DEUTSCHE
DESY 76/24
Mav 1976

S ELEKTRONEN-SYNCHROTRON [JESY

Broken Weyl Symmetry

by

.'_2“AMBU_R.,G,52 . NOTKESTIEG 1




To be éure tﬁat vlat"ir 5Eeprinf§ ar.e'_uprAc')mptlly' included in the
HIGH ENERGY PHYSICS INDEX,
send them to the foliowing address ( if possible by air mail } :

DESY" ‘
Bibliothek

2 Hamburg 52
Notkestieg 1

Germany




Broken Weyl Symmetry *

by

G. Domokes
Deutsches Elektronen-Synchrotron DESY, Hamburg
and
Department of Physics, Johns Hopkins University

RS
Baltimore, MD 21218, USA

Invited talk given at the Topical Conference on Spontaneous Symmetry
Breaking, Trieste, April 1976. Research supported in part by the U.S.
Energy Research and Development Administration, under Contract No. E(11-1)

3285. Report No. C00-3285-29.

Permanent address.






Abstract

We argue that conformal symmetry can be properly understood in the
framework of field theories in curved space. In such theories, invariance
is required under general coordinate transformations and conformal re-—
scalings. We examine a gauge model coupled to a Higgs field. In the tree
approximation, the vacuum solution exhibits two Higgs phenomena: both the
phase (Goldstone hoson) and the coordinate dependent part of the radial
component of the scalar field can be removed by a Higgs—Kibble trans-
formation. The resulting vacuum solution corresponds to a space of constant

curvature and constant vacuum expectation value of the scalar field.



|. Introduction

Theories exhibiting exact conformal symmetry are attractive from the point

of view of a theorist; they are outrageous from the point of view of almost

all the experimental facts known today.

Why are they attractive?

Because they are more restrictive than theories based on the Poincare group

alone. This is not surprising: any enlargement of the invariance group of a
theory is likely to lead to further restrictions on its structure. This

statement seems to be true at whatever level one apprecaches a theory.

1) At a Lagrangian level (considering fields of low spin, i.e. 0, 1/2, 1)
conformal symmetry severely restricts the possible couplings between fields.
For instance, a minimal coupling between a Dirac field and a gauge field
(~e ¥X’LAP‘~P ) is allowed, but Pauli-type couplings

( ~ -\{7 5 d F-_f“" kl/) are not.

ii) At a more phenomenological level, conformal invariance is known to
impose severe (and physically attractive) restrictions on the short distance
expansions of operator products or of N -point functions. Hence, the pre-
sence of the "larger" symmetry may help in understanding short distance
phenomena (deep inelastic scattering of leptons on hadrons, for instance)

in terms of fewer parameters than Poincaré invariance alone would give.

1ii) There is a reasonable hope that conformally invariant theories are
"better behaved" at short distances, see e.g. remarks at the end of this

paper.



Why are conformally invariant theories outrageous from an experimental

point of view?

The answer is extremely simple. Conformally invariant theories are devoid

of any fixed mass (or length) scale. Experimentally, however, we do seem

to have rather well-defined energy scales (~ 1 GeV for strong interactioms,
-1 -16 . .

a length scale of b4“, orﬂﬁ%ﬂflo ¢m for weak interactions, ete.). Thus

conformal symmetry is necessarily broken.

Now, experience with gauge theories has taught us that the best way of
breaking a symmetry while retaining most of the benefits reaped from its

presence, is to break the symmetry spontaneously, i.e. to retain the

symmetry of the operator structure of the theory, but to look for a ground

state of lower symmetry instead.

In the case of conformal symmetry this means in particular that the ground

state (the "vacuum') supplies the energy scale of excitations. This intriguing
possibility has been particularly emphésized in recent works of Fubini et al. ]),
even though it is implicit in earlier works on the subject, see e.g. Salam

and Strathdee 2).

In this talk I cannot do justice to all the beautiful work done on con-
formally invariant quantum field theories. Rather, in order to give an idea
about the physics involved, I deliberately take the simplistic point of view
that a tree approximation to quantum field theories gives a rough but not

entirely unreliable guide to what we may expect to happen.



As far as the geowetrical aspects of the problem are concerned, I want

to advertise a somewhat unconventional (for a particle physicist, at least ...)
point of view. I wish to claim that the proper framework in which conformal
symmetry 1s to be investigated is a field theory in curved space, i.e.

gravity cannot be neglected, except perhaps at some later stage of the
calculations. (I shall try to justify this claim by exhibiting & - somewhat
bizarre - form cf a Higgs phenomenon which can be understoed only if one

considers thecries in curved space.)

