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Abstract: We study the mass spectra and wave functions for vector

and pseudoscalar mesons in broken SU(8) 2D SU(4)F & SU(2) where

’
F stands for flavour and J for usual spin. The connectiog with the
standard masg breaking in SU(4)F is worked out. We find that even
in the presence of strong SU(8) breaking the ideal mixing scheme
for the vector mesons can be approximately retained. For the pseu-
doscalar mesons the mixing of the singlet with the 63-plet repre-

sentation of SU(8) turns out to be essential and stronoly nonideal.



1. Introduction

1
The discovery of the new resonances, J/u, ¢', P, x and xt]

has led to great activity in the study of the SU(4) symmetry

group[zj. In these SU(4) symmetry schemes the usual vector

mesons p, K¥, w and ¢ together with the J/¢{3.1) meson are

placed in a mixed 15 + ] representation of SU(4). It seems that

there exists also a 16=-plet of pseudoscalar mesons, if the recent-

ly discovered X(2.8)[3] is the analog of the J/¢ in the

pseudoscalar multiplet. It is natural then to ask, whether the

17 and 00 multiplets together can be fitted into an SU(8) =
SU(4)F [ 3] SU(Z)J supermultiplet[q] with F designating the

quark flavour(u, d, s, c¢) and J the quark spin, in analogy

to the well-known extension of SU(3)F to SU(6) symmetry.

We assign the J°* = 0 and 1~ mesons to the adjoint representation
63 of SU(8), obtained from § x 8 = J, + 63, where 8 is the funda-
mental gquark representation of SU(8). The SU(4)F 2 SU(Z)J

decomposition is
63 = (15,3} + (1,3) =+ (15,1) , (1.1)

with the notation (dim SU(4)F, dim SU(Z)J). Thus the 63 super-
multiplet contains for the vector mesons the SU(4)singlet as
well as the 15-plet, but for the pseudoscalar mesons only the
15-plet. Furthermore in these states the isoscalar vector me-
sons appear ideally mixed, i.e. w = wc'gi% (ua + dd),

¢ = ug = ss and J/y .= w, = cc. In this sense SU(8) symmetry

is a good starting point at least for the vector mescns which
are known to be near to ideal mixing in broken SU(4)[2]. On
the other hand SU{8) symmetry must be badly broken due to the
huge mass differences between particles belonging to the same
multiplet. It is an interesting question, therefore, whether
the ideal mixing scheme can be approximately retained in the
presence of strong SU(8) breaking. Another problem is to see
whether broken SU(8) can give information about the SU(4)
breaking parameters of the 1 and O multiplets. First steps
in this direction have been done recently by Eliezer and Hol-

stein, by Okubo and by Nelson, see refsd.



In this paper we consider SU(8) breaking for the vector and
pseudoscalar mesons. We calculate the mass spectrum and discuss
the corresponding wave functions in the case of mixing. These
wave functions are of particular importance for the Zweig for-
bidden decays[sj and have not been studied in detail so far.

The outline of the paper is as follows. In section 2 we formulate
the symmetry breaking Hamiltonian using a natural extension to
SU(8) of the usual SU(4) breaking, and express it by the Casimir
operators of various subgroups of SU(8). Section 3 contains the
classification of the guarks and of the mesons into multiplets

of these subgroups. In section 4 we give the mass relations and
study the mixing problem, first for the vector mesons and then
for the pseudoscalar mesons. In the latter case we must include
the mixing of the 63-plet with an SU(8) singlet. Here we always
compare, at the 8U({4) level, with our previous work[sl In section

5 we discuss the numerical results and compare with other approaches
as, for example, the gquark-gluon theory[6] and the S-matrix topologi-
cal exPansion[73. Some useful relations for SU(8) are collected in

the appendices A and B.

2. Spin - Unitary Spin Splitting.

. [57

In our previous wor on broken SU(4)F the hamiltonian was

written in the form

3 4

H=m T +m T3+m44T4, (2.1)

00 "o 33

with T, giving the SU(4)-symmetric part, T44 - the splitting

of SU(4) and T33 - that of SU(3). Combining now unitary spin
with ordinary spin and embedding the direct product SU(4)F®

SU(Z)J into a group SU(8), the obvious extension of the regu-

lar SU(4) tensor operators T33 and T44 is
T (2,) - .T? Ed
3 (3,%) s+ T LI (2.2)

b (4,0t) —
T y T — T’#H + -rse .

