of an impact parame-
ter is very natural and simple since it is directly related to the ge-
ometry of the scattering process but in quantum theory one has to make
sure that the scattering variables are chosen as commuting observables.
Besides the proper choice of canomical variables there is also the spe-
cific quantum mechanical problem of choosing asymptotic scattering sta-
tes fulfilling certain physical requirements. The impact parameter re-—
presentation > has been studied in particular by Chang and Raman, and

8)

more recently Elvekjaer and Petersen reconsidered the formalism with
special emphasis on the use of canonical wvariables. In this work there
was a distinct asymmetry between incoming and outgoing states, which is

absent in our approach due to the choice of some new canonical variables.

Let us start by considering elastic scattering of two particles with

masses m, and m,. Although one -might go through the formalism in the

general case we will for simplicity state our results for the case

m=m, =m, (e.g. pp scattering). Also complications due to spin will be
neglected. The incoming momenta are denoted by 9y» 4, and the outgoing

ones by Pis Py The total 4-momentum is P = 4 * 4y =Py * Dy and we

have the usual invariants s = P2 (>0), t = (q1 - p]) and u = (qI - p2)2.
In the unequal mass case one may define the so called Wightman-Girding

vectors



_ 1 _ _ 2 _ 2
(2.1)
1 _ _ 2 _ 2
p==5 (P, Py - (m" - m") P/2s
which in the equal mass case become simply
qa=+ (¢ = 4,)
2 ] 2 (2.2)
=3 () - py)
P=7 P TP

For on-shell scattering q12=q22=p12=p22=m2 we notice that g and p
are perpendicular to P, i.e., p:P=q+P=0. Let us further introduce the ave-

rage momentum g = % (q + p) (K2<O) and two other spacelike vectors e,

and e, with e]2 =e, = -1 perpendicular to each other as well as to P

and k. We thus have an orthogonal set of 4—vectors (P,K,el,ez) where P is
timelike and «, e/, e, are spacelike. For an arbitrary 4-vector cne may

where ; = P//gf, ; = K/VCZE

s

write decomposition v = voP + vk tve

and e is in the (el,ez) plane with e” = -1. The projections Vps vy VL
e s s . 2 2 2 2 .

are relativistic invariants and v° = Ve T v" V. Making the tran-

L —> - -
sition to the c.m. system one sees that the 3-vectors ql——> q, q2—-> -q
- - - - . .
and p]——> D, p2——> -p. Since all relative momentum 4-vectors have a va-
nishing P-component in this system in effect we have only space-like

3—vectors 1in the translated (P,K,e],ez) frame. It is now easy to see that

Py = qy
(2.3)
P =79
and it follows that

2 2 2
s = 4 (q” + ql +m)

2
R

We now introduce the two-dimensional impact parameter as the coordinate



space variable canonically conjugate to the transverse momentum, i.e. for

. N A . . e -
the incoming particle we vave the pair of variables (bi’ql) and for the

. = o . . .

outgolng one (bf’pi)' This allows us to have a symmetric impact parameter
description of initial and final states in contrast to earlier approaches 8).
As stated above spin will be neglected in constructing the scattering
formalism; if it however were to be included the spin quantization axis

should presumably be taken along our parallel diredtionm.,

In terms of the free two-particle states [q”,al> in the c.m. system

we define the impact parameter states (IPS) as

2 R 2
d qL 1b-ql

= _ 1 -
b [ SR 2.5)
where W = q° = (q”2 + qu + m2)1/2 . The amplitude for transition between

initial IPS |q” ’gi > and final IPS [pll,gé > 1is derived in the appendix

with the result of equation (A.7):

2 .
- d q_]__ ‘l-C-l’_L'g F(q I sal)
T(q) B = S e e (2.6)
(2m) 4q Vs

where b = b, + E& y 9= (q”2 + qLZ)]/Z

; and s is given by (2.4) and

d . . A . B . .
F(q” ,qL) 1s the invariant Feynman amplitude. The inverse relation is

- /s 2 ial.g =
F(q” ,qL) = 4qVs d“b e T(q” ,B) z.7)