2, The geometrical aspects of conformal symmetry

3)

I adopt Weyl's original point of view (which was also the starting
. . . 4 .
point of Kastrup in his works ) } about ceonformal transformations. A con-

formal transformation is a local rescaling of the units of length (or,

equivalently, of the units of energy, since we use natural units,®~-c=1.).

If at any point, P , of space one is given an infinitesimal vector cﬂxt%ID)

(representing, classically, a "measuring rod" of laboratcry size), then

we change the units locally, by
dX'u'(‘P) —> S(P)dXH(P). ( s = real)

(In what follows, the point P 1is characterized by its coordinates, so

that I write s(x), instead of s{P), etc.)

Hence, the length squared of ‘dxf* becomes

G0 dxdx™ —> $%0x0 g, 0 dxtdx”, (1)



Now, since we generally deal with functioms of points (fields, currents,

ete.) and not with functions of infinitesimal displacements, one reinterprets

the transformation - via eq. (1) - as a rescaling of the metric tensor,

rather than that of the infinitesimal vector.
In infinitesimal form (S(x) o |+ AXD ))

Scﬂl’“’m = lAcx)gtm ), (2)

from which

59" =-2A00g" 70w,
SFZ; -=_4/\(x){2‘9_ (3)

follow immediately,

We shall call these transformations Weyl transformations or conformal

rescalings. Weyl transformatioms_do not affect the coordinates.

It is intuitively evident that if 3}*”"“) is the metric of some general
Riemann space, then so is S"c:o %P‘” tx) (for "sufficiently well-

behaved" s(x) } and, moreocever, it is a space of the same signature as

3'*” (x) . Hence, Weyl transformations form an infinite parameter Abelian

group, with composition law
5.8 Que = 538, Qua =2 (AO+ A(0)

This group is henceforth deﬁoted by W.



What is commonly called the group of conformal transformations of
Minkowski space is an entirely different object. It is the group of
coordinate transformations which induces a conformal rescaling on the

Minkowskil metric.

e . . )]
In infinitesimal form ()(Fl = XH+ & M ) ,» we have, of course,

Sﬂsf = - ('a,,ggg- e¥ 4 9 our ‘ao.e""-f- 9,,_9§e=’),

However, ’a‘u_ase_ =0 (Minkowski space) and Sgge‘ must be
proportional to Cﬂgﬁ‘ (confermal rescaling), hence, the Killing condition
reads In our case:

| ol
Gc.sg + Og€ =3 ag, (2,.€%), “

It is well known that the solution of (4) is (with 33’_) '2@6"":

diag (+ly=1, =1, —1) :

| E ¢
€g = ,S’e,\(‘,,x + T+ QXX -2x,(X5Q),
+DX°¢)
which corresponds to infinitesimal Poincaré transformations (/S:qs )Tc,()
"conformal accelerations" (Qo() and dilatations (D). This is a l5-parameter,

non-Abelian group, isomorphic to S0(4,2),

There is a connection between the transformations (2) and (5). A simple
- . . . . 5
way of stating the connection was given by Zumino ); for a more general

analysis see e.g. Fulton et al., ref. 6,



Zumino shows that if a {(classical or "effective") action in curved
space is invariant under both general coordinate transformations and

under W, then the flat—space limit of the action is invariant under (5).

(I am not going to repeat Zumino's proof here. The trick is to show
that the effect of @y and D, which do not leave ’?f“r invariant, can

always be compensated by an appropriate Weyl transformation).

In what follows, we shall be exclusively concerned with Weyl transformations.
Needless to say, many of the results can be translated into the "coordinate

transformation language" in the limit of flat space.

Adopting the point of view advocated here, one is actually led to consider

the so-called Weyl geometry 6) (instead of the familiar Riemann gecmetry) as

a basis of the theory of gravitation., However, in order to stick to familiar
ground, I shall not go into the details of Weyl geometry. I have a good excuse
for this shortcut: everything I have to say, can be told in the language of
Riemann geometry with an extra invariance group (the Weyl group) added as

an icing on the cake.

The representation theory of W looks deceptively simple. (The main trouble,

from the physical point‘of view, is that W has to be represented on a set of
quantized gravitational and matter fields, and no one quite knows how to do
this.) Since W is Abelian, one expects its irreducible representations to be
one-dimensicnal. Hence, if CF(AJX) is a physically meaningful (classical)
field, and (A) stands for a set of spinor indices with respect to a local

spinor frame, then CF should transform under (2) as



S*’mm = w A) b, (O, (©)

where the real number W is the "dimension" (or weight) of 4>.