(4,



Here we have used the notation introduced in Appendix A, i.e.
each SU(8)-index A = 1,2,...,8 has been written in the form
A= (a,a}, with a = 1,2,3,4 an SU(4)F—index and o« = 1,2 an
SU(2)J—index (compare eqg. (A.4)). Because of the trace over o,
the tensor operators in eq.(2.2) do not take into account spin-
spin interactions. In order to uplift the resulting degeneracy

between pseudoscalar and vector mesons, we may add, as usual,

an interaction of the form S(aiz)&F”?; g) which is essentially
J2 = J(3+1), with spin J defined in eq.(A.6). The hamiltonian

obtained this way

_ 3 1 4 (ﬂ.,d),“’;ﬁ)
H= Moo To +Myy T2+ TH) 4+ Moy (T70 4 TH) + ™y ) (2,p), (byx) 12-3)

L4] It predicts the

is the same as that considered by Okubo
same mass relations as the ordinary simple quark model. More
sophisticated mass formulas can be obtained by introducing

additional symmetry breaking interactions, the discussion of

which we defer to the end of this section.

We now use Okubo's method to express the SU(8) tensor operators

appearing in eq.(2.3) by the generators XA of SU(8). First of

B
all we need

4 8

X7 + Xg = = g
(2.4)
X234 X9 = =Yy + 4 Vs

which follow from (A.10) and (A.11). For the parts which are

quadratic in the generators, we obtain

2 (XX)', + (Xx)7 ]
B SIS S R S R

2] ex)% 4 (XX)Tq + (XX + (XX)E, ]

= f® 2’(#) 5 ) )
.t b, — 1, ._g( 8*‘3‘\/45). (2.5)



8
Here (X-X)AB =} XAc XCB and ¢ is the spin of the charmed quarks
as defined in (ETHZ). The Eﬁg) 's are quadratic Casimir operators of

the corresponding groups SU(n). These groups are defined by their
generators as follows:

SU(g) B XAB N (A)B:: 4)2)-" 1 8) 3

n

SUeY: X% = XA+ (X4 +X%) &% (8= 4,23,56,7) ;

JPOE SEABEXAB*%(X%*X};*X"A*XQ&) JAB )

(AB = 4,2,56) ;

gD(‘f) = SZAB XAB +%(de“‘ ng + X%+ Xéé)‘ws )

il

(AR =3,4,78) . (2.6)

These generators satisfy (A.1)~(A.3) for the respective range of

values for A, B. The corresponding Casimir operators are

g 5.6 %

($ A B {6 A B

ﬁzzZXBXA) 6:.: L% Xa
I 4pot23,

)

Boos e, BU-3 R

AB=425¢ A|8=3ﬂr?,3

According to (A.4), the group SU(6) from eq.(2.6)1is nothing else

than the usual group SU(6} D SU(B)F [ SU{2)J describing the three

guarks u, d and s and their spin. Similarly, SUw) o 5U(2) &

SU(Z)J andl. ET)(A) o ?TJ(Z):F ® SU(Z)T , where

SU(2), and ETJ(Q)F are the SU(2)

groups of two
flavours, (u,d)

and (s,c) respectively.

Using egs. (2.4) and (2.5) in eq. (2.3) we obtain

H = MW, + /m,](g(:)'- g:)) + mz(fg)—zaz-—%y,,sz)

+ /Mng + 4%,,,,-)/45- + QA j(j""/f).

(2.8)



For mesons belonging to a selfconjugate multiplet, the terms
linear in Y8 and Y15 do not contribute. Eq. (2.8) leads to the
same mass splitting for pseudoscalar and vector mesons, except

for an overall shift by 2a of the vector meson mass Spectrum.
Furthermore the mass relations

K-m=%F-D, K\g=K-T, Dhp=D-T, Froe=F.q 4
follow and the vector mesons turn out to be ideally mixed:
=9, 2K¥= w+ | 2D¥= w+ ¥, 2F = by, (2.10)

As we have already mentioned, in order to obtain more realistic mass
formulas we have to introduce additional symmetry breaking inter-
actions both, spin - independert and spin - dependent ones. Such

spin - independent interactions are:

(el (5B o zar oy
the) , (4,8) ( ’*) X’s

), (3,
TCB’ P (70 = ("ys'*'%yds)z

(3r°‘) )(51f5> )
&
Z T (a0, (6,3 ~ f(‘r)
Q,b:'f Cbzd)) (a-;ﬂ'J 2 2
3

(3) 2 ) *
T(a,oo, (bp) + + (7 =¥ £ 1
a.,va.f (br“)) (aJP) * > QJ * >

b

o) (b B) (z)
Z -]—(a, NI g +i(:F3 +:p#) - QI +1(Ys+ xs)
Cbad);(a:“) . '
a,,b.-:d (2.11)
Here the €(n)'s are the quadratic Casimir operators of the usual
flavour groups SU(h)., with E(Z) = 2I(I+1) for isospin. Since the
operators 9(4) and e ) split the multiplets of SU(4) and SU(3)

FJ’
respectlvely, they des%roy ideal mixing for the vector mesons.

