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COLLISION THEORY FOR MASSLESS BOSONS

by

Detlev Buchholz

ITI. Institut flir Theoretische Physik der Universitidt Hamburg

Abstract
We present a complete solution of the collision problem

for massless Bosons in four space—time dimensions.



1. Introduction

We continue here our discussion of the collisicn problem for masslesé particles
in the setting of local, relativistic quantum theory. In two previous papers
we developed a collision theory for massless Fermions [1] and for waves in two
space-time dimensions [2]. It is the aim of the present article to extend this

analysis to medels including alsc massless Bosons.

As soon as massless Bosons take part in collisions one is faced with all kinds
of infrared problems. The most spectacular one is the disintegration of charged
massive particles into infraparticles [3]. A famous example of this phenomenon
can be met in quantum electrodynamics where it is indicated by perturbation
theory that the electron does not have a precise mass due to the Coulomb field
which it carries along. The massless particles however manifest themselves as
real particles with a precise mass in most of the models of physical interest:
they appear either as a consequence of a gauge symmetry of the second kind or
théy result from a spontaneously broken ordinary symmetry via .the Goldstone
mechanism [4]. It is therefore no essential loss of generality if we restrict
our attention to models in which at least the massless particles can be sharply

defined as proper eigenstates of the mass operator.

Another aifficulty in the presence of massless particles is comnnected with the
construction of charged states from the vacuum. It 1s well known that locality
of the charge carrying fields is in general not compatible with positivity of
the metric in the state space. In quantum electrodynamics for example, one has
either to abandon locality of the Fermi fields (as in the Coulomb~gauge) or one
looses positivity of the metric {as in the Gupta—-Bleuler gauge) [5]. TFor this
reason gauge theories like quantum electrodynamics do not fit completely into
the framework which is used in this paper. However we want to emphasize that
our arguments apply to the vacuum representation of the gauge invariant quanti-

ties in these models.

As in our previous investigations we shall use the Huyghens principle and
locality in order to establish the existence of asymptotic fields corresponding
to the massless Bosons. However, in contrast to the models treated so far, the
present construction is burdened with many technicalities owing to the fact that
the asymptotic Bose fields are unbounded operators. It will be one of the main
tasks of our analysis to extract informations from the basic postulates about

the structure of their domain of definition.



In order to solve these problems we need some estimates for vacuum expectation
values of local operators at large spacelike distances. Uniform estimates for
arbitrary configurations of the operators (similar to the massive case) are too
weak and of no use here. However, we shall see that suitable spherical means

of the vacuum expectation values have clustering properties which are sufficient
for our purposes. These estimates, which are given in the Appendix, will enable
us to construct collision states of massless Bosons with the familiar Fock
structure. We shall then see that the (real) asymptotic fields are essentially
selfadjoint on their natural domain of definition which is given by the Huyghens
principle and locality. This somewhat technical result will simplify our proof
that the asymptotic field operators have all the properties of a free, massless
field. Tt will furthermore enable us to construct the asymptotic field algebras

and to establish their local, covariant net structure.

An analysis of the physically relevant representations of the asymptotic field
algebras would be the natural next step in the discussion of the collision prob-
lem for massless particles. If infinitely many massless particles can be pro-
duced in collisions one expects that there appear besides the Fock representation
(induced by the vacuum) other representations in which a particle number operator
cannot be defined. It would be desirable to gain some knowledge about the
structure of these infrared representations within the general framework of local
field theory. Unfortunately, our investigations of these questions are not yet
complete. We mention as an interesting partial result that the representations
of the asymptotic field algebras, which are induced by vectors in the physical
state space, have the local Fock property. This means that the restrictions

of any physical state of the asymptotic field algebras attached to finite space-
time regions (and even to certain unbounded regions) can be interpreted as

incoming and outgoing configurations of massless particles.

As in Ref.[1] we express the basic field theoretical structures in terms of a
field algebra F of bounded operators acting irreducibly on a separable Hilbert
space § of physical states. F is generated by a net O ~> F(0) of local
algebras attached to the open, bounded regions b« RY . We assume that all

local operators commute at spacelike distances:

!/

Flo) e Flop tor 0, 0. (1)



(Models including alseo Fermi operators would require only an additional expense
of notation). Furthermore we assume that there exists a continuous unitary
Tepresentation L+ U(L) of the Poincaré group (:P in W which induces auto-

morphisms of the lecal net:

= (Flo) - WD T U™ - Fle) , Le§. )

The spectrum of the generators of the translations (:r.o, )= X —» uf.ar.)

is contained in the closed forward lightcone. There exists an (up to a phase)
unique unit vector L), . the vacuum, which is invariant under the action of
ULLY . Le fP . Finally, there is a subspace 3{4 c 4 , the space of
massless cne-particle states, on which the uiL), Le f}) act like a re-

presentation of the Poincaré group fP with mass m = O,

2. The Asymptotic Fields

This section 1s devoted to the construction of asymptotic field operators
corresponding toc the massless particles and to a preliminary analysis of their
domain of definition. As in Ref.[1] we define the asymptotic fields as
adiabatic limits of operators A€ F . Actually we shall take not any Ae 3"
but only local operators for which the operator valued functions

x— Ay Uty A ’U_Lx_)"' are arbitrarily often differentiable in the
uniform topology. These operators constitute a*—algebra :‘F; , which is in-
variant under Poincaré transformations and weakly demse in F . So (‘Fo

contains all essential informations about 3"

Now let A be any operator from 3:; . We define for each te¢ R a spherical

mean of A .
A, = -2t fdo JA(L,te). (3)

Here dw=dw(e) 1is the normialized, invariant measure on the unit sphere
82 in IR,3 , € a unit vector which runs over the sphere and 90 denotes
differentiation with respect to the time component of the translations; the
integral is defined as Bochnmer—integral. TIf one applies At to the wvacuum one
gets

dH-1PD d(H+1PD)
L v )H

A, =1 (e - e AQ %)



where H is the Hamiltonian and E the meomentum operator. The right hand
side of this equation is well defined because the operator in the bracket maps
the vectors in HE into the domain of ‘E r'4. However, in the course of our
analysis it will be necessary to interchange the order of the bracket and 18[”4
and the gquestion arises whether the vector HA.Q, is still in the domain of
|E|'4 . One could always achieve this by smearing A with a suitable test-
function. Yet such.a smearing 1s not even necessary. Using similar arguments
as Araki, Hepp and Ruelle in Ref.[6] one can show that for arbitrary local

r‘-.l
operators A € &, .

(HAQ, Wiz HASLY € e (A4 121)73)

and from this estimate it follows after Fourier transformation that HA Q.

is an element of D(IP{™1)

In the next step we integrate £ —» At with a function hT which is
defined by l

hy () = (1T h(tbnlfm“- (t- T)) ATl> 4 (5)

Here h is an arbitrary real, smooth function with compact support which is
normalized according to ‘[dt hit) = 1 .  Thus hq. has support in an
interval around T of a length proportional to InIT] . (It is of no relevance
that we have taken the logarithm ina the definition of tlT . Any other slowly

increasing function would do the same job). We set
= { A > 1 6
A= Jdt howo AL, T (6)

where the integral is defined as Bochnmer integral. It follows then from

relation (4) that

‘a{(H-IEH (HEiPD
)'IE!"'HF\Q., (7)

ApQ = [dt LTm(e - e

So the mean ergodic theorem [7] or the explicit calculations in Ref.[1] can be

used to establish the existence of the strong limits

s-lim A Q= PIRITHAL = P AR (8)

A
T~++o0



where P4 is the projection onto the space 24' of massless one-particle
states. Now if A is localized in some bounded region @, A e 7?((9) .. it
follows from relations (3) and (63 that ﬂ,‘,, is localized in a region which is

for sufficiently large T spacelike separated from any given bounded region .

(94 in the future tangent (O, of (9 .1) So owing to locality one gets for
all Fe F(oy= U Flo)
- 61c: b,
S-lim A, FQ = s-lmFA_= FP AL O
T 00 T oo '
and this relation defines a linear operator A"t on the dense set of vector

{F&L : Fe 3"’((9*,) l . In our first lemma we list some properties of

this operator.
Lemma 1:

Let HE‘}; be localized in some bounded region O c R*, A e 3:(.(9)
a) Then the operator AOUt , which is defined on the dense set of vectors
{F',_Q_,: Fe ?C(zﬂ& by
sut = - H = p H
A" FsL s 1_1.220 - F S FRASL
is closable. We denote the least closed extension of this operator

also by A%ut and its domain by D(Aout).

