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Abstract

We solve the Bethe-Salpeter equation for the electromagnetic nucleaon
vertex at zero momentum transfer and determine the nucleon propagator
selfconsistently. Higher order meson exchanges, which are reguired by

the Ward identity, are taken into account.



I. Introduction

We take the point of view that the Tow energy or low momentum trénsfer
properties of hadrons like electromagnetic radii, magnetic moments of
baryons etc. are calculable from simple Feynman diagrams involving known
particles, i.e. primarily from meson and baryon loops. For this program
‘the knowledge of the meson and baryon propagators is obviously very impor-
tant. To derive these propagators in meson theory from a perturbation ex-
pansion in g?@«:=14.6 is probably hopeless. It may work better to use
first of all a skeleton expansion with a dressed meson-baryon vertex and
with dressed propagators, the latter being secondly subject to one of the
field theoretic integral equations. We expect such an expansion to converge
better than perturbation theory, because due to the decrease of the dressed
vertices the effective coupling constant at small distances may be consider-
ably smaller than the on-shell coupling constant. This depends of course on
the final result for the propagator. As the integral equation we choose the
Bethe-SaTlpeter equation (BSE) for the electromagnetic vertex at zero momen-

tum transfer, connected to the propagator via the Ward identity (WI).

For the meson propagator this procedure is fairly simple and has been treated
in refs. (1) and (2). The results obtained there depended, among many other
approximations, on assumptions on the nucleon propagator, but we expect them
to change only slightly if we replace our assumptions by the outcome of this
paper. For the fermion vertex however there are serious spin complications.
There is an identity between two of the three invariant form factors which

is violated if we take for the BS-kernel the lowest order terms which are

shown in fig. la) and 1b). (In addition to nucleon exchange 1b) also A (1236)



{b) (c)

Fig. 1

Vertex diagrams with lowest order BS-kernels

exchange will be taken into account, fig. lc)). In other words, the simple
diagrams with dressed vertices violate charge conservation, and the dressed
ladder BSE is not a consistent approximation. In order to restore the WI we
shall consider a specific model for these vertices which leads to the in-
clusion of crossed meson diagrams for the BS-kernel. Our inability to cal-
culate these diagrams exactly gives us the freedom to adjust some parameters
such that current conservation is fulfilled. We then obtain a complicated set
of integral equations and differential relations which we solve by iterative

methods (1,3)

, restricting ourselves to the region pzﬁg MZ. From the beginning
we make the assumption that the propagators have anomalous dimensions, i.e.
the renormalization constant Z1 is taken as zero and the pointlike diagram
is absent in fig. 1. With our subsequent choice of the strong vertex func-

tion the loops in fig. 1 are finite without subtractions, although the theory

is not superrenormalizable. The charge normalization condition on mass shell



is therefore a consistency check for the BS-kernel.

The two scalar functions 1;(p2) and 4;(p2) in the propagator,

SCp) = F 15(p) + M %5 (pP*) (1.1)

(M = nucleon mass) will behave quite differently in our model. Whereas

L (pz) decreases slowly for p2-—r - oo (it has a positive spectral
function (4)), the function T;(pz) drops much faster, such that the mass
term in (1.1) becomes small for p2 ~ - 10 GeV2 (it has no stringent bound).
This has already been found in the perturbative approach (5).

In the next section we establish the notation and discuss the simple model
of fig. 1 with its shortcomings. In section 3 the crossed meson diagrams
are estimated, and in section 4 the solution techniques and the results for
S(p) are presented. Conclusions and an outlook for applications are given

in Section 5.

II. The One Loop Model

In this section we shall collect the basic formulas for the vertex and the
propagator, and the BS-kernels from fig. 1 will be evaluated. The e.m. vertex
of the proton at g = C (see fig. 1 for definition of momenta) has three in-

variant form factors, and we write it as

/;(P) z (}’,‘A(P‘) + Z/&B(Pz) - LR T CPT) (2.1)

At # = M the charge normalization condition is



A(M*) + 2M°(B(M)-CCr*)) = 1 . (2.

For the nucleon propagator we use two different forms,

S(rP) = (/FR,,(P‘)—MK’Z(P‘))M

= Fh(r) + M (p).