Concerning the additional spin-dependent interactions we have,

for example, the following possibilities:

() | (b1f8) AT (30, (00 @
S ) (foc) ~ 2T 5 By, (&) 257,
), (4,4 v ), (38) L o2
5 0’»["’)/ (4,) ~ 2cc ’ S f‘hﬁ), (3,2 = !

(2.12)
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] -)- _)- I3
i.e. A B, with ﬁ, B = ﬁ, §, ¢ and/or F. Here N = § + 1 and 8
are, respectively, the spin of the normal and strange quarks

as defined in (A.12). The degeneracy between the
pseudoscalar and vector meson mass spectrum can be removed only

by interactions containing J. We choose the linearly independent
terms 32, $-J and C-J. Combining these interactions with those from
equations {2.8) and (2.11), we write the total hamiltonian (for

mesons) in the form

H = m, + ’m,,(‘g(:)_ g(tf) z({(‘) -*:7,__ % %{52,)

b €Y by (€90 4Ys") # b £ (Ve + 4 Yi)™ ]

2
+ 4 Yis + @s (YS"%YIH)L

- -3

-:)2, -—)-—)
s aTl s 2657 + CT
{(2.13)
where the coefficients mo, mi, ..., have to be fitted to the masses
and wave functions of the pseudoscalar and vector mesons.

3. Classification of particles.

In sect.2 we have expressed the hamiltonian H ET(ZAH for broken
SU(8) in terms of the Casimir operators (2.7) of the various sub-
groups (2.6). In order to calculate the matrix elements of H we
need the classification of the physical particles intoc irredu-
cible representations cof these subgroups. To this end we first
establish the transformation properties of the quarks themselves.
UInder SU(6), the guarks qA witha=1, 2, 3, 5, 6, 7 , i.e.

a' a* ana c* {a=1,2) belong to the vector representation 6,

1

u
whereas g* = c' and ¢q° = c¢c? are singlets. Similarly, under ST (4)
the quarks (uu, du) belong to a 4-plet, whereas s” and c® are
singlets. The inverse is true for §3(4): u® and a@% are singlets
and (su, c™) belong to a &:plet. These transformation properties of
the quarks are summarized in table 1 together with %2? guantum num-
bers for the SU(4) generators Y8 and Y15 in the GIM quark model.

Using table 1 and the guark content of the mesons, given in appendix

B, the assignments shown in table 2 follow.



All particles transform irreducibly, except ?8 and 0a5 under

—_
SU{4). In this case the linear combinations

~ @’73 * t@ 15 (3-1)
(s> M)y = =130+ |5

are the ones which belong, respect-ively, to the singlet and the
15-plet.

(%5, 15

I

I

To go a step further, we note that the generators of SU(6) commute
with those of E—spin, allowing the decomposition SU(8) ™ SU(6) ®&
SU(2). Similarly, we have SU(8) > SU(4) @ SU(2)g ® SU(2), and
SU(8) = 8U(4) & SU(2)p ] SU(2)n. With the values of p-, n-, S-

and C-spin also shown in table 2, the following classifications
result:

~ under SU({6) @ SU(2)C:

+ t we T

(35)4)" TL '-‘T[o? gi) ?o) K JKol Ko) K*t; K*O)K*O)Q?Q’Q)E,)wd
(6,2) : D° DT, FT, DR Tro FET

(‘6)2): ®0j »D+)~_F-~+) 'D*O] -D-\H-] -,r_--)(-t-)

(4,3): we (3.2)

(hHA) = e
- under SU(4) & SU(2)S & SU({2)

)

o
(5,4,4) : T, W, ¢, 9%, wg ;
(4,2,4): K* KO, K*  K¥0
(%,2,1): Kd}EF}AK**) R?Ej
(4,4,2); D7, D° D*" D*°,
(% ,4,2): D", D°, D*T, DY,
(1,2,2): F T,

(4,2,2): F7,F%7

(13, 4] Wiy

(A,4,3):  We

(4,4 1) Mg

(M) Yy

(3.3)



- under SU(4) @ SU(2), @ SU(2)

(5,4, 4): Fr, 7% VEnee & me, @5, e

(4, 2, 4): K=, Do, K*7, D*°

3

’
]

——— + — .
(%,2,1): K¥, D, K¥", D¥

G a2y WO, DT, T, DH
(@ 4,2): Ko, D7, K*2 D

(4,2,2): T, ¢ o (3.4)
(4,2,2): T, ¢ 5

(4,3 4) L (we+9°);

(4, 4,3) ¢« £ (we=€%);

(4,4, 4) e

(4,4,&): \%’731“ @”]Ag

The numbers in parentheses refer to the dimension of the represen-
tation of the corresponding subgroups.