The interesting thing to observe in these transforms is that the transverse

2 _ .1
ql = A t . Another

momentum is directly related to t by (2.4), i.e.
good feature of (2,6) is that the integration is wholly within the phy-

sical region,

It should be emphasized here that the two pairs of variables > 9y and
s, t, although formally different, are numerically almost indistinguishable

in high energy (Py,, > 20 GeV) small momentum transfers (Jt} <5 GeVz)



region considered in the next three sections. The important differences
appear only for small energies and large angles and to investigate them
we perform a phenomenolegical analysis of the data from the latter region

in section VI,

ITI. Deviation from Geometrical Scaling

Geometrical scaling may be formulated in different ways 2,4,9) , however

we will take the peoint of view that GS is reflected most clearly in the
properties of the inelastic overlap function as indicated by the smoothmess

of the total inelastic pp cross section down to Plap 20 GeV.

The hypothesis of GS amounts to assuming a representation of the form

T(a, B = (O @R, » + 1@, B (3.1)

1

-
with T(])(q“ ,b) - 0 as q” - = , Here we follow section II and use for-
mally variable 9 instead of the non-canonical s. Using (2.7) this may

be translated into a property of the differential cross section

de _ 1 2
I e Al (3.2)
where
-1
A= (a/5) Flq ,q)) (3.3)

The universal function R is to be found from experiment and is intuitively
interpreted as a measure of the hadron radius as seen from the relation
R ~ Vctot valid at large energies.

As there is not sufficient experimental data to determine R, we will con-

sider two possibilities for large s, namely R . lns and R® - lnzs.

The latter possibility represents a saturation of the Froissart bound up



to a constant and is of a particular interest since one can give in this

case a rigorous proof of (3.1) based on analyticity arguments 5) .

In the case of exact GS we define the profile fumction T by
Aqy 4 =41 j a%b exp(iB-3)) T(q; ,B) (3.4)
and the eikonal y by

r(q|[’b) =1 - exp(i X(q” sb)) (3-5)

We thus have

XGS(q“ yb) =—XGS(b/R(q” ) (3.6)

The total inelastic cross section is given by

- 2 - -
SIS J d“b [1 - exp(-2 Im XGS)] (3.7)
It follows that 0" Rz(q” ) and the fact that the experimental %in is
smooth down to quite small values of Plap 5 GeV makes us believe that

GS alone gives a realistic description of 9in®

Later in section IV we shall assume that Xeg is purely imaginary (be~
fore invoking crossing symmetry). The important point is however that
whatever mechanism induces deviations from GS it should not contribute

to Im x in the considered energy region.

With this in mind we propose to represent the deviations from GS by the
simple ansatz of a real, energy-independent, relativistic potential V.
In the energy region we are working it will be sufficient to derive the
contribution of the potential to the amplitude in the eikonal approxima-
tion. As will be seen in section IV the specific energy dependence thus

introduced, which obviously breaks GS, will be able to represent the expe-—



rimental data quite well,

In order to find the amplitude for the potential interaction we may for

instance start by rewriting the Weinberg infinite momentum propagator 0)
*
as follows )
2 ) 2 2 -1 -1,,-1 2
G, dn d"q = {Zn(l'n)(s-(Q_L +m) n o (1 -n D} dnd”q
1 -1/2 , 2 1 2.~ 2
5 8 (q |q_P=0 tg s - n) _dq” d%q, (3.8)
1 -1 2,-1/2 , 2 -1 -1 2
=5m (4mE + m"”) (q |q-P=0 m  + E) dq” d"q,
where E = 1/4 sm_] ~m, n 1s a normalized light cone variable
n=1/2+ (q0 + qP) (P0 + P')-—1 with P0 denoting the time component and