% . ..
b) (F\*N{)* e A‘m&: i1f in particular A = A then A°"Y s hermitian.

out out

¢) TFor arbitrary F e 3:((9“,3 one has F-D(A” )& DA ") and

out uk
[A . ,F]é = 0 for any é e DA . an analogous statement holds for
out '
A .

Pl

1) As in Ref.[1] we call the positive cone (’)1_

of all pecints which have a
positive timelike separation from © the future tangent of

-




Prcof:

out

a} We have already seen that A is densely defined on the vectors

Fo , Fe¥F(b,) . The fact that it is closable follows immediately

from the relation
(Flsu, A F Q) =

- lm (Fl, AR F ) = Um (Flal o, Fan: (Fle a*sa, Fa)

T T—>eo

which holds for arbitrary F, Fle Flo).

b) This statement is a consequence of the above relation 1f one replaces A

by A®

c) For any Pe D(Rm&')there exists a sequence Fhe .3:(-(71-) such that
S-]_Lm F;SL: @ and $-lim A°"*'F'ﬂ‘ﬂ_‘ - A"“’#é . Hence 1if F‘-G(}‘C@ﬂ
m n

then
s-lim A*FE Q= s-lon FE B AL = s-lim FA™E o - FA™E
m " ™ "

and since A°Y"Y ig closed and s-1im FF, L = F& the statement
) .
follows. I

Remark:

Since the operator A%t s only defined on the closure of {F& : Fe 3:'((74_)1
with respect to the graph topologf it might seem to be necessary to lable A°Ut
alsc by the localisation region © of A (which was not unambiguously defined

by the requirement that A 1is an element of the algebra F(o) ). mnowever

we shall see later that A%"Y does not depend on the precise shape of (

So far the coastruction of the asymptotic fields A% 4id not differ very much
from that of Ref.[1]. However, in order to verify that the unbounded
Operators a%ut may be used to build up the coliision states we have to go now

into a detailed analysis of their domains D(Aout).

The subsequent lemma will
be an important tool in these investigations. In the formulation of this
proposition we have to pay attention to the momentum space behavicur of the
operators in :3% . For this purpose we distinguish a family of subsets
Sil,fieRQ'hq $% . The elements of Sil are all finite sums of operators of

the form



Pn) -k (Pn)

@ oy e Mae . AeF, (10)
where (Pm) = H'no - (Pa) is the component of the 4-momentum operator
P in the positive timelike direction n and ¥(t) 1is a testfunction

with compact support which has a Fourier transform a(w) with an N-fold zero
at W= 0. So with increasing N the operators ing"; behave more and more
smoothly at the origin in momentum space. Each ?:N is a linear space of operators
which is stable under taicing adjoints and which is invariant under Poincaré
transformations. Moreover, it maps the vacuum into a dense set of vectors in

ﬁ(’, e S),. After these preliminary remarks we are prepared to formulate the pro-

position. The proof is given in the Appendix.

Lemma 2:

Let ﬂ“...An be elements of 3:;, , N sufficiently large (depending on the total

number n of operators). Then
a) “A”\ Am.‘,..Q.a“ £ C uniformly in T,

b) lim (K,A 0 A p S E (,A; P, AL ) (Q,AR;, P A, )
T—fc0
if n is even. The sum extends over all ordered pairs out of (l1...n). For

odd m the limit wvanishes.

The fact that the sequences Aﬂ.“' P\m.',.ﬂn are uniformly bounded in T will
enable us to establish their convergence in the limit of large T . There is no
reason te doubt that the limit vectors ‘Pou (A,, .. A“) are just the
collision states of massless Bosons we are interested in. However in order
to verify this we need some more informations. It will be important for our
argument that there exists an alternative way of constructing the vectors

‘IJMt(A1,... A,n) with the aid of the asymptotic fields: ‘-L'M(A“,__ Amhg:“?..g““*ﬂ'

"
We give the precise statements in the following lemma.

Lemma 3:

Let A, A,,... A, be elements of ?N , N sufficiently large.

a) Then the weak limit

wTT‘-l-n A App L= qumv--- AL)



exists. It is multilinear in Ad, Am and depends only on the one-

particle states P,A,Q.,... RA_ .

b) 1;:"“'*(;\“,__ A,) is in the domain of APUE* g

At Bt (p ALYy : BA% AL, AL

) If in additicn A is localized in ® and ﬂ“... A, are localized in the

future tangent (9+of ® , then 'LPM(_F\4,_.. A.,) is also in the domain of

A%%Y and
AT Yt a ALY WHALA,, L AL,
a) We give a proof by induction: for n =1 the statement follows from

relation (8). So let us assume that it holds for (n-1). Now if A,1 is
localized in (9 we get for any Fe Fllb)

Lim (F..Q-, Aﬂ. A,,‘T.SL)=

T .
L * = N +* . - % out
: Tl_*_inw[FA'l'l‘, ‘S)"A'ﬂ‘ AmT‘Q‘) -Tt_t_:"m(‘F R|A4‘Q“’Q1'I" Aﬁﬂs)’)_(Fp‘nﬂqﬂ‘q{ (“2\"‘“-.0)

where we made use of the fact that 31.,1*.9.. converges strongly and
Pgp " A SL weakly (by assumption). Thus the sequence R,'.,"'A“TSL
converges on the dense set of vectors FJSL,F e 3:'((9+) and since it 1is

uniformly bounded (Lemma 2} 1t converges weakly.

. . ) ouk
The statement concerning the linear properties of v (A, - A-n)
needs no extra explanation. In order to verify that the vectors

depend only on the one-particle states P,A,82,... PA, Sl we cbserve

that the relation p,,R.Q. =0 implies Aout = 0 and therefore also
(A*out)* = 0, because (A*OUt)* is an extension of the closed operator
AUt (Lemma 1). Therefore, anticipating part b) cof the lemma we get

out
W (A, An)= (AXowtye . (pXoutyr o =0
if any one of the operators A_ maps the vacuum [SL into the orthogonal
complement of R4 . BLA SL=0.

b) This statement follows from

(A E s, WA, ... A))=

= Um (ApFR, Ayp Apedl) = lim (FQ?A;AW---A“TSL>=LF51,1P°“%A"§A4,---A,,L)),

T—>eo T—>oo



bearing in mind that the set {FJSL: Fe ':"5-'((9+)} is a core for the

out .
operator A by its very definition.

c) 1f $ is any vector in the domain of A“"T* we get

(Aw**‘:b) L-L'ou*(ﬁh va- Am)) = &(é, RM A A"l"‘ 50

because the vectors Ay A qSlare (for large T) in the domain of ACut

owiﬁg to the localisation properties of A}?"'An' So we have only to verify
that the weak limit  to-Tliw Q“"H“T--- A SL exists. Now
Tw mT

HAMAH'M Am"l“sl‘“z = (A°“"’A4v...gm1‘ﬂ‘ Aou&AqT“‘AMT‘ L) -

(AR Ay B AL, ALY = (Amir A Ay A 51, AOUEN qout oy

SHA ¥ A A Ape U AStE ot o )

uniformly in T . ( Here we used patrt c) of Lemma 1, Lemma 2 and part b)

of the present proposition). Therefore it suffices again to establish the

convergence of the sequence f-\w”f-\w--' AM‘S)_ on the dense set of vectors

FJS. , Fe 3:((9,._) . But

Lim (FSL, R™¥A,0 AapS2) < (A% E o 2ot p 5)-

T>w

< (A*E o, WA, A) = (FS, (RFty g (a | A,0)= (FR,W™HA,A

and this completes the proof of the lemma.

1y’

It needs no extra explanation that the whole construction can be carried out
equally well at large negative times 1 . Since the results are completely

analogous 1t 1s not necessary to list them here.

3. The Collision States

We take a break now in our discussion of the asymptotic fields to analyse the
vectors 'LPM (A,y--- ALY . As was indicated above it will turn out that
these vectors are just the collision states of massless Bosons. To begin with

we show that they have the correct scalar products.

Lerma 4:

+ ..
Let F\f,... Am)ﬂm*h... A“ be elements of S:N ' N sufficiently large. If the

first m operators Af, A:; are localized in regions 0,,... b,

. ALY



10

I Y
with a positive timelike separatiom, bl < [(9;_.,,4 J+4 for i=1,... ml,
then
out f A -
("ZP (A A ) w (Awu-o{'l m’3 Z(SL n P A Jb) LS)., ‘n-qE‘ A‘:ﬂ)L)
if n is even. The sum extends over all ordered pairs out of {(i,...n). For

odd n the scalar product vanishes,

Proof:

. . . . *
Owing to the localisatlon propertles of Al,ud%: we can apply part b) and c)

of Lemma 3 and write

u‘: ow’ o
(q’owttﬂ:;)“‘ Af)) wM(Ammv“ An\)=(A:no A: t-n:, q:’ uk‘-amnw--- Am.\)z
= (S, (Ao (AXOH PR, A) = (8, L™ a,,..4.0).