4. Mass relations and the mixing problem

Here we consider the particle spectra following from the hamilto-

nian eqg.(2.13) and the classification of particles given in sec-

tion 3. The eigenvalues of the variocus Casimir operators are

2% = 35/6  for 6,€

) 60 = b for 4, %
= 12 for ??_2 ) = 8 Jfor " ;
= 8/3  for 3,3 ¥ = 3% e 2 (1-1), )
= b for § = 4 for 3 (I=4);



and zero for the singlet representations. Terms like 28+J are
easiest evaluated using 25+3 = F2 + 2 - (J+&)2

. The masses are
then given by:

M= My + Bm, + 12m, + Qbk + 653 + hb,

K = m, FA2my + 8b, + Gby + 2b, vay

D = Mo .+Lifmz+8b;,+3k>3+:zbl+% ’
F:MO_QWAJ—Q/WIL-L 9594—353 + Ay +013)

(ng =Wlo"‘§‘m4+42fwlg,+ 3!91,, + Gb-_.,',.

,Eub',ars: W"_—i?}éfm” + 8, )

(4.2)
8Vz
(Pg,wf— T'mﬂ »

( Pi,j =-(’qil Hlqu)- ) for the pseudoscalar mesons, and

?‘:

T+ 2
K¥= K + Za + 20b
D

D* = + 2a + 2¢

}

¥ = F + 2a ¥ 2b + 2c

2
Vo = T+ 22 + 5 b

— 4
V45,45” Tt 2 +3b +3c

Voro:mo+2m2,+.2a,4—b+c)
22
Vf,ms: ?3',45 - =5b
3V, _ 2%
Vog = 3 mu b ’

V0,‘5=%@rm4+lfﬁwz+ V—";b-ﬁc , (4.3)

( vV, ;o= (W,lH|l W.> ) for the vector mesons.
¢ ] 1 J
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From egs. {4.2) we have

F-D = XK -, (4.4)
and from egs. (4.3) it then follows
F*¥ - D* = K* - g, (4.5)

Relations between pseudoscalar and vector mesonsg, like those

given in eq.(2.9), are possible only if b = 0 and/or ¢ = O.

Of particular interest is the mixing of the isoscalar vector
mesons w, ¢ and J/¥. The (symmetric) mass matrix in the (8,15,0)-
representation can be read off from eq. (4.3). Expressing part

cf the parameters by the masses of ¢, K¥ and D¥*, we have
: 1

g [ Flhcr=g) - 2 (byta3) —%(K*—?) + %— (~2b, + as)

= 15 (k¥ 90t -4g)-2b, - 3b~Fa, - fa

—J-_’g(l(*-?) + V——‘;— (- 2by +2a)
. *_ ek A% 2 - 2a,+La
M(w K*- 2¢) F(ehtio -7+ Y
g 4
LKD) - bh Sy~ 2ba -y - L4y
(4.6)
We now require the matrix (4.6) to be equivalent with ocur mass

mixing matrix for broken SU(4)[5], written in the form

g [ §lake-g) '%(K* ¢) 1 -~ (k*-g) + LA
M, = 5 C(Kravrg)) - (3DM-K-20)+ 4B |

L(K*+D*) + &M,
(4.7)
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where AA, LB and AMO measure the deviations from ideal mixing.

This requirement implies
bg = o, a 3 = o, a, + b3 = O, (4.8)

which has the conseguence

AR = 0,
AB = =2V3 bs,
AMO = —4(b3+2bq) . (4.9)

Thus ocur ansatz for SU(8) mass breaking and the requirement that
concerning SU(4) the mass breaking transforms according to the
regular representation, eg .(2.1), have the consequence that

AA = O. This is one of the constraints for ideal mixing.

It is well known that the vector mesons w, ¢ and J/¥ are almost

ideally mixed i.e. w v w

MW, b Wy and J/Y w_ . Therefore it is

"

more convenient to consider the matrix (4.7) in the (o,s,c)-

representation, where it is given by

o[ §r2(Ag+dy=85), iz 4, 5 Z A,
M, = 4 KXo + (84=Dy +Ds) | 4, ,
c ;23*-9\& (444 424 45) (2.10)

The connection between the parameters A, 4, and A, describing
the deviations from ideal mixing, and the equivalent set of para-

meters AA, AB and AMO appearing in (4.7) is given by

AA = 2yZ ( Ly = L, ) )

AB = "f'g—' (344~ b2 -2 43)

{(4.117)
AMO: ,Z(AA-F Az)
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For ideal mixing &4: = & = A3 = 0 and eq.(4.10) then yields the

masses given in eg.{2.10). In our case we get from (4.9)