P” the length of the space part of the total momentum P. The position of
the pole in eq. (3.8) is at E = 1/4 sm_1 - m ., E has the following pro~
perties: i) it vanishes at threshold, i1i) in terms of the relative three-
momentum in the c.m. system it is E = 1/2 lﬁlz (—;—-m)_1 , thus for small ?,
E is simply the known relative kinetic energy correspending to the reduced
mass 1/2 m, and iii) for an arbitrary momentum E is given in terms of

an invariant, so it can be named the relativistic, relative energy. Si-
2| -1
q

q-p=0 ™ the relative kinetic ehergy operator. The

milarly we call

/2 -1/2

factor (4mE + mz) appearing in front in eq. (3.8) we do not

inelude in the definition of E since it originates from a Jacobian and has

s_]/2 is also absent

-1

no relevance to the position of the pole. Therefore

in the definition of the kinetic energy operator m

2]
q q.P:O

The next step in our reasoning is to write down an eigenvalue equation
o kK
with E being the eigenvalue., This equation ) 1s

) For the derivation of amplitude in the potential eikonal model based

on Weinberg propagator and infinite momentum variables see ref., /11/. Here
we only give arguments for the potential independency of energy.

) Independently of our arguments there are two other supports for this

equation, 1) The relativistic quantum mechanical approach, givem by F. Co-
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2 -1
|

qp=o™ TV ¥=EY (3.9)

{—q

providing V is E~independent. We emphasize that eq. (3.9) is an eigenvalue
equation if, and only if E appears only on the right hand side, and in a
linear way. Therefore V must be energy-independent. From eq. (3.9) one finds
the eikonal approximation to x choosing as the eikonal direction

2 11)

K = %-(q + p) (with k© = - u) as follows

IS

(3.10)

pot I

X, = =M ()12 J V(b? + ruz) dr

The corresponding profile (properly mormalized) turns out to be

/2 o iy

I
(Cw) (F — e

r - pot,
(s - du)/?

pot

. However in practical calculations the

factor in front is almost unity and will be omitted. To get the total

profile T we simply assume that

r=1- exp(leS + 1Xp0t) =‘TGS + Fpot - PGS Fpot (3.11)

Since Im Xpot = 0 the relation (3.7) 1s obviously unaffected.

ester, S.C. Pieper and F.J.D. Serduke, Phys. Rev. C11(1975)!, leads to

an integral equation version of this equation after using the result of

T. Kato, Pac. J. Math. 15(1965)171, ii) The limiting case of one of the
masses becoming infinite gives the proper relativistic Balmer formula

for the hydrogen atom. For details see E. Brezin, C. Itzykson and J. Zinn-
Justin, Phys. Rev. DI(1970)2349, and I.T. Todorov, Phys. Rev. D3(1971)2351.
Our equation should be contrasted with commonly used equation proposed

by R. Blankenbecler and R. Sugar, Phys. Rev. 142(1966)1051,
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The expression (3.11) is our ansatz for describing scattering in the ener-—

gy region Piap > 20 GeV and one notes that the approach to GS is comple-

-1/2

tely determined by the damping factor (—u) in equation (3.10).

Before we can apply this it is however necessary to consider the require-

ments of crossing symmetry 5’9). We will assume the GS part to be even un-
der crossing, i.e. we require T(velﬂ,t)‘= T*(v,t) where v = E%E . The pro-

e—lﬂ/Z

per crossing variable is thus v . In the energy region under con-

sideration we have v ~ s ~ ~u so in the GS part we simply have to make
. . -1 . in
the substitution § =5 e in/2 i.e. In s > 1n s - %—- . In the poten-

|u|_]/2 which

tial term the damping factor should be written properly as
makes it invariant under crossing (in the high s limit under considera-
tion), however because of the factor i in the exponent the potential
changes sign when going to the crossed reaction. The potential term is
thus not invariant under crossing. Also one notes that the real part of
the amplitude will now receive important contributions from both TGS and

rpot as will be discussed in the next section.

