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Excitation of Betatron-Synchrotron Resonances

by a Dispersion in the Cavities

by

A. Piwinski and A. Wrulich

Abstract: -

Satellite resonances due to a dispersion in the cavities are investigated. It
is shown that both betatron and synchrotron oscillations are excited. For
betatron wave numbers above an integer the excitation is stronger than below
an integer. Also magnetic imperfections or correcting coils can lead to

these resomances but only if they produce a dispersion in the cavities. Rise

times for DORIS and PETRA are calculated.



1. Introduction

In this paper betatron-synchrotron resonances are investigated which are pro-
duced by the dispersion in the cavities and which do not depend on the chro-
maticity which is assumed to be compensated. The frequencies at the resonance

are given by
Q. =ntmQg (1.1

where n and m are integers.

Those resonances were observed in NINAI) and SPEARZ’B), and theoretical investi-~

. . .1 . . .
gations were given in ’3’4’5’6). But two peints have not been considered which

determine the resonance mechanism.

First, only the change of the betatrom amplitude was considered whereas the
synchrotron amplitude was assumed to remain constant. We will show that both
betatron and synchrotron amplitudes are changed at the same time. Two cases

can then be distinguished: Betatron and synchrotron amplitudes increase or
decrease together, depending on the phase between the two oscillations. This
case occurs for betatron numbers above an integer. If the betatron number is
below an integer, only one of the two amplitudes can increase whereas the other
one decreases. In that case betatron and synchrotron oscillation exchange their

oscillation energy periodically.

Since the synchrotron oscillatiom is considerably nonlinear the synchrotron
frequency changes with increasing amplitude. The particles will come out of
resonance and the amplitudes will decrease. When the initial amplitudes are
reached the process starts again. Those oscillations were studied with a

simulation on a computer.

The second point we want to discuss i1s the question how magnetic imperfections
or correcting elements can excite these satellite resonances. We will show
that distortions of the closed orbit excite the resonance only if they produce

a dispersion in a cavity.

There are several possibilities to suppress these resonances. The normal

dispersion (produced by the bending magnets) can be tuned tc zero in all



cavity sections. Another way is to compensate the effect by a suitable distri-
bution of accelerating sections over the ring and by corresponding Q-values.

The cavities in one straight section cannot compensate each -other. Their con-
tributions must be added which will be shown below. The dispersion caused by
magnetic imperfections can be suppressed in the cavities with help of correcting
coils. One needs at least two correcting coils in all section (with curvature)

between two cavity sections.

2. Solution for Linear Oscillatioms

2.1 Matrix Representation for Betatron and Synchrotron Oscillations

In the linear case, i.e. for the first harmonic (m = 1 in Eq.(1.1)) and for
small synchrotron amplitudes an exact solution for the coupled oscillatioms can
be derived by using a matrix formalism for the betatron and synchrotron motion.

We describe the betatron motion with the two varilables

v, ¥ X
Y, = x'g - xB'/2

with

It

g
(7

amplitude function

é% (s = longitudinal coordinate) .

To simplify the calculation we assume that the amplitude function 8 , the
dispersion D and the derivatives 8' and D' have the same distribution in
all accelerating sections. This assumption is not necessary for an exact
solution, but it reduces the rate of calculation considerably.

The transformation from the end of one cavity sectlon to the end of the next

one is then given by

Y, Cosuiy,  Stnp VY,

= ' 2.1
1—3 3+1 "\Stn//lﬂ'g CCS/M',J‘- %2 a: ( J

with = betatron phase advance .

U
B;



For the description of the synchrotron oscillation it is necessary to take into
account the discontinuous distribution of the accelerating field. Therefore we
subdivide the ring into sections with curvature and into sections with

acceleration.