On the other hand we have 1-1:"°“t(,ﬂ4,... ALY = w- lim A, Su .

T oo m

We get therefore from part b} of Lemma 2
(SL, B (A, ALY = JAR,A P A YL, AL P A Q)

if n is even and zero if n 1is odd. This compietes the proof. l

In order to extend this result to arbitrary configurations of operators

Al""An it is convenient to distinguish suitable linear combinations of the
wk .

vectors W° LA,,...A). For any given set of operators A,,... A e {FN

N sufficiently large, we define recursively
= (“50&)*51’ P, ALSL
ouk
d ch= (n:o“t)* C}?i— (52,A; P, A‘S.SL)‘Q

(11)

oul ouk ou.h *Ouﬁ o\pf O‘df Z‘ ouk i’K ouk
SRR = (Ad x &, (2,8, % AL ) b x VK gy
J
where the symbol V denotes omission of éb . Of course this reshuffling is
uk

nothlng else but normal ordering; proceedlng from QJO (A, .. Am\ to
(bﬂ‘ v cbm amounts to subtracting from ‘LL\‘W*‘(A“.__ A,) all contributions
with a particle number less than =n . The labeling of the normal ordered
vectors @4:( - x g _ by the one-patrticle states @;_ = F:' A;SL is justified
by the fact that the vectors 1P°“k(n4).“ Am) depend in a linear way on R,A;SI

[T T T R T R T SN TRt AT L D N T T I S RRLTVE BT L L T TR L L T LT
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according to Lemma 3. It follows now immediately from Lemma 4 that for any

collection of operators A,,... A, ¢ 37,,,, which are localized in regions
{9“ ... 0, with a positive timelike separation, bi < ((D-L-1)+ L, =2,..m
. ’ ’ . . '
and any other collection A4 ,--- Ap e 3'; with no requirements on the locali-

sation regions, (in an obvious nctation)

(&5 % e, , /% TE): dpm L@ Epu)-(, 4, )02

if N is sufficiently large. The sum extends over all permutations P =
(p(1),...p(mMof (1,...0). In particular one gets for the restricted class

of vectors
TR A S LIPS F S L e (5

and this shows that these vectors depend continuously on the one-particle

states <1>‘- .

~ ~
Now for any set of vectors @d 3 - ‘?.,,, € %4 one can. specify sequences of
operators A™ A F i i i i i
P s PP - € ~N with localisation properties given above,
such that simultaneously for all i = 1, ... m the strong limits

. © - . 2) . .
5- lim Pd A L= d?i. exist. So the continuity of the vectors
"

- X with respect to the one—particle constituents d?i. makes an

ouk gkt '
X .- P..
. - 3 - 3 A A
extension possible to arbitrary configurations @ . chm_e gﬁd . We use the
N oowk ouk N . R ) .
symbol ‘bnx s X <bm also for these extensions. Thls 1s a consistent netation
because the restricted class of vectors is dense in the set of vectors which
were defined by relation (11) for arbitrary operators A,”... A m € ?N

(and not only for the particular configurations considered above). For a proof

2) It follows from a Reeh-Schlieder type argument given in Ref.[l], that the
operators F € f‘F’N which are localized in the future tangent of some boun-—
ded region 0] generate from the vacuum a dense set of vectors in [?;‘SL].-. 3639_‘
Hence, given n , one can find a bounded region (Of:ﬂ and an operator A:ﬁﬂe 8-3'"

-~
which is localized in O such that || $ - RAT 2w,

tny (m)
63

Then there exist another bounded region in the future tangent of (O,

150 . . . . n)
and an operator Q?_ which is localized 1in (92 such that

A -
“ ‘1?2 - F;R?{SL“&TL" and so on.
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of this statement we recall that the weak convergence of a sequence ":l:’himplies
l w-1lim ‘-}!“ I < lim | 'LL’“ [l and this fact together with part a)
LY mn

of Lemma 3 and part b) of Lemma Z allows to show

“ @,16;{0;*@“; “1 £ Z, ch.‘) @PU)) (@“i cbpun) (14)
P .

for arbitrary operators A,,... A, € EFN . 1f we take now (as above)
sequences of operators AYM, ... A € By such that the vectors (b(.“L P A‘.:“g;,
L
' ouk ol ; oo
converge to &, = P, A S , then the sequence cb4 X - X d_)m

converges to some vector W . Hence using relation (12) and (14) we get the

estimate

(‘q") éqo;kozkém) = Z: L@,‘ 3&9(4\)"' (‘%m‘éplm')= s “2 b4 “7']:'“ i @:;‘d""’;tcbm | L(15)
P

. . : . . . owt owt
This is however incompatible with Cauchy's inequality unless Tk= ¢4x S 4 Cbm.

It needs now no extra explanation that for arbitrary Q“... @me '361 the vectors

5 wk . . . .
¢ ’; °x ém —— and thus a fortiori the wvectors defined in
A
relation (11) -- have the scalar products given by relation (12).
Remark:
. ouk out
Knowing the scalar products of é4x e X Cbm and therefore also those

of w""* (A, --- AL it is obvious that the sequences A,ﬂ."‘ A, +SL
defined in Lemma 3 converge strongly: they converge weakly and in addition

Hw=-lim A A pSLi= lim BA L A g2

T >0 T-—»o0

. ) . . . ouk out
Qur next task consists in checking the transformation properties of Q“x---x ém

under Poincard transformations WULLY, L € ‘:{-) . As expected we get for any

set of vectors tk‘-,--- tbme m,‘

WL - 2 e = (Wwd)% % (U b (16)

where L—» 'I_L,‘(.L) denotes the representation of the Poincaré group {P in 24.

In order to verify equatiom (16) it suffices to prove
UL WA, A= W (A, . or (AD) a7
AT ™ [l B TR L ™

for arbitrary operators R,,... Ame ?N . We shall do this by induction.
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For n = | the statement holds trivially. So assuming that it holds for (n-1)

we get the string of equations (using Lemma 3)

(Fa, W W™ A,,.. a0 = Lo (FY2, WA, A, )=

(o aCFISL, (ATt Y soebn A0 = (o1 lFIP AT L Wk, A Y)Y = (18)
(F P, ot (A1, uum)é“_*m,_,... And) = (o (AFYMEE ., Wt (w (A,), .. &, (A))) *

(FS, W (o (A, - X CAm)))

as long as F is localized in the future tangent of the localisation region

of & (AF) . This establishes relation (17).
Finally we mention that the vectors 1} e X dp"‘ are symmetric under
permutations of the one-particle constituents ‘bi. : if {puy, ... pcms)

is any permutation of the numbers (1,...m) then it fcllows from the symmetry

properties of the scalar products given in relation (12) that

out ouk ouk  ouk
épuax o X épcm) = @41( X @m . (19)

So the massless particles in our model really obey Bose-statistics. Summing up
we realize that the vectors cp:?b-.-"}"’d;ﬂ have the features expected from
an asymptotically freely moving configuration of massless particles cb1,.,_ b, -
We compile the most relevant properties of these vecters in the following

theorem.

Theorem 5:

Let d;,‘ - P € '361 be any collection of massless one~particle states.

Then the wvectors d},‘ X - x P defined above have the following properties:
ouk ok oul ok .

a) @Pu,’x - X cbp‘m‘= X @m. for any permutation

P= (pur,-.- ptmd) of the numbers (1,...,n).

ouk ok out  out
b) u(.l..) @4 X --- X (b“ = (_‘u“(_l_) @4'} X -+ X (_ru_“u_‘) Qn) where
L UW(L) is the representation of P in 3.

C) (@4? ’ m;k@m_ﬁ @: :‘k"":‘:@; ) = Sh\ﬂ.- ; (éq b) é;u)) (én H] ¢;tu1)

and the sum extends over all permutations P of (I,...n).
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So the Hilbert space 9(”“‘ which is generated by Sl and the vectors

e uk . Lo .
P, x % cbn , me N is the familiar Fock-space over the one-particle
]
space ﬂf1 . It is obvious from our construction that the vectors in this space

may be interpreted (in terms of measurements at large positive times) as out-—
going configurations of massless particles. Therefore the usual definitiom
and interpretation of a scattering matrix for the massless particles is possible

and makes physical sense.