IV. Model Predictions

. . . do
Our predictions will be for the quantities Tvot® %in’ Y%e1’ Tt and
Re A . : ,

p = Tﬁrﬁwt=0 . If we denote the Fourier transform of the profile
P(q,g) (for shortness we write q instead of q” and use momentum tran-
sfer A = qu) by T(q,K) our normalization is such that

Oeor = 2 Re T(q,0) (4.1)
and

_ _Im I:(Q:O)
e = Re (qso) (4.2)

where q2 = sf4 - m2 in the forward direction. Also

%%=Zl?; (e, |? (4.3)
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The scaling part has the form
~ 2 V
Fog(@,8) = € R7(Q) dc (D) (4.4)

where T =R A and ¢GS(0) = 1, The function ig fitted to the

¢GS
do . ,
I at Piap = 1496 GeV according to a representation as a

sum of Gaussians

data for

(t) =% A, e t . (4.5)

We find the best fit to be given by

= 0.82683, A, = 0.17587, A, = ~0,00270,

14.57, 8,

b
[

2
B, = 3.47, By

0.4542.

According to (3.10) we have for the potential part
X =-Z I V(b,r”) dr” and for the potential itself we assume a

pot 2q

Gaussian shape of the form

V(b,r”) =V exp[—wo(b2 + rllz)j +V, exp|:—w1(b2 + r”z):[ (4.6)

This enables us to evaluate all integrals explicitly and give the results

in a convenient series form. For instance one easily obtains

T . (@8) == T ( )« ) (—)
pot n+m>0 24 VWO le
o8
L r A ) (4.7)
n! m! nw +mw
o 1
. . . . 1 1 . .
This is of course an asymptotic expansion in — ~ — and in practice

it turns out that all terms but the first few may gg‘safely neglected,
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The expressions (4.4) and (4.7) may now be inserted in (3.11) to give the
do

total profile, Next, from a fit to the data for I

at Py < 21,1 GeV we

determine the potential parameters in (4.6) with the result Vo = 0.6238,

W, = 0.02512, Vv, = -0.170, w, = 0,01259 in GeV units. Qualitatively this

1 1
represents a strong repulsive core with range ~ ] fermi and a small at-
tractive tail. For the function R2(s) appearing in (3.6) we have consi-
dered two different parametrizations which give good fits to I linear
and quadratic in ln s. Obviously the most straightforward way would be

to perform a fit to %in data based on the relation Oin ™ Rz(s). However,
due to the big uncertainties in Oin measurements, this quantity turns

out to be rather insensitive to the small changes of parameters whereas

the same changes produce fairly big deviations in and p . There-

g
tot
fore we were forced to include the latter in our fit. In this way we found

two parametrizations:

R %(s) - 1+ 0.070 In s, | (4.82)
2 2
RII (s) ~ 1 + 0.,0042 In"s. ~ (4.8b)
The first one is almost exactly equal to the Barger fit ]2), R2(5)~1+0.0681ns

13) turns out to

and after inclusion of latest data of Carroll et al.
give clearly worse fit than (4.8b). Thus we took the second possibility
as the final scolution to be compared with experiment.. '

In Figs. 1-3 we display our results for pp scattering. In Fig. | the data 13)

for Teot® Cin and o,y are given together with model predictions
for (4.8b) (solid lines) and (for ot only) the Barger fit (dashed
lines). In each pair of sclid and dashed curves for o the lower one

tot
corresponds to GS contribution only.

The ratio of real to imaginary pp amplitude in the forward direction is

shown in Fig. 2. The agreement is very good including the change of sign.

In Fig. 3a the data for Plap = 21.1 GeV and 1496 GeV which were used to

define the free parameters of V(r) and (1) are presented. Clearly
GS
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the agreement for large t at smaller energy is umsatisfactory, mainly be-
cause of the oversimplified shape of the potential. The dashed curve re-
presents GS contribution in 21.1 GeV case. Also the 1496 GeV data are not
so very well represented by the sum of three Gaussian terms,’especially

in the dip region.

Finally Fig. 3b displays our predictions for %%. in the whole energy

range above 20 GeV. The agreement is quite good except for the dip which

is observed experimentally already at 200 GeV and appears in our model

only about 300 GeV. Since this may be caused by subtle interference effects
and consequently would depend strongly on the potential, it should not be

too difficult to improve on this point,

V. Ep Scattering

Compared to Gin(?P), Gin(ﬁp) is not quite smooth down to low values
of Piap but shows a breoad minimum similar to ctot(pp). Therefore our

approach to pp scattering does not translate directly to Ep scattering

by making the simple sign change of the potential as suggested by (3.10).