In a curved section the energy deviation AE with respect to an equilibrium

particle remains constant, whereas the synchrotron phase 2 is changed by

dy =—2.7r£oz)%5 (2.2)

with k harmonic number

2
]

; momentum compaction factor of j-th curved section (7 aj = a)
J

In a cavity section the synchrotron phase remains constant whereas the energy

is changed by
JE = el cosy y (2.3)

with e = elementary charge

s}
1l

voltage of the accelerating section

=
i

synchronous phase

The transfer matrix for a curved section and the following accelerating section
is

AE T el cosy 7 ¢ \[AE
\P

i

0 T 'JZN‘&!%}/E 1 HD 3

A - 27r'£oc}e (/(J- cosy/E eUscosy AE

~ 2o /E 1 ¢ . (2.4]

,§,+~r

]

with the abbreviations

_ AE
Y = E

% =

D
3
R



we get for the transfer matrix of the synchrotron oscillation the expression

1}3 ) ZCOS/L.ESA -7 2(7-(03/&5‘))0(/% %3 . 5}
Y 1 g . %
ij 3?7 P g‘fa
with
Cospy = 1= mhaeUiosy/E (2.6)

For small synchrotron frequencies we have

M, = ﬂrrféoc}eui os y/E

2.2 Coupling of Betatron and Synchrotron Oscillations

1f the particle energy E is changed by SE on the small path length &s ,

the betatron coordinates are changed by

c"réd = dy = —DJE/E
= —DEJs/E/v (2.7)
and
dy, = dx'p - Jyp%2 = ~FJIE/E
= —FEJS/E/v (2.8]
with
F = Dg-Dp/2 (2.9)

v = particle velocity, ( y =

&e



The total change of the betatron coordinates in a cavity section is obtained by

transforming with the matrix
: [ tos AP sinAd |
M(E)af.‘) J = ?%‘[é}“ ' (2'70J
~5thA¢  cos Ad
with

A¢ = ¢Gs,) — ¢Us)

and by integration along the path within the cavity section. s, denotes an

arbitrary reference point within the section.

The integrals are

Sy, = - 7= A% (Deos b + Fsinag ) E ds (2.77)

4

<,

SRR (VI 16X N G N . |
Y, =" FE {]/ /J(SI( DscrA® +Fcos At ) E ds (2.72]
To evaluate the integrals we use an integral representation for the dispersion
D(s)”?
3L
= VB Jiv T cos (Big) -06s) - 70 73
Dis) Zanne ) 3 As) cos (i) -5y ~ m@) de (2.73}
with p = radius of curvature

With Egs.(2.9) and (2.13) one obtains

3+ C
Fis) = Z_‘Z'er)(,é % VA1) sin (] -¢ts) - 6) ofd (2.7¢)

Inserting Eqs. (2.13) and (2.14) in Eqs.(2.11) and (2.12) yields



cf%d = — B—EJJE ds = —_D(s,}i‘,;_é (2.15)

and

cfwém - F“"jl—:d =—-F(5,)5ELE (2.16)

Here we have employed the fact that 1/p is zero in a straight section.

Eqs.(2.15) and (2.16) show that the change of the betatron coordinates in one
straight section does not depend on the distribution of the accelerating
cavities. The change can be calculated as if it were produced in ome cavity,
where the position of the cavity is arbitrary within the accelerating section.
This can also be seen if one takes into consideration that in a straight
section, the dispersion is a particle trajectory performing a betatron oscilla-

tion. The transfer matrix of the coupled oscillations for a accelerating section can

be written in the form

4 ¢ v ~ :
ZDOSJ a/da
c 1 g ~2F,S$ A,
Mo.cc Jq/ ! {2"7 ?)
¢ C 1 2 S;cx/k;
¢ C C 1

The path length between two cavity sections depends not only on the energy but
also on the betatron oscillation of a particle. The contribution due to the

betatron oscillation is given by

dL = | Xy (2.18)

The integral can be expressed by the dispersion and its derivative at the
beginning or at the end of the section with curvature. This can be performed

with help of Egs.(2.13) and (2.14) and yields:

dL = -;— L (D,sin/%—?;BJ)g# +(D,B, + F; sinpay,) 4] (2.79)



th .
Wit BJ = 7 - cog/t,(da. (2,85’)

and
pc- = ﬂ(sﬁ‘)f Do = D(‘Sfjl E = F(Sc)