4. The Asymptotic Field Algebras

. . out . .
So far the asymptotic fields A have served as an aid for the construction

of the collision states. However, from the point of view of physics their
significance should go much beyond that: in quantum electrodynamics for example,
one expects that the operators AOUt correspond tofield strength measurements
performed at large positive times; similar interpretations in terms of observables
should be possible in other models. Now it is one of the basic principles in
quantum mechanics that an operator has to admit a spectral decomposition in

order to be accepted as an observable. It is therefore gratifying that one can
specify within our general framework a large set of selfadjoint asymptotic field
operators A°YE. The proof of this assertion is based.on the subsequent lemma

in which it is shown that the operators A%t act on the collision states

ouds . .
@1:( S X @ﬂ like a free field.

Lemma 6:

Let A be an element of 3@0 , N, sufficiently large. Then the collision states

ok ouk . - out
&, x - x &, are in the domain of A

@4, ct,n P ’3{4 and every me W . Furthermore,

for arbitrary configurations

K

mn
. @ Ldet o o - M‘-’ o
AF¢.1&1;b”f¥t4L¢= 4?xt4a;§“xhi;+ E LQ?’ih)'dax UV f:kn
— W =4
where é: P;A,Q_, and @; P,,A*Sl.

Proof:

Let the coperators R4,”.Amegi'be localized in the future tangent Qh of the

localisation region (@ of Ae 31:' Then it is evident from relatiom (11}, part
b) of Lemma 1 and part c¢) of Lemma 3 that the statement holds for the configu-
ration &,=RBA, S5, .. ¢n=agng , provided N 1is big enough (depending on n).

We shall extend this result to the operators Aout , A ef}; s where No
4]

R i (e g bbb IEE TRHESL I PER R E wA m



is some fixed, sufficiently large number which does not depend on n . For this
purpose we recapitulate the proof of part ¢) of Lemma 3: if e D(A™E*)Y,

then

I(A“t*é,"-]:"’“t LA =lim (&, F\“‘tﬂ ~ A SL)\< lim sup U I-HA™*n o A S2

T—»00 T->w

Now owing to the localisation properties of A],... An we get

ﬂf-\""tA B UL DA A A App UL AR qost g

This expression is uniformly bounded if A,,... Ane?r'N , N sufficiently
large, and A e ‘}JN where No is such that | poxt® powt o | < oo _3)

Hence the vectarso "-]_J'MLQ“... A,), and therefore also 4?1";&...0;'& d_)n ,

are elements cf D(AOut . Next we calculate how AQUt acts on these vectors.

For this purpcse we take a sequence A e @‘N such that 5- lum. P ﬂ(mk}, P ASL
and s- L. P Q"M*.S)_ P A*j)_, ; we require furthermore that the operators (m)

are 1ocallzed in the timelike cylinder U {(9 + {t 0]} . A simple example

t<o
reconciling these properties 1is

° N
AT = mt fdE (L= o) ()

where L dencotes the identity automorphism and Oft the time translations.
Bearing in mind that the statement of the lemma has already been proven for
the special configurations of operators A ,AQ,,... A, e SfN mentioned

above we get for any F ¢ ‘}([9_'_):

(FRL, A% 5. % % )= (F R, A%n, 5 % d,) -

lim U:e ﬂ‘-"“’*&‘ @:" '__Ox d.\?“) . Lm (F&, Atm\o‘d: @,o":&-"";‘b@m) -

um{(Fa,cig“"’??"@‘”,}*...’“"a‘-, Y+ Z.(cb“‘“ &) (Fo, d; IR S 4_, )}
k

GERE-Yar Seatial MR AR YL A N

=4

3)S:'Lrn::e we want to apply the estimates given in the Appendix we have to choose

N = 15 here. However we conjecture that all propositions in this chapter
o)

remain true if No = 0.
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This proves the lemma for the special configurations; the extension to arbitrary
conflgurations ¢%w-'-43n‘ 3(1 can be performed owing to the continuity of the

ouk ouk . . .
vectors QR‘x e A an with respect to the one-particle consltuents and the

out .
fact that A 1s closed. .

That the operators A%t oot on the collision states like a free field will
enable us to specify a dense set of analytic vectors in their domain. It
follows then from a well known theorem of Nelson [8; Theorem X.39] that AOUt

is seifadjeint provided it is hermitian.

Theorem 7:

Let A = A¥ be an element ofS: , NO as in Lemma 6.
[ ]

a) Then A%Vt i selfadjoint.

b) If {94 is a region with a non-empty future-tangent (b1)+ and if Bc (94

then the dense set of vectors {FSL: Fe 3-'(((94)3} is a core for
out
A .

¢) I uniquely determined by the one-particle state PASLE '364

if A varies within the above restricticns.
Proof:

a) Using part ¢) of Lemma !, Lemma 6 and relation (12) it is straightforward

to verify that

. (1?t)!
AN AP L (g N I Lol e ARASI
- ml
for arbitrary F & SF(E&) . This estimate shows that the dense set of vectors
{F.S'L . F ei?—'((or)} is a set of amalytic vectors (in the terminology of

o

[8]) for the operator A Ut gince AUt

is hermitian (Lemma 1) the theorem

t . .
of Nelson quoted above guarantees that A%" s selfadjoint.

. . . out
b) Since (< O, and (CL)+ is not empty we can restrict A to the dense

set of vectors FSL: F € b, . This restricticn defines
{ (Ul f)*) } . <5t
a closable operator and we denote 1ts least closed extension by A . Now

the whole argument establishing the selfadijointness of A%t can be applied
N

e s out “out . o
likewise toc A . Hence A is alsc selfadjoint. But a selfadjolnt



o, A

operator’ii maximal, and since A%Ut s a selfadjoint extension of A°ut
we get Aout - Aout.

c) Let A, A, e $‘No be two selfadjoint operators satisfy.ing
PA,SL= P,A, SL . Then there exists a bounded region {9 , containing
the localisation regions (@, and b, of Ay and A,, such that the
operé.tors A?ut and A;‘It coincide on the dense set {F'.Q, : Fe 3:((9+]},

However these vectors are a core for both operators, according to part b)
0 ou
of the theorem, and therefore Alut = A2 t . .

With this theorem at our disposal it is now fairly simple to prove that the
operators Aout have all essential features of a free, massless field. But
there is one little difference: it is in general not possible to specify a

set of vectors in the domain of Aout: , which is dense in JK and invariant
under arbitrary translations. Therefore the operator-valued function '

x— A (3 = Uz AMu(,_{" cannot be defined globally. However if we confine
our attention to open regions fe IR% with a non-empty future tangent .ﬁ, R
then the intersection of the domains 'U.(.:\D(A“e) . .x.e_'f’ contains the dense
set of wvectors D‘P(A‘w*) = {F'.S), : F E;Oyg:'(b*"'m) }

and the functions - R“’t(.x)cb , xe F are defined for all d&he Dy(ﬂ"'“‘"'-)_
The next theorem shows that these functions are covariant solutions of the

wave-equation,

Theorem 8:

Let A satisfy the assumptions of Theorem 7. Then
wh

a) D:F\f (=y=0 on Dy(ﬂwb) for xe .

b o (A (o (AN ror Le P

Proof:

a) This follows immediately from the relatlion

A" (2 FSL = U A o (FYR: F.um 'R A n
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for F € 1f\y,‘?f-'(to +x) and the fact that A 1is continuously
€

differentiable with respect to the translations.

. wk
b) The intersection of the domains ULLIYD(A™) and D(OIL(.A)"*) contains
the dense set of vectors { FSL: Fe G:(u_@)+) 3 on which the
operators coincide. This set is a core for both operators and therefore

the statement follows. .

Remark:

Althcough the functions x —> A2y, xe P are solutions of the wave-
. . . . . . out .

equation it is in general not possible to split the operators A intc a
creation and an annihilation part. This can only be done if there exists a
dense set of vectors in 4€ on which the operator valued functions & — Houk((t,o))
are defined for all telR (in the sense of tempered distributions).

. . . out
Finally we have to analyze the commutation properties of the operators A .

As expected it turns out that

= J out uk out
(AT, A) 1= (A%, a7 ])-i (20)
and the commutator vanishes in particular for operators Al’ Az with space-
like or timelike separated localisation regions. Tn order to exclude all
out

possible pathologies connected with the unboundedness of the operators A]

ACZ)Ut we reformulate relation (27) in terms of the resolvents R(Aw’t) = (i+ A°“‘t)'1'

b

Theorem 9:

Let A, 4, satisfy the assumptions of Theorem 7. Then
uk wk wt s
5 [R5, REATHY= o ([AF, ATF1) RIATSY REATHT RIATY,

b) If Al’ A2 are localized in two spacelike separated double cones
then
ut
[R(A), RLAMY )= 0.

cy If A] is localized in some region (O , then for all F € EF(E%)

[R(AZ*), F]= 0.



