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1l. Introduction

We consider lattice gauge theories[l] in two FEuclidean space time dimen-
sions with compact gauge groupr G with nontrivial centeru* We admit
multiplets bf Bose fields & (x), but no fermions. The Bose fields are
required to transform trivially under an akelian (finite or Lie-) sub-
group I" contained in the center of G . Let C a closed vath, WiCle @

the parallel transporter around € , and x the character of a represent-
ation of G which is not trivial on "' . We show that the Wilson lcop

integral

<:X(L1[C]) > % X(ﬁ.)exp{—ao(area enclosed by C)} (1.1)

with @ » ¢ . This indicates confinement of fractional static charges.

Fractional means with nontrivial transformaticn law under ™ .,

1}

Example: G =SU(2) , = Z, » ¢ any(reducible or irreducible)

multiplet of scalar fields with integralcolour"isespins, w (U)=HU .

The proof of this result is elementary. It is essential that the FEuclidean

Lagrangean is real. Coupling constants are otherwise arbitrary.

For the special case of the Abelian Higgs-Villain model {9] a stronger

result than ours is known (2] for small coupling ccnm—;tﬂnt[3-i .

* By definition, the center of G consists of those elements y of G

which commute wita all elements, i.e. y§=9¥ for all g in G .
Among the simply connected simple Lie groups, the reguirement of nontri-

vial center excludes the excepticnal groups Gg’ F& and E8'



2. An exanple,

For the sake of clarity we consider first a model with gauge group
G = su(a),r"={¢ﬂj:=za, ¢ scalar fields transforming according to a
one valued representation of G/I. We consider the theory on a finite

lattice AcZ'with free boundary conditions. The character

y{u) = ~U (2.1)

is net trivial on ™ since ‘33( (\'i"jL) =+1

The (random) variables of the theory are ll(b)eG associated with links

b between nearest neighbours on the lattice, and ¢(x) associated with
vertices x¢A. If the direction of the link is reversed, u[b)evu(byﬂ
For any directed path C consisting of links bl"'bn' the parallel trans-
porter UlC] = U(bn)...U(bl). We write U(b) = U(b)r € G/T etc, Since

the scalar fields are ascumed to transform trivially under [ , their

interaction with the gauge field variables U{(b) involves only T(b) .

The Fuclidean Lagrangean will be taken to be of the form
. r - L] .
L = BZx(ulrl) + L ({¢,ul) | (2.2)

The sum in the first term goes over all plaquettes P, i.e. closed paths

of four links b ...b4; the orientation of P is immaterial since x(u)zx(u4)

1
Let ¥ any observable = (u-measurable) function of the random variables.
Then
4 [
<F > =ch{uF i Z=fd/u (2.3)

it

du Tbrdu(b) T;i’dc{o(x)el‘

dU is normalized Haar measure on G [3].
Let C a closed directed path, then it is the boundary C=9Z of a region

T CA with area |Z|. We study the expectation value of the Wilson loop

integral,

<y (ulel)> = Z"ijrdU(b) x (UIcT) exp BZx(uPT) T({d.$1).

I({ﬂi,#a}\}:J'LTdcﬁ(x)exp L1({¢,J:LD (2.4)



-3=

The variables U(k) take values in G and are integrated over G. Our
method of proof consists in carrying out the sub-integration (rather:

Summation) over the subgroup " of G, If f is any integrable function
on G, thern

gdu Hu) = Sold&dy [uy) (2.5)
G G P
because of invariance of Haar measure on G under the action of the

group, Here

fdy () = 22 ()

Yer

is integration over " with normalized Haar measure on I,
A

. We use this to rewrite the U-integrations in (2.4). Of course, ﬁ(b)
remains invariant under the substitution U(b) = U(b)y{b), y(blerl.
Moreover, since y(b) are in the center of G, vlc]~vulclylc] for

any closed path C made of links Dbq...b , with y{C] = y(b )...y(by). Also

x{ufeIylc)) = w(ylcl)x{ulel) .

w the l-dimensional unitary representation of I given by u(¥)==x(g)/x(ﬂ),

Proceeding in this way we obtain from (2.54)

<x(ufe)ys - Z”ﬁ;fdu(b)x(u[@]) jﬁdx (6 w(ylel) T({& ¢])-
exp /359( (Li[p]x[pl)
In two space time dimensions, with free boundary conditions, all the

variables X[P] are independent [10]. So we may integrate over them in

place of y(b)'s. Moreover, since " is abelian and w a representation of M

© (y1el) = T e (yP1)

et

The product is over all placuettes in the area - whose boundary is c,

with the same orientation as C. This gives
x (ule))> = 2Tl x (ule)) [ Tared {17_o (v21) ]
PC.,
I({G.$}) exp BT x (ulPlyIP])

Now the y -integrations may be performed. We define 1(U) for UecG



by
o oo™ B0 f oy 100
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Explicitly

q () = tanh Ay (U’

for the model at hand. It has the vroperty that q(ljx) =9 UJ)CO(Y)'{
Therefore 1q(L1)‘ depends on W only through & , since fe(y) |=1.