A4=—«2b3—2b# ) A.‘!.:A}:—'zbl,«

(4.12)
The three parameters bs;, b, and D* are then determined from the

eigenvalues w, ¢ and J/¥ of the matrix (4.10),

We now come to the pseudoscalar mescons. S$ince in this case the
SU(4) singlet does not belong to the 63 representation of SU(8),
nothing can be inferred about the matrix elements Py,s Po,15 and
Pp,0-If we write the mass mixing matrix in a similar form as for

the vector mesons,eq. {(4.7), we have

8 [ L(4k-7) | —-%—(K-It) : R (k-m) + 2A,
M, =" E(K+9D-4T) 1 - (3D-K-2T) 4 ABy |,
X ' (4.13)
0 1I ' %(K-}D)'l' Amoz

.
with arbitrary parameters AAP, ABp and AMOP. In addition to this
there is also no correlation between the mass parameters of the
pseudoscalar mesons and the vector mesons in the (8,15)~-submatrix,
since acéording to egs. (4.3) the 7-, K- and D-masses can be fixed

independently of the p-, K*- and D%masses, as long as b, c¢ # 0.

5. Discussion.

In the following we shall investigate whether the mass mixing ma-
trix My as given by eq . (4.10) with the SU(8) constraint (4.12)
can be fitted to the observed masses of o, K*,.m, ¢ and J/¢ and
whether the resulting wave functions can account for the Zweiyg

forbidden decays of the ¢ and J/y.

The three tensor invarlants of the matrix (4.10), if expressed

by the eigenvalues of MV (squared masses of y, ¢ and J/y), yield
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* 2 . .
three equations for the unknowns D” = mp* r bs and by. By elimi-

nating D¥ and b; we obtain a quadratic equation in b,. With the

standard mass values (in GeV) m, = 0.783, m, = 1.02, m = 3.095,

¢ J/Y
9,101

m = 0.894 and mD = 0.770 the equation for b, has no real so-

K*
lution. On the other hand the experimental masses have errors,

the error being largest for the p mass: m, = .77 + 0.01. There-
fore we fix the rather well determined masses of w, ¢, T/V and
K¥ at the values, already used in our earlier papersts], (mUJ = (Q.7827,
m¢ = 1.0197, My
mass. It is remarkable that real solutions for b, are obtained for -

= 3.095 and Myw = 0.89435) and vary only the p

m, < 0.7609, which still lies inside the experimental error bars.
These changes of mp have no appreciable effect on the masses of the

charmed mesons which come out around Mg = 2.26 and m = 2.30.(*)

F*
Much more sensitive to the variation of the p mass are the wave

functions of w, ¢ and J/Y. To first order in the deviations from
ideal mixing (A;, A, &3;) the wave functions in the {(ov,s,c)-basis

are giveu Iﬁy

212 (b + by) 2/z by
jew) = ( 1 ) ¢ - o ! Y- e ) !

~2yZ2(bs+ b, ) 2 by '
|C#> = ( ¢~_;: e ’ i ? Y & ) ?

~2VZ b -2b (5.1)
ey (SRR, e, 4 )

[s1
In our earlier work we saw that, in order to have the decay rate

for J/¢ - pr as small as experimentally observed, the component

*In fact for given m? two solutions for b,, bs;, D¥ and F* are ob-
tained. For b,+0, as reguired by the J/y decays {(see below), the

two solutions merge.
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<o | J/¢y> must be extremely small, of the order 1-10‘4, implying
b, ~ -3.2 x 10 %, This can be achieved by adjusting the p mass
appropriately. Then

<813y = F(¢oomy = ksl 7> ) = 40" by 5.2

is very small and consequently J/¢ behaves to a good approximation
as an SU(3) singlet. This explains the negligible decay rates for
/0 ~ K &, K*F%, K**f*‘, K**ﬁtg}' Actually it is well known that
the admixture of uncharmed quarks in the J/¢Y must have a non-
negligible SU(3)} octet component in order to reproduce the ratio

of the decay rates for J/¢-*K*+K— and J/w-+p+w—. our value (5.2)

for the octet component is however much too small to f£it this ratio.
We obtain 0.88 as compared to (0.36*0.17) experimentallyt.g:'ll‘his is
not necessarily a drawback of our SU(8) model since it does not
include electromagnetic mass shifts. On the other hand the experi-
mental values for J/¢ = pm, K*¥K contain also the contribution of

J/¢ > v > pn, K*X , which must be subtracted before comparing with

our model.