Proof:

a) It follows from the definition of the approximations AT given in Chapter 2
that A, is selfadjoint and Rlﬂq,\= Cis Arp\"‘ is uniformly beounded
in T if A = A®. Therefore we get for all Fe F(0,)

s-lim e AU AR 2 s-lim Lir A LIk A DFRL = FOL

T->0 T

. . -1 .
proving that {({+ AT‘ converges strongly on the range of (i+ Aoty |

However this is the whole Hilbert space o6 if 2%t s selfadjoint. Hence

we can write, after a little algebra

[R.(A:wt) y R(A;ut)] = 5~ L-M [R.(A,ﬂ.,)) R‘-A:nv)jz

T~ oo

= s-tim { RUAG) RO Ay » LR, Agp TIR(ALIR(AL) +

T3
2 .
- "' R(A“T) RLAIT)Q R(A.‘T) [na"[l ‘I[A;\’l" ? nz"il] R('R1T) + R(Aﬂ')R(AM‘) R(R"T) ' [A“T’ AZT} } .

Now the first two terms in the curly bracket do not give a contribution,

because in the limit of large T the double commutators

[Aw TLAH" Aa,"t']] and [A;_'ra [A41‘1 A;._q\]]

vanish in the uniform topology. (See the Appendix). So if Al and A2

are localized in some region (0 , we get for all Fe ?LO.,_) (using

part a) of Lemma 3, relation (11) and Theorem 5)

[ROA™Y, RATIIF S = s-Tim RADRIA,IRIAL)-F [Aq, Al 0=
4 2 aT

T—oo

- - lim RCATDIRAZHIRIAZ®) . F (A, Ap ] -

T >eco

uk uk wt wt wt
= @ (LAY, AT 1) RIATHI RLATIRIAT) - FaL
and this completes the proof of the first third of the lemma.

b) Owing to the preceding result it suffices to consider the expectation value
ouk out
(2,047, Ay IS8L)-

= (8, A,P, A, 2)-(2,A,P A ) = (Q,A,Pm=0)A, )~ (R,A,Pm=0)A_ )
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where P{(m = O) 1is the projection onto the states with zero mass, viz. the
vacuum 8L, and the one-particle states a: . An application of the techniques
of the Jost-Lehmann-Dyson representation to the commtator function

x— (2,[A,tx,A,T8) as in Ref.[9] or [10] shows that the

above expression vanishes if Al and A2 are localized in spacelike
separated double cones. For timelike separations of the operators we can

exploit the support properties of solutions of the wave—equation or, more

directly, part c¢) of Lemma 1:

(R,A,P, A 0)= (&, A, ASF Y= (R, AT A 0= (R,R,P A, D).

c) This statement follows from part c) of Lemma 1 and the selfadjointness of

A‘l’“t . B

We conclude this chapter with the construction of the asymptotic field algebra .
3:m¢ and a brief discussion of its properties. Similarly as in Ref.[1] we
define first of all local algebras S:M*LEQS attached to double cones G%

of arbitrary size and location:
out . uk # d
F (o) = (A A=a*e Foon T, 1, (21)
©

or in letters: SFo“tLbd) is the von Neumann algebra which is generated

by all selfadjoint asymptotic field operators A%t constructed from local
operators A € F (0,) . In this definition we have restricted out attention
to double comes, because it is only for such regioms that we know that the
algebras :F.“'t((q,‘) and ?M[(oa) commute: ?M((o,,)c ?”“b((oz)l if @,
and @2 are spacelike separated. (Compare part b) of Theorem 9). However,
there is a canonical way to extend the definiton of 3”"'&((9) to arbitrary
bounded regions (? without loss of the commutation properties at spacelike
distances: for a general region O we define Sf“dle) as the von Neumann algebra
" which is generated by all ?m((g') with @,c O ; the asymptotic field algebra
3’“‘* is then the glecbal Cf-algebra of all local algebras ‘TMLb) .

It is obvious from the results in the present chapter that with our definition
the net b — Q:Mdgb) enjoys all the properties usually required in quantum

field theory; it is in particular local and covariant.

As in the Fermi case [1] there are some geometrical relations between the net
of the underlying field algebra ¥ and the net of the asymptotic algebra :F’M

if © is any regiom, bounded or unbounded, with a non-trivial future tangent
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(o, , then the asymptotic fields localized in 0 commute with the basic fields

lacalized in 0+,

Fot(o) ¢ Flo', (22)

(If { is an unbounded region we define :F""’t((g) as the smallest von Neumann
algebra containing all algebras 3:”((94) with 0,c® .) This relation follows
easily from part c) of Theorem 9. It is characteristic for massless particles

and may be interpreted as the field-theoretic version of the Huyghens principle.

5. Concluding Remarks

Tt is a remarkable fact that the asymptotic field algebras do exist in all charge
sectors which can be cbtained from the vacuum with the aid of local fields or
(more generally) localized morphisms [10]. The details of the model, in par-—
ticular the superselection structure and the massive part of the particle spectrum
are irrelevant for the construction. It seems therefore to be reasonable to

base an analysis of the infra-particle problem (mentioned in the introduction)

on these algebras. Although we do not hope for a complete solution within

our general setting, we are optimistic that an analysis of the asymptotic

algebras will yield at least a profound sutrvey of the mathematical structures

which are relevant to the description of collision processes of infra-particles.

In models with no infrared difficulties, e.g. if the massive particles have a
precise mass and the collision states can be constructed a la Haag-Ruelle [11],
all representations of 3:“4: induced by wvectors 1?&&06 are equivalent to the
vacuum representation. This means that one can specify for each vector UDE ?f
a density matrix j:e(B(ﬂf“d)such that the restrictions of the corresponding

states to the algebra F°¥ coincide:
(W, c¥)r=Tv FC ,C'Ef}""".t (23)

Hence the results of asymptotic field-strength measurements can always be
interpreted in terms of asymptotic configurations of massless particles. Tt

is another simple consequence of relation (23) that the weak closure of 3:°Wt

is isomorphic to the algebra of all bounded cperators on Zf”’t . 3’-'”'{”';' ‘B(KM)
Thus :qutﬂ is a factor of type I (in terms of the classification scheme of

von Neumann algebras [12]) and this feature seems to be typical for a situation

with no infrared problems.
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If infinitely many massless particles are produced in collisions,relation (23)
does no longer hold and there appear other representations of $'auf besides
the Fock-representation. This will manifest itself in a somewhat different
structure of ?Mﬂ It is a reasonable speculation that 3‘:0“* g is
still type I in such a situation, however it should be no longer a factor. So
we expect that \?:Ma is in genmeral isomorphic to 3(%”‘)5} where } is
the center of :Fo“'“ . The inequivalent representations of $'°“t could then
be distinguished by the elements of 3- and the inevitable next question is:
what is the physical significance of the elements of g' ? In order to give an
idea of a possible answer we quote a remark of Frdhlich. He gives in a very
interesting article [13] an argument that in models like quantum electrodynamics
}' should be the algebra of the momenta of the charged particles. This |
result is in accord with the folk-lore that different momentum distributions

of charged particles give rise to inequivalent representations of the asymptotic
photon algebras. One might hope that 3 admits such a simple phyiscal inter-

.pretation also in general.

Besides an anlysis of } , which could be useful for a classification of the
representations of 3"’“* and an understanding of their global structure, it
would be desirable to extract from the basic postulates some informations
about the intrinsic properties of these representatiomns. We believe that
relation (22) (the field theoretical versiom of the Huyghens principle) could
be an important tool in such investigationms. For example, it follows quite
easily from this relation that the, vectors 'we% indyce representations of
the local algebras :FM(@] ( @ being any region with a non-trivial future
tangent (9,,_ ) which are equivalent to the vacuum representation. So relation
(23) holds alsc in general if one restrictsthe operators € to the algebras
3‘-'—'_’“‘& (k) . The density matrixP however will depend on the size of 0,
and there exists in general no global P - For the proof of this assertiom
we use a fundamental result in the theory of von Neumann algebras [12, Theorem
2.7.9]: if a von Neumann algebra J{ on a Hilbert space % nas a separating

vector(ﬁ , then every normal state ¥ of M can be represented by a vector 2

in the strong closure of the subspace { MLE . Me Jﬂ.} . In our example M
is the algebra ?Mt(,(o) and ; is the vacuum JSZ , which is cyclic for '$(@+)
and therefore (by relation (22)) separating for ?"“t(@) . YNow every

vector Elf'egf gives rise to a normal state of 3"’“*((9) and, according to the
proposition quoted above, there exists a vector n € {F,_Q,: Fefr""“t(@)}"'z 3{""'{
such that (¥, c¥y- (|2, C |Z') for all Ce $'°""’((,) . This proves

the statement.
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It is amazing that the frequently discussed coherent infrared representations
(see e.g. [14]) are equivalent to the vacuum representation only for bounded
regions [15]. In an evident contrast to our result, this eguivalence gets
lost if {0 is an infinitely extended region, like the backward lightcone.

