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It is a general belief that triangle anomalies spoil the renormalizability

of gauge theories with YS—Cqupling. To maintain renormalizability one should
introduce additional fields "compensating” anomalous terms [1]. 1In this

note we prove that 75—anoma1ies have no influence on the renormalizability of
S-matrix, actually there are no anomalies in relevant Green functions. Axial

vector gauge theories are renormalizable as well as vector ones.

Formal proof of renormalizability fails in the case of axial gauge theories
because to prove 'maive" Ward identities one needs invariant regularization
procedure and no such procedure was known for axial vector interaction. We
shall show that regularization with the help of higher covariant derivatives
introduced in the paper [2] and used for Non Abelian gauge theories in [3]
can be extended to provide invariant regularization for axial vector gauge

theories.

We consider first the simplest and actually the most important Abelian gausge

model:
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Although mass term spoils formal gauge invariance the later can be easily

restored by some kind of Stueckelberg formalism.

We start with the formulation of the model in explicitly renormalizable gauge
and than prove the unitarity of renormalized S-matrix. To make the model

explicitly renormallzable we introduce auxiliary Stueckelberg field Y

replacmgi by i
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Quantization of this Lagrangian leads to the indefinite metric for the fieldf
all other fields having positive metric. The theory is explicitly renormali-

zable because the effective propagator
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To prove the unitarity of S-matrix in the physical sector one must show that
all matrix elements for the transitions from physical states (Qﬂ fbl) to

the states containing § are zero.

To make the following discussion rigorous we introduce intermediate regulari-

zation adding to the Lagrangian (2) terms
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Introduction of these terms is equivalent to the replacement of the propaga-

tors A A
PP P“f\z”P{F’ P =

providing ultraviolet convergence of Feynman diagrams. Now we can write

regularized Green function generating functional
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It is convenient to introduce new variables
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Then ;ﬁ will look as follows
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Regularized Lagrangian in the exponent (5) can be written in a gauge

invariant form by replacing ordinary derivatives in (4) by covariant derivatives
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Indeed integration over ¥ produces S(C‘T*YIBVJQV) and therefore this

replacement does not change the integrand in (5). On the other hand the

expression (8) is manifestly invariant with respect to the gauge transformation
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Now the whole integrand in Eq.(5) apart from source terms, mass term and

’

P’h‘fa/‘ ./9/“ » which is actually the gauge fixing term is manifestly gauge
invariant. Ward identities can be derived in a usual way. Performing
change of variables (9) and simultaneously ¢ — P+ malx) » where of is

infinitesimal, one obtains
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$o the "naive" Ward identities are valid, mass renormalization for fermions
is absent and 21222 . That means renormalized Lagrangian possesses
the same invariance properties as the nonrenormalized one and "naive"
identities (10) are true also in renormalized theory. But these identities
mean that is a f’\ree field. Inde;ad applying to the Fourier transform
of (11) operators IQ’P and putting i =f;‘ ={ , one sees that on shell
matrix elements \TJ\P 4 tP are equal to zero. In the same way all matrix
elements including fields Y wvanish on mass shell. Therefore the S-matrix

is unitary in the physical (A, W sector.
My

The same result can be derived by passing from renormalizable gauge (5) to
the unitary gauge. Performing in the formula (5) change of variables (9)
with o (x)-: lf’(JC) one obtains
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clearly showing that ¥ is a free field. WNote however that in the unitary

gauge covariant derivatives (7) are no more equal to the ordinary derivatives,
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and Aéf'; (8) differs from AL, (4).

At first sight our results contradict the well-known fact of the existence
of triangle anomaly. However there is no contradiction. We just showed
that this anomaly is irrelevant for renormalization of S-matrix. In particular

Ward identities (11) for triamngle diagram imply only
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and this equality certainly may be satisfied, Jio ~-decay still may be governed
by the anomaly, but this anomaly has nothing to do with the renormalizability.
Note that regularization (8) treats transversal and longitudinal parts of JQ
Vnonsymmetrically (covariant derivatives (7) depend only on longitudinal
components of f04 ). The arguments given in [1] to demonstrate nonrenormali-
zability of this model used symmetry properties of the triangle diagram and
are not applicable to our regularization. We showed explicitly that contrary

to the statements [1] S-matrix in a renormalizable gauge is unitary.

All the arguments are transferred directly to spontaneously broken theories.
Using the same regularization (of course higher derivatives of Higgs fields
should be also introduced according to (7)) one easily proves ''maive’ Ward

identities which are sufficient conditions of unitarity and rencrmalizability.

The invariant regularization (8) can be easily extended to Nomn Abelian case.
One should just replace covariant derivatives (7) by Yang-Mills covariant

derivatives
'3[4-*@,4:(3/“-—53'1'5..) (14)
where the chiral field qu is defined by
aF Lr:aﬂﬂ/.q'fg[\ﬁﬂ?L/q] ) 3[4 Lv“av Lf‘ :9 [L/u’ Ly] (15)

In complete analogy with the Abelian case in the Landau gauge Eb4::(z) .
and one can derive "naive" Ward identities proving the absence of anomalies

in relevant Green functions.



Our results imply in particular that Weinberg-Salam model for lepton sector
is renormalizable independently on hadron sector and no "anomalous compensating"

fields are needed.
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