With the wave functions (5.1) we can calculate alsoc the ratio

T(J/y > AR /T(5/V » pp). We obtain 0.96, in agreement with the

experimental value (O.76t0.53).[g]
The coefficient
2Vz (bs+ b
<A|w>=—<¢|¢> = ¢(3 “)
- w | (5.3)

determines the w-¢ mixing in the (o,s)-sector. The diagonalization
of My yields by ~ -3.39 x 10 ¥ and bs+b, » - 0.00878, implying

<g|¢> v~ 0.058. This value can be tested by comparing the decay rates

M(w=>37) = (9.0 £0F)MeV and [(#>373) = (0.66%0.0%) MeV._[m
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Describing these decays by the usual pr dominance model including

I -
finite width corrections one gets 9wgn = ( 17.5 ¥ 0.8 ) GeVv !

and g¢?n = (0.90 % 0.06) Gevﬂ. Therefore “’””:9"9"/9«:9::: C.057+ 0.006,

in good agreement with our value obtained above. We emphasize
that with an appropriate p mass we can achieve correct values for
<o|J/¥> and <o|¢> which determine the Zweig forbidden decays of

¢ and J/U.

It is interesting to compare the matrix Mv obtained on the basis
of broken SU(8) symmetry with other approaches as, for example,

[gd

the quark-gluon field theory and the topoclogical expansion of

the S—matrix[7].

Both approaches lead, for each spin multiplet,

to mass mixing matrices of the form (4.10), but with the constraints
b: = b, = b5 = G, i.e. b, = 0, instead of (4.12). From our dis-
cussion above it is clear that such mass matrices with a constant
G cannot produce acceptable solutions for both, the mass spectrum
and the wave functions. To overcome this difficulty in these
approaches G is considered as a mass dependent parameter. The mass
dependence of G for large masses is derived from asymptotic free-

om 2]

d in the quark-gluon theory and from asymptotic planarity[’7]

in the S-matrix topological expansion.

We note that, as a result of curmixing analysis for the vector
mesons, the parameter bj; + by = -0.00878, which determines the
mixing in the (o¢,s)-submatrix, is larger than b, = -0.00034,
which determines the admixture of charmed quarks, by roughly a
factor 25. This might suggest to consider the limiting case

b, = 0, i.e. 4, = A; = 0, as a first approximation. Then diago-
nalisation of (4.10) and elimination of the parameter D¥* leads

131

to the well-known Schwinger formula of the masses of w, ¢, 0
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and K*

(5.4)

(3¢‘-4K*+g)(’—w<*~g-3w) = 8 (K*-¢)*,

This formula is very well satisfied, showing that the vector mesons
approximately satisfy the constraint A, = A; = 0. The D* mass is

then given by
2,'D*=’4’+§>+%(w+¢“l’<*): (5.5.)

vielding Mpys = 2.26 GeV and, via eq(4.5), m = 2.30 GeV.

o
In the case that the pseudoscalar mesons would fulfill also the
constraints A, = A; = 0, the corresponding mass formula (5.4) for
the m, K, n and n' masses is obtained. However this formula is not
satisfied, showing that the pseudoscalar mesons'are far from the
limiting case A, = A; = 0. A better limiting case is described

by the constraints PO,S = PO,15 = 0 in eg. (4.13):

1
AB?=-£“V=—5'(3TD—K—27E)) -

which yield the mass formula of Bjorken and Glashowr44h

(3,7:_L,K+75)(L;K—I—341)= Z(K-*TE)L,‘ (5.7)

together with

3
D"%('?*"?’*ﬂ"zl'()- | (5.8)
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Whereas eq . (5.7) is well satigfied (with mn. = 0.958 Gev)},

eq .(5.8) gives a much too small D mass (m_ = 0.77 GeV). In addition,

D
this limiting case has the problem of large cc¢ admixtures in n and
n' and correspondingly large admixtures of uncharmed quarks in the
SU(4) singlet state wP. Therefore this limiting case is not
.acceptable too. Even the more realistic case with the D mass cal-
culated from D = D*-p+7 (corresponding to ¢ = O in egs.(4.3)) and
the parameters AAP, ABP and AMoP determined from the eigenvalues
n(0.549), 11'(0.958) and q;(2.85) of the matrix (4.13) does not lead
to acceptable wave functions for n, n' and wP. The problem can_be
solved only by considering D as a free parameter to be fixed by
some input concerning the wave functions. From our previous work[®]
we know'that a satisfactory fit to the various decay rates is ob-
tained for my 2.05 GeV, corresponding to ¢ = 0.4% ., It is thus
esséntial for the pseudoscalar multiplet to exploit the freedom

given by ¢ # O in egs.(4.3). As a consequence the mass spectra of

pseudoscalar and vector mesons cannot differ by an overall shift only.