One possible way out is to make a new fit to cin(ﬁp) ~ ﬁz(s) with

ﬁz(s) = Rz(s) + C s“-l/2

as suggested by pp data. This is a phenomeno-
logical way of including an extra contribution from amnihilation. With
this modification we may use the inverted pp potential to predict all

13-16)

pp data. For C = 1.48 GeV the comparison with data is shown in

Figs. 4-6, Fig. 4 shows g, , and Og1s Fig, 5 - p in the forward

“eot? in
direction and Fig. 6 - E% for py,, = 50, 100 and 200 GeV. Except for ¢
where the experimental data are also quite ambiguous, the agreement is

surprisingly good when one takes into account that apart from one extra

parameter all the results are predicted from pp scattering.

There exists another possibility that the pp annihilation is described by
adding an absorptive part to the pp potential preserving the old Rz(s)
from pp scattering. The relations between these two approaches will be

discussed elsewhere.
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VI. Impact Parameter Analysis

Information about analytic structure of the transform T(q|Pg) (of eq. (2.86))
in the_impact parameter plane b can be obtained from the behaviour of the
amplitude A (as defined in eq. (3.3)). Such an analysis has been underta-
ken previously using canonical variables 8) different from ours with result

8’]7). Using variables as defined

showing some interesting regularities
in (2.4) we show a phenomenological analysis of differential cross section
for pp scattering for fixed q), and varying q, (i.e. t) in Fig. 7, for
the values q = 0.48, 0.96, 1.31, 1.60, 2.54 GeV. Unfortunately, unlike
in ref. /8/, our curves a, = const cross the experimentally measured
area in s, t variables only in few points and our statistics is rather
poor, weakening the conclusions drawn from this analysis. To improve this
situation more measurements in the 90° < Ocms < 180° region would be

necessary.
In spite of poor statistics two features of data seem apparent from Fig. 7.

1. At small values of q, one may get a fair parametrization of the data
by a linear curve corresponding to %%—“ exp(—ROql), whereas at large 9
the data clearly curve up reflecting powerlike behaviour. The first case
corresponds to pure GS, the second may be an indication of an extra com—
ponent from parton'picture 17 dominating at large q - From the point

of view of analytic structure in the impact parameter plane the former

corresponds to a pair of singularities at b = iiRo, the latter to a sin-—

gularity at b = 0,

2, The small 9, data if approximated by straight lines seem to have
the slopes increasing with 4y - In GS picture this would correspond to
interaction radius growing with energy, the behaviour observed also in

ISR region.

The analytic structure in the impact parameter plane may thus be quite
complicated and we have not attempted to reproduce it by our profile pa-
rametrizations in section IV since they are completely regular and our mo-

del cannot be expected to work in this energy region (down to 1 GeV).
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What comes out of the discussed phenomenological analysis is however be-~
lieved to be of importance since the use of canonical variables should
imply that the impact parameter structure reflects a real geometric pro-
perty of physical particles. In particular, as the analysis in refs. /8/
and /17/ has shown, the existence of singularities at b = % iR0 may mean
that each particle could be ascribed a certain radius which characte-
rizes it independently of whether it scatters elastically or is inclu-
sively produced from any initial state. Whether this kind of universa-
1ity holds also in the case of our variables remains to be checked by

the analysis of the other reactions.

VII. Discussion

The assumption of adding a relativistic potential interaction to a geo~
metrical scaling part has been tested in various ways., For the ctot(pp)

it turns out that the energy dependence connected with the potential term
gives rise to GS corrections where the leading (and most important) terms
of type 1/¥s and 1/s describe the data quite well. A formal connection
between a Regge approach (i.e. p , w , and © exchanges) may be noted,

p|1:=0 data also shows the correct energy dependence.