So 1t seems as if the representations of 3”“%@) which appear naturally in a
field theoretical framework do have nicer properties than the coherent infrared
representations, to which one is led by a study of models with external currents
[16] or by a perturbativé approach to field theory [17]. An explanation of

this discrepancy could be an important step towards a solution of the infrared

puzzle.

Another type of questions, worth while to loock at within the context of the
present studies, is related tc the problem of spontaneous symmetry breaking.

No systematic analysis of the observable consequences of a spontaneously broken
symmetry has been carried out so far in the general framework of guantum '

field theory. There exist only some isolated results like the Goldstone theorem
[ 47, which assures the existence of massless particles, or Adler's theorem

on zeros of the S—matrix, which holds in certain models [18]. (For a review of

the present status of the discussion see the recent article of Joos and Weimar

£191).

The alternatives in the field theoretical description cof models with a spontane=
ously broken symmetry group%} are well known: either one insist on the irre-
ducibility of the basic field algebra F s then.{! cannot be unitarily imple-
mented in & and acts only via automorphisms on F . Or one uses a formula-
tion in which g' is unitarily implemented; then F is reducible and the vacuum
S, is not unique. Joos and Weimar advertise in their paper the second approach
because it allows the application of group thecretical methods generally used

in physics. We want to stress here that the apparent drawback of the second
approach, the presence of many vacua, introduces no difficulties as far as the
formulation of & collisien theory for the massless particles is concerned. Golng
through ocur whole construction once more 1t is evident that the uniqueness of
the vacuum is not crucial and can be given up. In models with a degenerate
vacuum the main modifications are in Lemma 2. Whereas the first part of this

proposition remains unchanged the second half has to be replaced by

Lim (2,A, A p o) = ) Jdﬁﬁg)m

T -b-:oo s

AR A ) 0,8, PA Q) (26
z! i n-1 n 5’

§ 3
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where APLE) is 'a positive measure on the spectrum space of the center of F
and g-—* 525 is the corresponding decomposition of the vacuum space Qﬁr
(0f course the scalar products of the collision states have to be modified in

a similar manner). So also in models with a degenerate vacuum a collision
theory for the massless particles exists and seems to be an appropriate starting
point for a systematic analysis of the observable consequences of spontaneously

broken symmetries.
Appendix

In this appendix we are concerned with the proof of Lemma 2. This proposition
is, in the massless case, a substitute for the well known bounds on vacuum
expectation values of local operators at spacelike distances in theories with
mass gap [6]. TFortunately, many of the basic ideas of Araki, Hepp and Ruelle
expounded in Ref.[6] can be carried over also. to the present case. 5o,
properly speaking, our argument is nothing more but a rather tedious yet

straightforward application of methods already developed.

To begin with we give a summary of the main steps in our proof. For this

purpose let us have a look at the vacuum expectation values of the operators
At= t. jdw B(t, te) , B2-29A " defined in relation (3):

" ="

(2, A A )= {1---thA‘w4---chw,,, (SL,B, (4, t,e) Bttt e.08),

Bearing in mind that the operators Qq. defined in relation (6) are averages
of the operators At at time T over an interval of size InIT) , it is
evident that ocur main task consists in verifying that the above expression

is uniformly bounded imn t,,...t, if all time difference ‘ti”'tjl are

"
small compared to ti’tj . We shall do this by first converting the vacuum
expectation value (8,B,--- B, 5)) (where we have suppressed the coordinates

for a moment) into a sum of vacuum expectation values of commutators. This
is possible because of the spectrum condition which enables us to replace each

: . +
operator BL acting on the vacuum by a creation operator B-L such that

BiSL = B;L and (BJY02=0.

So if we replace in (8L, B, - B, SL) the operator B, by B: and

commute it to the left, we get a sum of expressions each of which contains a
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commutator [BL: B.:] . The remaining term with B,: on the extreme left
vanishes owing to (IS;,)*.KL = 0 . Now in some of the terms of this sum
the commutators [B;, B Jare placed on the right of operators By, By
In these expressions we commute the commutators [B;,]B;] to the left until
they are placed next to the vacuum. Again we get contributions in which now
double commutators [ B, [B‘s, B;]] are placed on the right of operators

13K 3 151 and again we commute these double commutators to the left. We
continue this procedure until all commutators are placed on the left, next to
the wvacuum, and all single operators B, ’BI are placed on the right of the
commutaztors. Then we repeat the wheole procedure: we replace the operator,Bqn
say, which is now next to the vacuum by :B:; and commute it to the left. Then
we commute all commutators originating from this procedure to the left until
again all single operators BK_,BL are placed on the right of all commutators.
Continuing this it is clear that we will finally arrive at a sum of vacuum
expectation values containing only commutators. We give the first few

expressions:

2:  (Q,B8,B,2)=(2,[B,,B;18)

n=3  (,B,B,By) =
=(&,08,,0 2, , BIN+(R,[[B,,B;], B 1Q)+(,[[B.,B}},B, 1)
n o= 4 (.2,B,B,B, )=

(2,0B,,B; 3B, B]180)+(&,[B,,8; V1B, B 1)+ (2,08, 118,,B, 1) +

+

(918, 18,08, B 13S0+ (52, [(B,, 1By, B0 1), B 102D +

(8018, [B,,B5 11,811 @)+ (8,018, ] 1,8, 1,8,182)+

-'-

(8, (LB,,[B,,BIT, B+ (Q 1118, B 1, B, 1, B} 1)+

+

(LI, Be 1, By 3, BT L L),

+
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Qur reason for replacing simple quantities by a whole bunch of complicated
locking expressioms is of course that the consequences of locality are more
transparent in the latter form. However, the whole procedure would be completely
useless if we would have no control on the localisation properties of the
operators B+ . We shall see that if B is an element of one of the linear
spaces ?% , BY can be chosen in such a way that it is quasi-local (in a sense
which will be made precise later). Using locality we are then able to derive

a uniform estimate for the spherical averages of multiple commutators, m = 3

.
t«“"t'm's de, - Sd""m [Bt(tvngﬂvLBz u‘l‘tze-'a)’L"' ’ B?nu'-m Em€ ﬂ]

where:Bf stands for B or ET . It turns out that the norms of these expressions
decrease in the limit of large {19.3, 'tlz cext like an inverse power of ty »
provided all operators B,,... B.. ‘are elements of EF; for some sufficiently
large N . ¥or the commutator, m = 2, we get an upper bound of the norm which

is increasing in tye However, this increase is small compared to the decrease

of the multiple commutators and this fact will allow us to neglect in the

above vacuum expectation values all contributions which contain at least one
multiple commutator. If n 1is even we are then left with a sum of vacuum
expectation values which contain only products of simple commutators. {Compare

the above expressions for n = 2, 3 and 4). For the treatment of these expressions

we have to znalyze vectors like
‘ + W .
(1-P): tit.-\) S‘l"’igi“"ﬂ [Blt; tie)), Eélti,tsg._‘.;)_}ﬂ.. ,

where F% is the projection onto the vacuum. Using locality and a bound on the
2-point function given in Ref.[6] we shall verify that the norms of these
vectors decrease for 1arge{1xtsfast enough to suppress all coatributions coming

from the remaining commutators. We may therefore insert in

tota Ed.m,, Sd“’ -n (5, L B1"t1 ot 2., B:.&vtl%a.‘] ""[_B_n_d‘.t‘_‘ e g‘-m-n)’Bn&n ,tng )]‘Q’)

the projection RJ between all commutators, the difference being negligible in
the limit of large t1a=t1 = . =t . It is then simple to infer from
the resulting expression (which is a product of vacuum expectation values

containing only one commutator) the assertion of the lemma.

After these qualitative remarks we come now to the quantitative statements.

For the sake of clarity we split the text into four parts.
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a) The Creation Operators B*

Since the vacuum Sl is separating for all local operators it is obvious that the
creation operators B+ defined above cannot be strictly local. 1In order to
have a measure which indicates how much they deviate from local operators we
use the notion of quasi-localisation introduced by Araki and Haag [20]. We
recall their definition briefly: let Eajnathe double cone in configuraticon
space which is the intersection of the forward cone with tip in (~R,0)

and the backward cone with tip in (R,&?_) . Then an operator F e%

is said to be quasi local of order N 1if there exists for each (sufficiently

large) R >0 an approximating local operator FR_(-_ 3:(6,&‘) such that

iF - Fp il € c. R

et

for some constant <. We shall demonstrate now that to each cperator E e G}Q

. . + PR .
there exists a quasli local operator B of order N such that}55b=tjgandLEf}fﬁu=0.