The welght is almost always equal to the canonical dimension, with the

important exception of gauge fields.

Gauge fields corresponding to (local) internal symmetries carry welght zero.
(The covariant metric tensor carries weight = + 2,) This is easy to see,

The gauge~invariant action of the gauge field itself is of the form:

T o = g
Fid%rg g Fig® Fore 7)
where the dot stands for the scalar product in internal symmetry space with

respect to the standard Killing metric. The field tensor itself is the

totally antisymmetric derivative,

-
EI‘“:= V}‘x Z;‘: p)

-
where ;gab is the gauge and Riemann covariant derivative, /4 is

/b

the vector potential,
- .
Just by counting weights, one verifies that /\F,, and hence Fr#ar , has

to be assigned weight zero. The consistency of the assignment can then be

verified by constructing gauge invariant couplings to "matter'-fields, e.g.

to a spinor field.



3. A gauge model: Higgs phenomena in Weyl-invariant theories

In order to illustrate how spontaneous symmetry breaking (SSB) works in
W-invariant theories, I consider a SalamWard-Weinberg type model in curved
space, i.e. together with gravity. For the sake of simplicity, I take the
gauge group to be U , although the formalism and the results can be

readily generalized to more complicated gauge groups.

In flat space the action reads:
W= (d% {50 d (54§ A (5~ AL
3 G- LR P SR L), @

where 4) is a massless complex Higgs field, AP is the wvector potential
and -2(\\;) is the massless, gauge-invariant Lagrangian density of - say -

quarks and leptons. The ''charge" carried by the Higgs field is f.

The generalization of this action to curved space is straight—-forward.

Basically, the recipe is:
i FIJ‘
v 2 9 €x)

dix —> A Tx \J:—g_

Q/I N V/‘. (covariant derivative).

One finds then that a piece of the acticn (8), namely
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g §0\4x "5 184 bqA, Av -2 (¢*¢)*

H04 S0 A) - LR FFc-CkV'f’aG"G'
+ L W)}

is automatically Weyl invariant, see Zumino loc. cit. and the previous

Section. One can even add coupling terms between 4? and '\P without

destroying W-invariance, say
W": H‘Ydﬂxﬁ($¢d{ + C‘.onj.)

where H is a dimensionless coupling constant. (Terms of this type generate

Fermion masses in standard, flat-space gauge theories when the gauge

symmetry is spontaneously broken. We shall presently see that they do

the same job here too.) The assignment of weights is, of course,
Wy = Oy ASy=—14, Wrp =-3/p.

We are in trouble, however, with the kinetic part of the Higgs field,
‘ gdﬁ > Opd”
= L x \/- %J‘“ b
T 7 % a’a. Oy
Indeed, under (2), T behaves as

ol = .é..gol.“x ﬁ &b O 9)

. - ‘
where [] is the covariant D'Alembertian, DA 3&%) b})»&-%\{?-
Ck?.v 31) A] ’ . In order

to make T Weyl-invariant, ome has to add a piece to the action in such a



way that its change cancels (9). It has been discovered long ago by

7) 8)

Glirsey and Penrose that the compensating term is necessarily

proportional to the scalar curvature, R, viz.
l g 44 X
~L x \f- ¢
12 % R
Thus the total, Weyl-invariant action is

We \dte Fq {19 b 2 - "SRy e WieW” ()

Two properties of (10) are worth noticing. First, the term ¢!¢R
looks like a mass term in the Higgs Lagrangian. (Thus, together with

~ A(dfcb )9' it may be expected to genmerate a non-vanishing vacuum
expectation value (VEV) for 479).) Second, the same term is "almost" the
Hilbert-Palatini Lagrangian for the gravitational field. (The difference is,
of course, that the gravitational coupling constant, (lGTf G)-I , is re-
placed by a field, (’cﬂ‘b )/ﬂ- . Wg find therefore that a W-invariant
extension of a Salam-Ward-Weinberg gauge theory with (hopefully!) SSB, is

possible only if one includes a theory of gravitatiom as well.
However, the theory of gravitation is not the orthodox Einstein theory;
rather, it is the "conformal relativity" advocated by Brans and Dicke,

Hoyle, Sciama and others.

Now, we are interested in solutions exhibiting SSB.
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We assume that only ¢ (and possibly, the gravitational field) have

non-vanishing VEV. We work in the tree approximation throughout.