Comparison with
The results favour slightly a 1n25 type parametrization of asymptotic
cross sections., The specific nature of the potentiél appears more clearly

from %% , however as noted we do not predict a dip at Piap = 200 GeV

although-we have one at higher energies. To understand the experimental
dip new elements have to be introduced, possibly spin effects or a dif-
ferent form of the potential V(r). The main features of pp scattering
can also be understood within our framework, although some details stiil
remain to be worked out. Extension of the approaches to other scattering

. + + : . .
processes like 7 p, X~ p should be fairly straightforward,
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Appendix

We use a covariant normalization

-

-, 3 ' |
so that
<al ,B'lgy B = en® s@ - B s - qp (4.2)

The completeness of the IPS corresponding to the completeness of the plane

wave states is expressed by

(21)3 J dqy b lay B> <q Bl = (&.3)
m

The matrix elements of the scattering matrix between plane wave states

for the process 4, + 4, > p; * P, can be written

4
<p]s lequ]a q2> = (2m) 5(P1 + P2 - ql - q2) F(Sst) (A.4)

and going to the c.m., system we get

2.
W -
<p|Ta> = == Flq) ,d)) 6, - qap §G, - ) (4.5)
qv's
with the dependence of F now written in terms of 9 and 9 using (2.4)

and the factor in front is the appropriate phase space Jacobian with

2,1/2

) . Also s is given by (2.4).

2
q = (q” +q’.L'
The impact parameter transform of T is defined by taking'matrix elements
between initial states |i> = |q”,gi> and final states |[f> = IP1P3£>

with p, = q; > i.e. <f|T]i> = T(q”,gi,gf) 8(qy - PP
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This leads to the relation

1 apja’e)  dajg’a}

- -
<py»b IT|q 3b.> =
PPl Plapbs> = o | p—y.

> - > -
* <ppbglpjpp > <p'[Tla'> <q)pq]la)pb;>

2 . = -
_ d7q ETRACH
S8y ey | g e
(27)
giving
2 P - =
d q -ig,+b  F(q,,q,) -
- 1 1 P=1
T(q”’b) = 7 e ——————
(2m) 4qvs
where we have used the relations
1 dqi] | 1 ] av|
Ty Q9> <q» =1
(2n)3 (2W')2 Py I1* =L
and
ia'l-B’

. - 2
<Qh,b|q|P3i>= (2m)"~ 2W 6(qh - q”) e

i i d
+bg) F(q)pq))

Aq/g

(A.6)

(A.7)

(A.8)

(A.9)

As one might expect the impact parameter transform depends only on the

=

. . o .
relative ilmpact parameter b = bi + §£ (we have a plus sign because the

initial and final states have transverse planes which are connected by a

coordinate inversion). In (A.7) T(q!Pg) is seen to be dimensionless

- - + . - - »
since F(qIPqL) is the invariant Feynman amplitude and one may notice

the factor (q/g)_l with its specific dependence on the integration

variable ai .
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Figure Captions

Fig. 1,
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig., 7.

The total, inelastic and elastic pp cross section. The full
lines correspond to the solution (4.8b), the dashed lines to
the Barger fit 12) (see section 4). Of each pair of similarly

drawn curves for the lower one corresponds to GS contri-

o
tot
bution only. The data are taken from ref. 13.

_ Re A

p = Tﬁhﬂlt=0 for pp scattering. The data are from ref. 14..

do
QTE pp for
a) Plab = 21.1 and 1496 GeV,

) Py, = 29.7, 69, 100, 200, 281 and 2048 GeV.

Data are from refs. I3 and 15.

Total, inelastic and elastic Ep cross section. Data are from

ref. 13,

p = ?; i|t=0 for pp scattering. Data are from ref., l4.

(%% for Piap = 50, 100, 200 GeV, Data are from ref. 16,
PP

dg : i

QTE pp as a function of 9, for the fixed values of

qy = 0.48, 0.96, 1.31,1.60 and 2.54 GeV, The straight lines

are drawn only "to guide the eye".
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