Y, and y, are the betatron coordinates at the beginning of the curved section.
Similar as for the exitation of the betatron oscillation in a cavity one can show

that the lengthening &L does not depend on the position of the reference point

5. i.e. on the beginning and on the end of the integral in Eq.(2.18), as long
as these points are in the neighbouring straight sections. With
Su = ¢ N

and C = circumference

the transfer matrix for a curved section can be written as

cos/uﬁ)-l Jin/u/% C ¢
R “CSf; 0 v (2.27)
!'-U"‘U,A 0 ] /1 O
| —g(quvaé“E%J ”g/(@%*@_ﬁ'nﬂg ‘-9(}/7( “1
7 [2.22)

with f} - EXC[}C

The transfer matrix for an accelerating section and the following curved section

M.

J ac, Cury,g

is given by

I

/ Cos M+ 8, Sinuy #D.6, 205, -2BS «/k
My Rk, cosph, +F, 6, <FS, RSk

= , _ (2.23)
~4, -4, 1-25  28,a/%
TS0 G K edS k T

with
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(,. = J—(.D,Sm/l_‘{)0 oB-)

by = 2ats (BB« Fuing,]

2.3 Eigenvalues and Rise Times

In order to investigate the stability of the coupled oscillations we have to
calculate the eigenvalues of the revolution matrix. The revolution matrix is
the product of, in general, several different matrices Mj (Eq.(2.23)). We will

confine ourself to the case of N equal matrices Mj' In this case is

Muy = Ms /N, Hs; = pas/¥

The eigenvalues of ‘Mj are defined by

f/\+%"2£@/{BJJ(A+/%*ZCOS/JSJ) = 2A{ -11})‘55%},553%(1);{‘}% (2.24)

¢
T

wich A

Eq.(2.24) can be written as
— . - Y i P 2’; : ;
(cos/uﬂz- Ccs/(%)(co&p,“- cos/aié-) = (Los/um 7}sm/apd‘§}g.[ba+f; )“a (2,25)

Eq.(2.25) determines an exact solution for the frequencies of the coupled

betatron and synchrotron oscillations. A resomance occurs for

COS iy 3 COSKhs 2.26)

_x2ni .
o «M“J =M

To determine the solution in the vicinity of the resonance it will be convenient
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to define the deviation of Mg from a multiple of 2@ :

]

with -7 < d‘/uptj .é T

Further we define the change of M.
I

du,
I,

with the assumption that the coupling

and e, due to the coupling by
]

I

/14 - /Uﬂ& (2.250

i

M '_/Usa‘ (2-29}

is small, i.e.

|y, cotping)] < 7

one cbtains for 6u] 2
»

P f-C )2 2, 2
Jun = 2y Gyl ) - Lsalgallierd (7 50)

Eq.{2.30) shows that the phase advance per section can become complex, if

sin UB‘ is positive, that means for QB/N values above an integer,
]

In that
case the oscillations are antidamped and unstable.

The shortest rise time per
revolution on the resonance is given by

N1, dum,,
N‘F“M—CGSMMH/W (2.37)

revolution frequency, N = number of equal sections.
the resonance is given by

il

1
T,

It

with f0 = The width of

A, = = (2.32)

For small synchrotron frequencies the trigonometric functions may be expanded
and one obtains for the rise time

=44 oy 2me (2.33)

A



Eq.(2.33) shows the dependence of the strength of the resonance on the synchro-

tron frequency, i.e. on the accelerating voltage and on the harmonic number.

3. Nonlinear Synchrotron Oscillations

For large amplitudes the synchrotron oscillation becomes nonlinear. The non-
linearity results from the sinusoidal variation of the accelerating voltage and
from wake fields induced by the beam. With increasing amplitude the synchro-
tron frequency will change and the particle comes out of resonances. Thus

the nonlinearity provides a limitation for the increase of the amplitude of
betatron and synchrotron oscillations. On the other hand the nonlinearity pro-

duces other resonances at the harmonics of the synchrotron frequency.