First of all, we notice that the ''phase" of cb (the Goldstone boson)
can be removed by a gauge transformation. Indeed, if we introduce a polar

decomposition of ¢ » Viz,

(%) '-'*Cf(;‘)U(K) (11)

where (P is positive, U is unitary (in our example,U:E)(P‘t'@ Vs
then the gauge transformation, AF'->AP-1Q a}» log U) absorbs
U into the longitudinal part of the vector potential. This is just the

familiar Higgs phencmenon.

We end up with the following effective action for the VEV:

Wege = SO“K\/-_% i ;-:cg“’a,,.cg dvep —‘lchz_R —-2‘9_\7 Lg“} (12)

Variation of (12) with respect to the field quantities gives the equations

obeyed by the VEV. The result is the following:
. . . pv
1) Gravity. (Variation with respect to % ).

& Gy = 208209~ (197 %g Arg- )

.‘-..L( ~ '7-)__ | T )
e WU -5 %, % g
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where G?,\,v = ‘RP,-\, - \IZ%P-VR is the Einstein tensor. The

r.h.s. of (13) is just the confermal energy-momentum tensor of the

field c? , see refs. 7,8,

2) The scalar field equation. (Variation with respect to C? )
+ L -2 3 =
gy z < R = e O (14)

The trouble is that (14) is already contained in (13}, hence L? cannot
be regarded as an independent degree of freedom. Indeed, by taking the

trace of (13), one gets

¢ (28R +0¢-2¢%) =0

which either means L? & O (no SSB) or that (14) is a consequence of
(13). The point is, of course, that we have not exploited the W-invariance
of (12). Just as gauge invariance‘of the full action permitted the removal
of the Goldstone boson (Higgs phenomenon), the W-invariance of (12) permits
the removal of the coordinate dependence of c? . Indeed, since (_? is a

"radial component" in internal space, it is nonnegative, cf. eq. (12).

Hence, we can write ( (-?'# O):

Q) = X exp-4 L) (15)

where ’X is a constant of dimension (length)_] and € is real,
-00 < % £ 00 . (Since d) is a classical field, the trans-
formations (12) and (15) are well defined.) In terms of g , eq. (12)

becomes:
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o= T 1050
- xe -
I?.. R 2\"1‘ g Z
Upon perfeorming the finite Weyl tranmsformation,

-
A EI=e " g, 0, cg’&»«):e'/"gcfcx) (16)

)
we find (.Q (x) = rx= C‘.OV\SE . The scalar curvature changes

as follows:
R= eﬂg(R’*-SD)g-b%G;*‘"ar.g &R ) a7

(Here the primes mean that the D'Alembertian znd the scalar curvature

)
are calculated with the metric %r.v).

As a result of (16}, the effective action becomes:

Weq_@, = g&“x\/—_ [R 'f' rK ] (18)

Y .. .
Hence the VEV, LP 15 Just a constant, the coordinate dependence is

now abscorbed into the metric. (Tc be precise, this "second Higg-Kibble

transformation" absorbs the coordinate dependence of CP into the

determinant of %y_v ,» see ref. 7.). Now the gravitational equations

are:

g(c)v_al_%srv%?(z)zo (19)
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If the vacuum is non—-trivial ((K * O) , then we have an Einstein
equation with a cosmological constant. The solution of (19) is a

space of constant curvature, for which the Riemann tensor is characterized

by one number, say K. The Einstein temsor is

Gy =3 K & p @

anéd (19) gives

K= 2 x* @

There is just one relation between K and x , the equations for the

VEV do not determine both gquantities. We may take the point of view that

the vacuum determines the scale of CP { ’x is of dimension (length)_])

and then the presence of a non-trivial VEV generates a curved metric.
. . 1)
The result can be translated into the language of Fubini et al.,
of course. Indeed, a space of constant curvature is essentially unique,
once K is given. One may coordinatize the space by means of the "standard"

coordinate system, in which the metric is of the form:

Y o '_7}*"
I = i)

)
Fubini et al. insists on having qcy.v = 'YP,V . This can be achieved
by means of a finite Weyl transformation applied on (22). As a result,

the field (_e picks up a coordinate dependence, viz.

Q=) = %\'_K\ q +%_sz)"‘ (23)



which just gives the solution found in ref. 1, for the nonlinear
equation (l4) restricted to flat space. (The authors of ref. 1. use

wi
a= 0( /2 - the radius of curvature — instead of XK.)