The elements of 3; ’bJeth are finite sums of local operators B of the form
_ , kil -tk o)

B = u..tt Yut) o [~ N

where “ e 51 and ¥it) is a testfunction with compact support which has a

Fourier transform ;Ld) with an N-fold zero at .= 0. If we apply such a B

to the vacuum we get, owing to the invariance of & under translations,

. WP . .
FHL = jat 4wy e £, = ;-&‘LJ)ELCI.-.‘J)"\.L‘

where Etdo) is the spectral measure corresponding to the operator (Fﬁxj.
Now «Fa) is a positive operator because of the spectrum condition and the
fact that n 1is a positive timelike vector. Therefore only positive values
of @ contribute to the above w-integral and we may therefore replace in

the t-integral the function fit) by {+\t) , where
.4 _4“ e -t o
¥ty =Y Ao Yooy e

o

o
Taking into account the N-fold zero of ¥io) at w = 0 it is easy to verify

N-1

that f+ut\ i1s continuous and I¥+Lt)l L 2.1ty Consequently

the integral
+ + E(Pa)  —itibm)
L = 9 Jt ‘1’ Lt) w A =

exists as a Bochner integral. It follows also from the decrease properties

of  W'&) and the strict locality of A that B' is quasi local of order N;

b
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. . + :
we take as local approximations of B  the operators ]3+ R2R

R o
alk)y P
kP —wtiPn) o~ K
A st e o with aiR)= ——2
BR = de ¥ . e A e : \E{.-l“l
~-atR?

where Ro is the radius of the localisation region fﬂk of A and {ml
[}
is the Euclidean length of n . It will be important for our argument that
+ + o +
the operators BR are elements of Sf': and that “BR' hec, i BoBR, I <

uniformly in R .

The support properties of ¢t in momentum space imply B L=BiL and (.E*) Su=0
So B is an operator with the desired properties. Since the elements of J}u
are linear combinations of operators similar to B - the above construction can
be performed just so for any operator from E:N

b) Bounds on Multiple Commutators

We shall estimate now multiple commutators of the operators

¥*

AL = t- fdw B*Lt,tg_)

and their time averages. The proofs are based only on locality.

Lemma:

a) Let B]""Bn be operators which are localized in double cones
¢ .. £ . If all t. i =1,...,n are positive (or negative
VR-,‘? ) “Kn 1 .

resp.) then

$dwgjaw, ELB Wt e 0, [B U e ), L Bote, st e )b
m=-1  m 2 .
. { 9 . -
WE -0k T Ruy * 2Ry, tL\)
=1 \L-I(f“ 2'tl(-tl’

where R'_l: R,K.‘\' h’l

b) If BI""Bn are quasi local of order N then for any R > O

Sdeg - §dwon BLE Gote bbb e ) [ 5 Enltat, e 00

-1 v . S .
A S R aRitetiy
S ot LR "
v RM w=A1 \L:K+1 ‘Ltuti_ /

and the number ¢ does not depend on R and t
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Proof:
a) We prove the first half of the lemma by induction. For n = 2 we have to

consider
ju.o,‘ S-:L.J‘_ hNLE, T e, Lty te al,

Owing to locality the integrand of this expression vanishes for all &,, ¢,
for which the two ine_qualities it, - t, R, 1t < bty e, - t&g:_J-lL
hold. Consequently we have to integrate only over the region

A L

- - X

12

o

<
s . N T K,“_+ J_Kult.tllk
= : e k) < 12

12 R-ZRE ) ihtc J.

Thus, 1f ﬁd& dencotes the characteristic function of G12 , we can estimate

Sdonyko, likth,te), bttt ek

. 2 . _

Ko + <K, lt,"t )

= 4L |ib1l1 “LJ,“ ud%,_,a %2 (‘44L51’5'-J.) < “b,‘“ “LJ_"' 124 .Lt»i; 1 r
1L

and this proves the lemma for n = 2. Let us assume now that the lemma holds

for n - 1. Then we get, using locality once more,

Sd‘of“jd‘“‘)m i L-Bdttd?t1%4)’l-b2_u:1 t)_ J, sL7 e .b L‘t . _‘n')_‘"'_‘“
FE RS .

L=a

i~

TR R kit ELd , | L
SN, L \' [y jao, LB E, T e Ratknt e,
L=a 1t tl
RKLL"' LR teem )

R =l

¥

n-1
Bl HE W z—{ ,' _

where X%L is the characteristic function of the region G%L which is

defined in analogy to GIZ'

b) Since the operators B ..,Bn are quasi local of order N we can find

1"
approximating sequences BIR""’BnR which are localized in the double come

"!)JR’ such that
.-
e, — Bigheco K

b

;J'% [4Li&4’Ev}'thﬂLt LU0 IR SN SN T ST s Lot Lt ea)yan

byl
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Then we split every operator Bi in the above expression into two parts,
B=Bg+ (B~ Bir) , obtaining a sum of 2™ terms. In one
of these terms there appear only operators IB;R and we can apply to it
part a) of the lemma. Each term in the remaining sum contains at least
one operator (Bi - BiR) and can therefore be estimated by c- R"N with

a suitable constant c. l

We apply now the above lemma for an estimate of multiple commutators of the

time averages

Ay = fdt how Ay

where }IT is the function defined in relation (5).

Proposition I:

Let Bl""Bn be operators from (}’N . Then

* * * .-[N(.'n.-l)-lnt'n.-d)] [N+ 2@1_4)]
“[-Alﬂ')iﬁ'ﬂ‘ﬁl'"\A.\"‘p]'“]“ <c. T\ /

for large iTl. The constant c¢ does not depend on T .
Remark:

| . . . . i
If n = 2, the bound given above increases with IT! 1like lq’lw/EN* 1

However for m»3 and N sufficiently large, the bound decrease almost like

\Tlﬂfn-l]'

Proof:

Since the operators B

+
e
operator is also quasilocal (of any order) and we can apply part b) of the

*
.,Bn:

g oo ,B are elements of EF 5 the correspondin creation
N g
1 n

. +
operators B .,Bn are quasilocal of order N . On the other hand every local

preceding lemma to the operators PR

“[AT‘I' ;[A:;' ,[ ’ A:vl“]“

£ Sdtf" jd't‘n |h,?tt1)«- h‘1"'{:""‘ \ lt-\"' tal- S‘lw_‘... den “[Bt(.t,‘ e L Ty B: U:mtng,ﬂ]“'l “

i -1 n
{ R}+ lR‘f "f]_l
< ldt, - ldt AR WML ---{:‘l'(‘.{i— I l 5 x &
.Y 4 .\ n ‘hT 1 L\ I 1 R-N"' “=4(Lgu+1 1tth ) R

Taking into account the support properties of ]1T we get after integration
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+ * & ; n 1 R?'#- LR- LT \ -1
WA, [Agr, L A Y2l s '{? * ( ik ) }

for sufficiently large Tl with a constant c' which does not depend on R and
P . This inequality holds for arbitrary R> 0 and if we put

R=1T ll(,m—d)/[N*- Un-13 ] the statement follows. l

¢) The Vacuum Expectation Value of Twe Commutators

Since our bound on the norm of the commutatcr [-Aam 3 gaﬂ‘l is too weak
for later applications we have still to refine our analysis. We shall estimate
in the following the vacuum expectation value of two such commutators. In these
investigations we shall benefit from a result of Araki, Hepp and Ruelle [6] on

the two-point function:

Lemma:

Let C,1 and C2 be two local operators from 33 which are localized in CL

and (92 Then for all lx|3» 2(R+R,)

(R, C - (1-PYC, M < ¢ .(—RT"—‘Q jlcial L3,c, selle ekl 19,¢, 1}

where Po is the projection ontc the vacuum and ¢ is a constant which depends

neither on x nor on C C and R R

1 72 1> 2
In the following we take for the operators Ci i = 1,2 the commutators
[ B, Ltd J—b , Bultetee ) - It will be crucial for our argument
that these operatcers are (for arbitrary tj and tk) localized in regions with
a finite volume, provided the time difference ltj - tkl is kept small.
Corollary:
Let B,,...,B, be operators from 32 which are localized in double cones
1 4
¥1R4 y fia*. Then for arbitrary positive (or negative resp.) t ,...,t;:

I, (A, Aag, L u-R)LA, A, J)2C ﬂ-(4+en[4+(*)‘] Z:"‘i:““ B IB,

(%
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(t +t *—t + £, ) and

where

_ 4
4 o
. %
Rat(4+ 1 Gt (1 Gyt ™) T (Rew 1E-8)),
Ci=4 -

The constant ¢ depends neither en t,,...,t

1!
Ryse--»R

4 ner on B],...,B4 and

4"

Proof:

We consider ‘
= (92, B, t, 00, By, t,e )1 U-PI[B, (k.8 e,), Bilty,t,e)150).