A complete analytical solution which takes into account the coupling between
betatron and synchrotron oscillations and the nonlinearity of the synchrotron
oscillation is very complicated. Numerical solutions are obtained by a simula-
tion with a digital computer (Sec.5). 1In this section we will derive an analytical

expression for the rise times omn a resonance.

For the nonlinear case we assume that the synchrotron wave number QS is small
as compared to 1 and that the change of the amplitudes due to the coupling is
small for one revolution. We further assume that the ring consists of N

equal sections with acceleration and curvature.

We write the betatron oscillation at successive passages of a cavity in the

form
X = Vep, sin(2mpQ +5) (3.1)
XB, = XpL/2 = Vef. cos(2mpGy +4) (3.2)
with € = emittance, g = constant phase angle

number of revolutions

o
il

The emittance can be written as

ep, = X* + B - xpa) (3.3)
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The nonlinear synchrotron oscillation can be written in the form

H

AE
aE -

T %Z £ sin(mQmpQ,+4,)) - (3.4)

S

I TR

m=0

where Vg 1s a constant phase angle. The Hamiltonian of the synchrotron

oscillation 1is

~

H= &+ 2(%;{)1_{ {(4) oy (3.5)

£EQqp is the synchrotron frequency in linear approximation which is not
the same as the frequency fo Qg for the nonlinear oscillation. ff(¢)de

is the potential of the nonlinear oscillation with

flo) = ¢+ {g* +h9>+. .

The change of the betatron amplitude per revolution is then given by

. — N : ‘ ’ ,
dVep, == 3 Q 2 LD sinlamupef)g,) + £ coslom Golp e g )]
| £ _

g mCmcos(Zn-mGsl'p+fi:}+;y;&] (3.%)

7

We take the average of Eq.(3.7) over many revolutions in the case of a

resonance, i.e. if Eq.(1.1) is satisfied. When n/N 1is an integer we get
é‘.l/é[.‘)b = _MTT'QJL Do.';f.”(dfp;hjd’sj-i-f_o Cos(gp;—mgsjjgm [3'3)

When n/N 1is not an integer the average change is zero and no resonance can
occur. This is, of course, valid only if the optical parameters in the
accelerating sections are equal and if the distances between the sections are

equal,

The exitation of the synchrotron oscillation is produced by a path lengthening

due to the betatron oscillation which follows from Eq.(2.19) to be

dL = [Dx + E OB, -x5/2)] 5 (3.9)
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since we have assumed that QS , and in the resonance case also éug is

small. The change of the Hamiltonian is given by

dH Z(%ﬁ)z{(tf) J(f

il

It

2 . .
-_ zi;;?;?gajf q) d@ﬁ ( 3.’70)

if one introduces the usual differential equation for the nonlinear synchrotron

oscillation

¢ + 40l flg) = 0. (3.77)

With | d‘q;: N %—ﬁdl

and after averaging over many revolutions one obtains for the change per revo-

lution
dJH = - W[ D, sin(fy, 7 myd +F cos(y, = myllp, Tep, (3.72)
With

may, = t«&,
Eq.(3.12) can also be written in the form

dH = — -Lff—fc%so-‘ffuﬂ [Dosin{xp; my,) +Fe COSlJ,;-?-‘mJJng’/&/To (313

I -

From Eqs.(3.8) and (3.13) follows

IH ~ 2584, Y. I = 0

or

H— g&;‘ 8/3.; = const, (3.74)
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For small nonlinearities, if the relation

Ur‘_jﬁr

- ” &1 (m=2,3 ...) (3,75)

holds, Eg.(3.14) may also be wrltten as

(A5) — o (xt) = et »

Eqs.(3.14) and (3.16) show the influence of the sign of 5u8 on the resonance.
For QB below an integer (ﬁu < 0) the amplitudes of the oscillations are
limitéd. Betatron and synchrotron oscillation can only exchange their energies.
For QB above an integer (SUB > 0) both amplitudes can increase so far as

they do not exceed other limitations. Therefore satellite resonances for QB

above an integer should be stronger than for QB below an integer.