Moreover since X(U) is real

|7 (ﬁ)\ £ e—a with o> O independent of LU . (2.6)
Explicitly

« = - Antarh 23 > 0 (2.72a)

since |x (W)l ¢ x (1) =2 for all U . For the same rcason IX(LHC}Hs'x(ﬂ).

AS a conseguence we obtain the ineguality

< x (ulcl)>! < x(ﬂ)z“hrdu(b) {tr_tq(a[w’])i} (. ¢})

P

STPi_of’g (Pl exp fﬁa% X (u['@] X[p])

In this step we have made essential use of the fact thrt tne Lagrangean
: 133 Y s s . . . I8 |

is real. Now the varizble iransfermation LLL:)** Uik) y(b) can
be undone again and the y - integrations are tlhien trovial tc oerforn,

As a result

-1 —_ ;o [N
[<x (afcl)>) « x() z Jo{u i al® (2.8)
o
Due to ineguality {(Z.5) thiz gives vh» final resuiz
o |2

| [ C | € ~/ -
Loy {ule)> sy e (2,7b)

independent of the total volume A .



It is interesting to note that the integral in (2.8) is the partition
function of a system with real Lagrangean L.+uZp~&¢Jq (&[P])\
enclosed in a heat bath with Lagrangean L . Thus the right hand side
of (2.8) is the difference of free energies of two true statistical

mechanical systems in . immersed in the same heat bath.

%, The general case

is treated in exactly the same way. The Zfuclidean Lagrangean is assumed
[l o

to be of the form

L= pz L (uPh+ ({0.¢1)

it is assumed that

-!\

i) {, and L, are real, and [O[U)=[°(U- J
ii) {,1is a continuous function cf U & G

iii) L, (vuv™) = Io(Ll) (gauge invariance)

The last recuirement assures that J;(U[Pl)does nat derend on a cheoice
of irnitial point ecn P , and the first that it does not depend on the
orientation of P . Edy is again normalized Hazar measure on [ ,
and w(y) = x(y)/x (1) , X the character involved in the loop.

e admit free boundary conditions, or any cther beoundary conditions that
involve only constrainis on u(b) and ®(X), The Pose fields & (x) may
take values in a vector space UV on which a reducible or irreducitle
unitary representation of G/7 acts, or on a submanifold of V¥V on which
G/ can act, e.g. a sphere (P (x),d(x)) =41 , or they may be

absent zltogether.

.20)

av

q(u) is defined by the analog of Zag. (

oty wey ™M o fay e M)



iQ (uy| 1is a function of W only for the same reason as befeore. It

remains to show ineguality (2.6).

Both integrals in (3.1) involve integration of a continuous function
over a compact space [ . Therefore the results are continuous functions

of the variable LI which takes values in the compact space G . In parti-

cular, therefore, &dyexp/3fo(uX) must assume its minimum in W which
is positive since exp[3[°(u¥) is positive and never zero, Thus also

» (U) is a continuous function of U . But in (U< for all U .
Indeed, ln(U)fs1 holds because jw(y)| = 1 . Since exp 3, is

positive, equality could only held if w(y) were constant on 7  except
on a set of Haar measure zero. By hypothesis this is not the case since
& is a nontrivial representation of " . Being continuous on G ,

iq(u)] must assume its maximum which is therefore not 1 . Consequently
(2.6) holds with a positive & .

411 other computations are literally the same as in Sect, 2 . The re-~

sulting bound (2.70) is valid for any finite volume A and is inde~
Pendent of A .

Remark: If {, depends itself only on W one obtains q(u)= 0 and
therefore <x (ule])y> = x () dim exp - o1 2| {"superconfinement').
x - o

4, Concluding remarks

(1) The same mechanism of quark cenfinement weorks in theories in more
than 2 dimensions treated by high temperature expansion (small B)
f1,41 . Carrying out the sub-integrations over I" already pro-
duces a factor /3'31 since all lower terms in the power series

expansion in B are integrated to zero.

(2) In the case of a finite group I' our bounds are not good encugh to

establish confinement in the continuum limit in which {3—*°°

For instance, expression (2.7a) tends to zero exponentially



as @ -»00 . For the Abelian Higgs-Villain model {9], Israel and
Nappi [2] have derived bounds which do not have this feature.

Thus our bounds'are not optimal. Comparison with the treatment of
Callan Dashen and Gross [5] of the Abelian Higgs model in continuous
space time reveals a possible reason. We think of our lattice as
superimposed on cohtinuous space time. All the models of interest
here admit topological excitations labelled by an element of ' [£] .
The excitations of the "elassical vacuum" (pure gauge) of lowest
action are called instantons , they have a defirite size in two
dimensions [7]. Our method consisted in taking into account the
effect of topological excitations of size smaller than one lattice
cell (so they become infinitely small when the lattice spacing
goes to zero). Such an excitation supported inside the plaquette P
takes U[Pl»U[Ply and, more generally, Lfcl=ufcly™ for any path
C which winds n times around its support. When one starts from a
pure gauge, making such an excitation costs action of order f .

It tends to infinity in the continuum limit. Excitations of larger

size would he more favorable.

We hope to come back to these issues elsewhere , see also [8].
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