We close this section by establishing the connection with our

(51

earlier papers There the mixing problem for vector and pseudo-

scalar mesons has been discussed in terms of the parameters o, and

v
[2]

0, introduced by Okubo and which roughly measure the ratio of

P
SU(4) breaking to SU(3) breaking. When expressed by the particle

masses, these parameters are given by:

3D*- K* - 2¢
th = )
¥z (K*-¢) (5.9)
3D~ K- 27
A, =

¥ 22 (K-3) (5.10)



-18-

Using egs.(4.3) we see that the parameters Gy and ap are indepen-
dent as long as b and/or ¢ have nonvanishing values. Thus the

equality a,, = ap following from SU(8) symmetry and often assumed

v
in SU{4) calculations, remains true also in the case of SU(8)
symmetry breaking as long as b = ¢ = 0, i.e. as long as the vector

and pseudoscalar mnssspedhux differ only by an overall shift given

by 2a.

Other parameters used in our earlier calculation were BV and BP’
which appeared in the matrix elements Vgy,;5 and Py,15, reSpectively.
Here we can say something only about BV. It is related so the para-

meter bs: by
-1
B, = A+ 42b, (3D%-K¥-20)" (5.11)

Usually BV = 1 is assumed, which amounts to neglecting the additional
splitting of different SU(3} multiplets, as given by b; in eg. (2.13).
With the values of D* and b, obtained in this paper we get

av = 21.2810 and BV = 0.9924, in close agreement with the wvalues

previously found 5.
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Appendix A

Here we give the generators and Casimir operators of thé group
SU(8) and its various subgroups. In Okubo's notation the gene-
rators of SU(8) are given by a set of 64 operators XAB

(A, B=1, 2, ..., 8) satisfying
A .
Lx#, X% 1. = & p X% = 4% XA:D s (A.1)
XAA = 0

{A.2)
? (A.3)
(x") = XB, .

Owing to the decomposition SU(8) o SU(4)F @ SU(Z)J, we may split
each SU(8)-index A =1, 2,

.«+¢s 8 into an SU(4)F-index a=1,2,3,4
{for u, 4,

s, ¢ quarks) and an SU(Z)J—index o = 1,2 (for ordinary
spin up or down). With the correspondence 2 = (a,a)
4= (4)4)1 2’= (214)1 3= (3)4)3 L'A:(-Lf)/t))
b = (4,2;)) 6= (2,2), t = (3)2')) & = (‘-f),Q,)) (A.4)
the generators of Sg(4)F are given by
(e e) d '
Flom X = 25 0%, Fa-o, (A5
and those of SU(Z)J by
3
o« (4, %) _ « X _ (A.6)
jﬁ" X (a,p) = %j‘((ﬁ)ﬁ) jé(_o'

Here the An's are a set of standard hermitian 4 x 4-matrices.

The generators F_ and Jg o defined by (A.5) and (A.6) respectively,
obey the commutation relations

[r;m_,)Fm].. = ’t"jcm'nﬁ ¥£ 3

{(&.7)
[T, 041 = v&ye T ) (A.8)
where fmnl (Eijk) are the wellknown structure constants of SU(4)
{su{z2)). '

The generators of the various SU(2)-subgroups of SU(4)F are

I+= :de = XZAI*' XGS‘ )
L= 3(Fu-Fh) = Z2( X%+ X% = X%, X%) ;
U+ = :Faa, = X32,+ X}G J

Us

1}

F(FL=F2) = T(X%+ X6 - X% -X%)
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V+= "F34: X34+X?5 )
Va= 3

(;:44_ F3,) = fi(x44 R X5 - XBB_X?}) ;

(A.9)
W, = ¥H4 = X4, + xS’F ,
W3

%(Fd"l— Fu‘f) = é(xﬂd +_X5'5__ xl"q- X88> S
4

>
..r
Il
“+

2= X'+ ng ,

A
Ky = 2(FL-F1) = $ (X5 X4 - X% - X%)
Z+ 1}343: le3+ ng, )

Zy

£(PaFh) = 500+ X% Yo XY,

—_ -
U and V are nothing else than the familiar isospin,
U-spin and V-spin already known from SU({3)

-4
Note that I,

. Furthermore we have
- - 4 3 § N _ 4 3 3}
Fp= == (3F%5 e Fh) = - L [30%+X%) + Xh4x% |,

Fo= -5 Y% = -5 (X% +X%),

(A.10)
which are related to hypercharge Y8 and hypercharm Y15 by
Ty = T,;::Fs ) Yis= (3 % (A-11)
In an analogous way we may define:
SU(Z)p " be= X, Py= 3 (X% =X%) ;
SU(Z)% ' Ny = 6.:, ) My = ':Z(xzz_ XGG) >

(A12)
$U(z),r; : S+= X%, 53‘%(X33"X14)5 |

5U(Z)C= C, = qu) ca= i(xby—xag).