The maximum increase of the amplitudes per unit time follows from Egs.(3.8)

and (3.13) as

{

Vep, AL v (3.1%)

‘OMAJ .
2, = Axct Vb o, (3.73)

with

A = mrfGyD +F"

4. Satellite Resonances and Magnetic Imperfections

In this section we want to show that the excitation of satellite resonances in

a machine with dipole errors can occur only in an accelerating cavity. The
resonance will be excited if the dipole errors produce a dispersion in the cavity.
In order to compensate the effect one has to compensate the dispersion in the

cavity with correcting elements.

The emittance ¢ 1is & constant of motion in a linear uncoupled machine with
a time-independent magnetic field. e can only be changed by a change of

energy due to radiation losses or due to accelerating fields. The energy loss
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due to quantum radiation cannot lead to a resonance since the loss does not vary
with the synchrotron frequency (except due to damping which is very small). The
only energy change with the synchrotron frequency occurs in a cavity. Thus’
dipole errors can excite a satellite resonance only if they'produce a disper—

sion in a cavity.

But there is the argument that the calculation of the satellite resonance with
help of the dispersion in a cavity produced by the dipcle error gives the same
result as the calculation with the dipole error as a driving force for the
betatron oscillation. This was shown in 6) for a single kick and by meglecting

the local chromaticity, i.e. the curvature of the distorted orbit in the guadru-
poles. The local chromaticity, however, essentially determines the dispersion

due to the distortion and its variation along the circumference. The excitation

of the resonance depends now on the position of the cavity and the two methods

of calculation give different results. But even neglecting the local chromaticity,
the two methods give different results if one considers more than one kick.

This can easily be seen in the case of two kicks. The dispersion which is pro-

duced by two kicks with the deflections @I and 9. is obtained from Eq.(2.13)

with

-1 L . /

_j;— = @,,cpb-s,) + €, ds-5,) L‘r.?)
where s denotes the position of the dipole errox. If the cavity is in the

1,2
section {52 . sl} one obtains

D0 = __*@_ [ GAV/T C03[¢f-¢,—rr&"ﬂ)+9a{/f c‘m('ct-,_-qt_,-ncj,,d (4.2)

25ihTTC%

where the index O denotes the cavity. Similar one gets from Eq.(2.14)

Fo= ——ﬁ_ [ 645 sinl¢,- ¢, Gy )+ G VB, sinldog w00 (4.3

ZS\nfTQ

With

Vep, sinld, # Ja) (4.4)

the change of the emittance follows from Eqs.(2.15) and {(2.16) to be

CP(‘, = _ YE_ [9{/7 sin{¢- ITO *4’,,]%9 f/’a—am(qf PGyt

SIWIYQP
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The change of the emittance does not depend on the position of the cavity so
long as it is in the section {52’51}' But if the cavity is in the section

{51’52} one obtains from Eqs.(2.13) and (2.14)

D

e 2sin H’QA[ 94{/?’ cos{d, -4, +Q,) +92ﬁ: COS(%‘@'"@‘,)] (6.6)

F, = 7ilag |0 snle g 1010 0.0F sinentors)]  (43)

The change of the emittence is now given by

de = =Y [ Q‘(/I Stin (@, + 70y +Jp]+92{/7;.3in(¢z~fr0ﬁ 43,3)}'%_:' («.2)

S(n TFO@

In general Eq.(4.5) is different from Eq.(4.8). If one chooses

Eaffzg = E%.(ﬁ;
=@ T

the dispersion and &t vanish in {sz,s]} , but not in {sl,sz}. The excita-

and

tion of the resonance depends on the position of the cavity. Therefore the
calculation of the resomance with the dipole error as the driving force gives
a different result, since it does not take into account the position of the

cavity.

5. Computer Simulation and Calculation of Rise Times

A simulation of the betatron and synchrotron oscillations on a digital computer
has been done. The coupling of the oscillations due to a dipersion in a cavity
and the nonlinearity of the synchrotron oscillation have been taken into accout.
The following equations are used in the computer program.