4. Questions of interpretation

At first sight, the interpretation of the results presented here seems

tc be quite obvious. We found that the entire coordinate dependence of a
Higgs field can be transformed away. Therefore, if W is spontaneously

broken, it is only the constant, GK » which has a direct physical meaning.
The difference between the physical pictures suggested in ref. 1 and here
arises from the different "conformal frames" used; One may afgue that this
difference is insignificant (just as quantum electrcdynamics can be described
e.g. either in a Lorentz or in a Coulomb gauge.) However, this is not
necessarily the case. In a full quantum theory, the vacua corresponding

to "Fubini's world" and to "our world" may well turn out to be inequivalent
ones. I stick to the "conformal frame'" in whidncP = const, because 1) in
this frame the gebmetrical aspects of the problem appear in a transparent
way, ii) there is evidently no problem with the Principle of Equivalence -

at least at a classical level. (For instance, if one seeks an eikonal solution
to the spinor equation, the term VU" in the action gives rise to a constant
Fermion ﬁass, hence, the corresponding "classical" path is a geodesic.)

It is clear now that one has to identify: 'Xz/ll = (lG'ﬂ'G )-l>

where G is Newton's constant, see eq. (18). Now, 9\?(2/GL is the cosmological
constant. Astronomical observations tolerate a cosmological constant, say

~ 10-57 cm_z, which gives a fantastically small value for 9\ , roughly

c\fv 10—122. There is nothing fundamentally wrong with this, although one
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becomes somewhat suspicious on seeing such "funny" numbers. (A possible
way out may have been suggested by Zel'dovich 1_0). He conjectures that a
cosmological constant is induced by vacuum fluctuations of physical fields
and he gets a tolerable order of magnitude.) Whichever p-oint of view is
taken, the interpretation given here survives as long as 9\ is not exactly
zero. Now, in "our" conformal frame we find that if 'K :"- O , "the vacuum

is filled by something", which, not surprisingly, generates a nonvanishing
curvature. Depending on the sign of A , the "vacuum" corresponds to a’
spatially closed geometry which expands forever C?\C O) or to a spatially
open geometry which oscillates in time (9\) O) . This can be best seen by

introducing Robertsen-Walker coordinates, im which the infinitesimal

distance corresponding to the metric (22) becomes:

d=dt - aleosht /o [o\'xz-r S K (AB r s ® &cb")]
L4+ De Gittec, A< o)

and
Ag = At oZcos t/a [d'x'a- Sin hz')( ('&(914- ‘-'inz(gcicl;)]
( 2+ 2 De Sittee, A> o)
respectively. Here 0:,1:-. IK [‘l . (It is to be noted, however, that in

the case of )\ » QO , these coordinates do not cover the entire space.)

There is some potential trouble with this interpretatiom. One easily
convinces oneself that all the mass parameters arising in such a theory

-\
are proportional to x =(3/4‘K Q) =~ , which is of the order of the

1
Planck mass, ™ 10 ? GeV. In other words, how can one get down to mass scales




il)

governing, say, strong interactions?

(As far as T can understand matters, Fubini et al. face an equally serious
problem. They want to interpret K as a "strong interaction scale', say
KrﬂJl‘GeVZ. In the geometrical language used here, their trouble - as
emphasized by De Alfaro and Furlan at this Conference - stems from the
fact that De Sitter space is not asymptotically flat. Hence, one does not
get momentum conservation unless one resorts to additional physical

1)

postulates )

In our interpretation, at any rate, there is ﬁo translation invariance -
and there should not be - because the "vacuum is curved". (Of course,

De Sitter space has a l0-parameter group, which, however, contracts to

the Poincare group ir the limit K —)Q,Ef_ one assumes that ﬂ is furnished

by the ground state — and thus it is fixed - then K9 O means A\ ~» O ).

The morale is, I think, that as 1ong'as one breaks Weyl symmetry spontaneously,
one 1s given just'ggg length (or mass) scale. Therefore, whatever point of
view is taken about the physical meaning of the results, one is either

facing the problem of "getting down' from the Planck mass to - say -~ | GeV,
or one has to explain why do the angles of a triangle of sides A1 cm

{or 1 Sngstrém) add up so accurately to 180 degrees.

A final remark is in order. While we worked in the tree approximation
throughout, there are indicatioms that a fully quantized version of such a

theory - with unbroken Weyl symmetry — is quite well-behaved and may even

2}

be rencrmalizable . It remains to be seen whether spontaneously broken




Weyl symmetry retains the "good" short distance properties, while

bringing at the same time the model closer to physical reality.
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