Here E, 3, ¢ and ¢ are the ordinary spin of u, d, s and c¢ quarks,

respectively. They commute among themselves and may add up to the
-> - > . :
spin N = p + n of the "normal" quarks (i.e. the spin of u and d

guarks), or to the total spin 3 =N+ 3 +. ¢ defined in (A.6).
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Appendix B

In this appendix we give the quark content of pseudoscalar and
vector mesons in SU(8). The quarks, coming in four flavours (u,
d, s and c), belong to the representation i‘of SU(4)F and to the
representation 1/2 of SU(Z)J. Combining unitary spin with ordinary
spin according to the direct product SU(4)F 2 SU(Z)Jc: su(8),
each gquark field qaacmnﬂes two indices: an

SU(4)F—index a=1,2,3,4 for u,d,s and c quarks, respectively,
and an SU(2)J—index a = 1,2 for spin up (+) or down (+). The anti-
quarks are described by Eaa = (a7, witn Ead = —&é(+) and

9., = Ea(f), however.

The mesons M are built from a guark-antiquark pair:

[~ K- ax —

M o = 4 Yup (@b= 12,34 ; op=1,2) (B.1)
The pseudoscalar mesons are then given by

Pa _ 4 Ma.o( (B.2)

b T V3 bet 3
and the vector mesons by
Gy an A .

v b(}) - VZM bp (0}) X (3’= 4:203) ) (8-3)
where Oj are the usual Pauli matrices. From (8.3) we get for the
vector mesons having ordinary spin projection Jz = 1, O:

a _ Mt a. . Maz & . _ 4 mal az '
Vit = M v 3 V(4= por b(o)_',fz( ba— M bz)- (B.4)

The connection between the fields Pab (Vab) and the fields K,
D, F, na, Nis,n, (o, X*, D¥, F*, wy, wis, wo) is the same as in
usual SU({(4).

Under SU(8) the 64 fields (B .1) decompose into a singlet Maaaa =
= 2v/2 PO and a 63-plet. The latter, if decomposed with respect to
SU(4)F 2 SU(Z)J, contains a pseudoscalar 15-plet (but no singlet!),

and an ideally mixed vector singlet and vector 15-plet.
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Table 1: Spin and unitary spin of the quarks
i ~ =
p n N S C J [SU(6)] sU(4)| sU(4)] SU(3) SU(Z)I Y8 Y15
u 1 0 1 0 0 + 6 4 1 3 2 1/3{1/4
2 2 2
alo |1 |1 oo |3]s 4 1 3 2 1/3 | 1/4 i
2 2 2 !
1 1
s|0O O 0 5 0 7 5 1 4 3 1 =-2/311/4 i
1 1
¢ | O O C G 5 > 1 1 4 1 1 @) -3/4
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Table 2: Spin and unitary spin of pseudoscalar and vectocr mesons.

! o~ I
| pln | |s ]c su(6) |50 (4) |50(4)|su(3) su(2)| vg s
| 1
A % % o lo o 35 15 1 8 3 o o
y + .
| 70 % % 1 o |o 35 15 1 8 3 o o
l i
| |
Lo 1 1 i1 =5 !
K 3 O "2- > ] 35 4 4 8 2 1 O
|
' 0 1 1 1 - i
EK 9] —2— -2" "'2“ @] 35 4 4 8 2 ‘ 1 @]
{ i
#t 1 1 1 — i
‘K 5|0 5 3 0 35 4 4 8 2 * 1 o |
L g#O o5 |5 I+ |o 35 A 7 8 2 .1 o
A <
) 1 1 1 - -
ED ol % |3 jo iz 6 4 i 3 2 1/3 |1
313' Lio {1 o |41 6 4 s 3 2 1/3 1
2 Z 2
#0 I 1 1 3
D ol s |3 {o |3 6 4 3 3 2 173 |1
D¥ Il o (1 1o {2 6 4 7 3 2 173 |1
2 2 p)
- 7 |1 - "
F ol o o |1 |2 6 1 15 3 1 -2/13h
7 |32
. 1 1 - ':
F ol o jo |5 |3 6 1 15 3 1 ~2/3|1
Ns o |0 |oO 35 1 8 1 o o
ns s o lo o 1 1 1 1 o Jo
~ |11 :
(Ne M1537 5| 1 1
g
(Nna,N1s5)T5 | O 0 15
1 X019 jolo 35 15 1 18] 1 o |o
e 2 2
wg oi olo |1 o 35 1 15 1098 1 o {o
W, ol o o o |1 1 1 15 198 1 o lo
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