In a cavity the coordinates of the oscillations are changed by

& )= E, e Ul sin(y+¢,) - Siny] (5.7)

h+
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qj - (bm [5,2)
X = x-~DI(E, -EJE; (5.3

LR " i -
Y= X (5:4)
wt 1 n
with Ee = equilibrium energy

D' and R' are assumed to be zero in the cavity to simplify the calculation.

Between two cavity sections the change is given by

E = E (5.5)

E "E -D + i ‘¢
b, = ., - ke Bl v Bolsny Ler v (1-wsnr )] (526)

= ¢ o) ’
X.vu-a - LCS/M/‘ Kﬁm s ‘)(h/upﬁcx,qw [5—7)

th:;z = -jmﬂ/b an;/ﬂo * (OS/L{/& Xﬂ:s‘v [58)

The following parameters from DORIS were used and kept constant in all figures:
Do= 1.8 m, BO= 15m, C = 288 m, o = 0.022, k = 480

Eqs.(5.1) to (5.8) were employed for 1200 revolutions. To guarantee the
resonance condition, the frequency of the nonlinear synchrotron oscillation was
calculated without coupling for a sufficiently large number of revolutions.

The initial phase relations were varied to look for the maximum amplitude.
Figs.1 to 4 show the typical behaviour of the amplitudes during the 1200 revo-
lutions. In Figs.l and 2 the betatron and synchrotron amplitudes are plotted
for a QB-value below an integer. Here, the betatron amplitude increases while
the synchrotron amplitude decreases. Figs.3 and 4 show the amplitudes for a
QB—value above an integer. In this case we have a growth of both oscillations

which is then limited by the monlinearity of the synchrotron oscillation.
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The maximum betatron amplitudes that appear during the 1200 revolutions were
calculated as a function of the betatron wave number whereby the synchrotron
frequency was kept constant. These functions are plotted in Figs.5 to 8 for

two different Qs—values and for two different energy deviations. . It can be seen
from the figures that Qgﬂvalues above an integer lead tolarger amplitudes than

QB—values below an integer,

The dependence of the maximum amplitude on the initial amplitude is plotted
in Figs.9 and 10 for resonances on three different harmonics of the synchro-

tron frequency.

For PETRA the rise time of the betatron oscillation was calculated for two
different cases with dispersion at the cavities. In the first case the exci-
tation of the resonance is not compensated by the cavity distribution which
occurs, for example, for two cavity sections in opposite positioms of the ring
and Qx*values above an even integer. In the second case the excitation is
compensated by two cavity sections in opposite positions and Qx above an odd

integer.

The following PETRA-parameters were used:

E = 23 GeV, C = 2304 m, o = 0.00365, k = 3840, § =20m, o = 2.7 m

G = 1.4 « 1073, Q = 0.125, § = 38°

E
The dispersion was pessimistically assumed to be -D_ = 2m. The rise time

TB is defined by

Q

T ==
X T8

The calculation was done for a particle with 1 and for a particle with 6
standard deviations, respectively, in energy and betatron amplitude distribu-

tion.

In the first case we get:

order of TB(lox,lcE) T8(6cx R 60E)
resonances
1 19 usec 24 usec
2 360 usec 48 usec
3 34 msec 312 usec
4 - 1.02 msec
3 - .68 msec
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The results from Eq.(3.17) and from the computer simulation atre in a good

agreement.

The computer simulaticn yields the following amplitudes:

order of XB(IUX, loE) XB(60X, 60E)
resonance
1 unstable unstable
2 15 mm unstable
3 4,2 mm 46 mm
4 4.0 mm 35 mm
5 4.3 mm 32 mm

For the second case, for QB—values above an odd integer, no increase of the
amplitudes was found. However, full compensaticn is only obtained for a perfect
symmetry in betatron phase advance and rf voltage. We estimated that, for
example, an asymmetry of 107 in the rf voltage leads to rise times twenty times
larger than those given in the above table. To aveid these difficulties the

PETRA optics was changed to zero dispersion in the cavities.
Due to the small vertical beam emittance a small vertical dispersion caused
by distortions can alsc be dangerous. This dispersion can be compensated at

the cavities by means of wvertical correcting coils.

Further calculations for several operating conditions of PETRA are prepared.
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