Because of the invariance of the vacuum under translations we can rewrite this

expression according to

Koz (S0, 0B, (Emt, £, Bylh,mt, £, 0 TUGY (1-B) [B,05,-t,1,,), Byltet, 4] 2)

(238
n

where T = ~ (t;e; —to2w) and
Now the commutator [B (t;-t, i), B (b, {
the double cone f with

1 y
-2'(. e +t1§,2_"t3g3“‘ tq_g.*).
el ) is localized in
Tl e Rit R+ 1%~ 4:\+lt,_~tl
On the other hand.it is zero (owing to locality) if
It 2 Ri* Ruer tei-tle 1 -1,

Since the zero operator is localized in all regions we get for r the bound

< _(R # R s lEi=tle lbymt1),

We can then apply the preceding lemma and get for ix13> 3. 2::(!{ + 14 ~t1)
L=

. . u‘ i 3
\'f«\ < cC- '4_‘1‘ (Z(R‘_* H:-ttl)) X
‘!—_\ L=4

x {ll [_B.‘HH 1t4 ?;1'3 3 Bzu: :pt:_ Eg_ﬂ*ﬂ. “ : “ [_aoBsu:yt! g—‘a\ H B'I'(‘t'P 't'ﬁ g—'l')]‘Q“ + [Bl('t?a’tlg-'g ) BD B‘!u‘ ’{:* 2 *}] ‘Q' n

A <3, 2 é—-—»‘*)}.

(%)
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Now the commutators in this expression vanish if
le, - 2,12 2 (R,* R+ 2({R.+ Ry)-1E,-tal
—4 — p—
tt,

and analogously for ley - e4|* . We may therefore estimate lxl in the

expression (%} by

lxi = ’lzgtqg,wlgz-ta,gs—{.&g.\zm-(\g;e_:_g-%ng, d-die-ed)- E,lt ~t)
¢
R+ R, + lb,— 1, R +R“+|t3—fui> 1
S ST - o RS -1 -t
2 H:ligg' gsi IH:‘( (.t»]tl)‘"i * Lt:,tq,Y‘”' 2.2 1{:‘- \
2 jel-lg,~e50- R

where R 1is the quantity defined in the formulation of the proposition. It is

then straightforward to verify that for |tl-le,-e,124R

S

IRl & G
{-lgf§5L+R

The curly bracket coincides with that given in relation (¥}.

For 1ttl %2"' gsll."-'l"R.

we estimate
K1 < (B, te), B Lt,_,t,_e._a)]*ﬂll'l\[Bsttl,tags),'ﬁ.,i.t..,t.,e;.,)]Sl.H t (1 e>r3 14> 4)

If we perform now the spherical integrations and use the bounds on the norms of

the commutators given in the preceding section we get

S&m-~$&waH‘

e & a0 FRT R et ) (R Ryt Hem b)Y
o fap o e SO ettt
$ S + R* T4 MBI 2 a bttt

_c “35" R BB,
< ey t (@'n ( IR.?:, 1-1) B, %

and this completes the proof. .

Integrating the operators At with the functions hT we arrive at the

Proposition 11:

Let B,,...,B, be operators from ga‘ . Then for large IT|

* *. in ¥ * , L = 2N -1 (N )
{(RJ[A'VT?Ai'f'l-(i_po)EA_‘,T) Al Vg - nlTi- 0T ! /

where ¢ 1s a constant which does not depend on T.



34

1f the operators B,,...,B, € 3:0 are localized in ‘CR;"" ‘qu‘

it follows from the support properties of 11,1. and the preceding corollary that
for sufficiently large |T! (depending on the function h used in the defini-
tion of 'h"l‘ ) '

l(&‘[n41l~| Azﬁ'] (.4." po) [A-_.;Ti nq.']'l] Q)i

“ ¢ a0
co A T [R eI+ R (s RoG T+ L RYT 2e2ed 1y im0
T =1 J‘:" W =1 lB,cIl

Here the constants ¢ and Ro depend only on h . Now if Bl""’BA are
elements of g"N the operators BT,...,B: are quasilocal of order N . TWe may
therefore split the oper.ators Bf in

L = (.Q.,[A:., A;]-u—a)[A;,A:,]ﬂ)_
into the parts BT = BTR,"' (BT*' B?R) where Bfn; are the approximations of

Bt constructed in part a} of this appendix.. To the term which contains
exclusively operators B;g we apply the above inequality, bearing in mind that
Bfa is localized in €, and ﬂprJlﬁ Ci s HQ,B:R_ b= ci uniformly

i

in R . TFor the remainder we make use of HBT - BT‘R.“ < c,f'- R™M getting

altogether (for sufficiently large {T} ):

ce T A alTH (R GATES R
|L.ll ‘_ cq' R,N + F 3 Tq_ " L4 }
: 6/(N
and Cls ©y do not depend on R and T . If we set now R=1TI [t

the statement follows. .

d) Proof of Lemma 2

We are now furnished with the informations needed to complete the argument.

First we consider the operator
A, = t’-jclw Blt,te) where ,B="23°A,

It follows easily from the definition of the space .3:,.; that with Ae S:‘N
also = 1'3,:‘\ € gﬂ and we may therefore disregard the special form of B
for a moment. Then we convert the vacuum expectation values of the time
averages A,'. y (S, Aup o0 Ageg £L) , into a sum of terms containing

* * * o
only commutators [ﬂﬂ.,[f-\w,{.-“ y A 1] . As was explained above there
are two types of contributions. In the first one there is at least one '

multiple commutator with m2 3. To such a term we apply Proposition I and get
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|(s2, [- (111 ["'1---151.)1 gC.TK'{]Tl'[N(ml‘n'2"‘1(""1'”]/[“*uml*‘”]
——— e ‘1=4 ’

™m, oy

K
in an obvious notatilon. Since Z m,= m, and since there exists by
=4

assumption at least one mi':“_3 we can estimate

K :

Z N(m, ~-2)- ZmL('m]_-*l) s 4 enin-1)

L=1 N+ 20my - 1) N
This shows that these contributions converge to zero in the limit of large |T|
provided all cperators Bl""Bn are elements of 3:'“ with N > ém{(mn-1).
If n 1is even the remaining contributions are of the form

M Ty = (2,040, AT (A0, AT ).

We shall prove by induction that if N 2 2n + 15 then Mn('I‘) converges in
the limit of large IT|to a product of one-particle scalar products. For n = 2

the statement follows from Lemma 1, remembering that BL =-d3 A :

Lm M,(T) = Um (2,08, Ajn 1) lim (A5, Ay )= (2,A,P, A2,

+ —>tao
T—stoo - T+ Tt

Let us assume now that the statement holds for (n - 2). If we replace in the

above expression for Mn(T) the unit operator 1 at the commutator on the left

by the sum 1 =P+ {4 - Pa) we get:
M (TY= (2,{A,, A;.-]Xl)(ﬁ,[i\w, Agn 1 [Bmars A 152)

e (8, LA Aa_:\-‘l’f\i" P) [y, A'l:':l' 1 {Amars A':'I‘lﬂ-)

The first expression converges by assumption to (SI,H',P,‘HLQ)--'LR,Q,‘_,‘P,‘ :Q,,LD_,).

The second term can be estimated, using Proposition I and II, by
+ + +
I("Sla[Aﬂ" AIT]'Li'po) [p‘g"[') Al{-"l‘l"' I.An-ﬂ‘ ) A'ﬂ.'l"] Q-H

“ (.4." po‘[ﬂ,ﬂi ’ Ax‘p]fnﬂ-“' “[’q‘ﬂ,’r) Au‘:‘l“"'“lnﬂ-q‘?‘l A":T] "

1A

2m~-2)/(Nr2)

SURLUIREY ~w-44—)/(u+;:’ T

o~
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It is obvious that this expression approaches zero in the limit of large 1Tl
if Nz 2a + 15 and therefore

T'l_i’w;wM,,lL'l‘) = (8L, AP, A, 1) - (5, A0a P AL
Summing up, we get for even n after some combinatorics

Th_‘::;wm,nw--- Ap Sy = T (R, AL P AL Q) - (LA P AL S
provided A,y-- An € gﬁu , N sufficiently large. The sum extends over
all ordered pairs i1 < iz,... in_1<.in taken from {(1,...n). For odd n the
limit vanishes, because in this case there do not appear terms of the type
Mn(T). This proves the second part of Lemma 2. The first part is then an

elementary consequence.
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