The spectral functions S?_(mz) for the 'V;_-‘(pz) have to satisfy the positivity
[4

constraints (4)

P4[4m‘) > 0, (2.
CIRCREE (U 2.
The Ward identity /:_(P) - a& 3-1(P) (2.
gives three relations: R,, (P") = A(r") , (2.
R (P) = C (P, ;
f T
B (p) = AL(P) (2.
Finally R, (M) = R, (17) (2.

together with (2.2) ensures the correct singularity of the propagator at p2 =



In standard perturbation theory, the constraint (2.9) is valid order for

order, but not necessarily so in the skeleton expansion.

In order to define this expansion we postulate that the dressed wN vertex
is & pure pseudoscalar cne with the following parametrization (p1 and p, are

nucleon momenta, m, = pion mass)

l(er) = ys V(P P ),

(2.11)

V (2,P.) = 4/(1- (P« PR 2M% w2 )/AY).

This vertex has the reasonable property valid in perturbation theory that its
variation with one squared momentum pi2 is negligible if one or two others are
much Targer than piz. The singularity structure for timelike pi2 is not correct,
but this should not concern us here too much as we are interested in the space-
like region. The parameter ;41 has been determined (2) by the condition that in
a w7 -NN BS-model one finds a @ -resonance with the correct mass, and we

take A} =2.1 M2 from GW. Since we do not intend tc work with a superrenor-
malizable model, the asymptotic behaviour of the meson and nucleon propagator
has to be chosen such that e.g. vertex diagrams with a pointlike photon.vertex
are still logarithmically divergent. Here we hold the prejudice that in the
BS-kernel one particle exchange diagrams are dominant at large momenta.

Taking the supposed power behaviour of the meson and nucleon propagators

as equal, we require

2/3

R (p*) ~ (P*) | (2.12)

v, 1/3
oot ()~ (P (2.13)



Consequently we repeat the ansatz made already for the meson propagator

in GW,
3 2
4 17 P-M- 40 M, P '
T(PY) = —— + D, b6 — ——. . (2.18)
P - M P-r" - M-t (‘:ZJP—M-‘MI-

!

The parameters Di ahd Mi2 will be determined iteratively by the Ward identity,
whereby the meson propagator zl(pz) will be kept as in GW. Furthermore we shall
use a simple parametrization for the ratio jg(pz) / T, (pz) with 2 poles in
pz. We now can proceed to the calculation of the diagrams of fig. 1.

a) Pion exchange diagram (fig. la)
We only consider the proton in the Toop, i.e. we take the neutron as neutral
also off-shell. Then the product of the vertex and the two nucleon propagators

again follows from (2.6) as

(1.45)

Sty I Sep') = =9, S(P)

e ror T Vs 2
~f (P 2B BT P -2 R (P,

The Toop amplitude is easily separated into A, B and C by taking traces with

J”‘, FP*and P*. dne finds

A (P) = 0713 o+ 5 (-x7)P 7 j; (2.16)



B, (r*) - 3-:{31 07,, { 4(r*1) p'* 7‘;'] ’ (2.17)
C, (P°) = -f,’-z Jn/ P'?fﬁff ) (2.18)
Here we have defined the integral (?”{ J by (see 2.11)

Fo it} - %: i:(:ff V7. PO AP L), (2.19)
and = (PPO/PPT (2.20)

In the following both the differentiations and the integrations (which are
actually only twodimensional) in (2.16) to (2.18) were performed numerically

with the ansatz (2.14).

b) Nucleon exchange diagram (fig. 1b)

With the same techniques we obtain

A, (rP*) = %‘—JN{P’z(XL"4)} , (2.21)
Bu (P*) = g‘,_ J,\: {P‘P"‘ 63:2@"'1"’4 ) (2.22)
C., (P = {5’3 JM{P'P'ﬁ/t} (2.23)



with

Juit}t-= /_dp V (P p-r) A (™) TUP- P)){(P)224

c wm?d

c) A (1236) exchange diagram (fig. 1c)

Clearly it is hard to define A -exchange precisely. There is no doubt that

a A can be created by a summation of nucleon exchange diagrams in =aN
scattering (6), and therefore we should understand the exchange as an approxi-
mation for diagrams like fig. 2. For this N off-shell forward scattering

amplitude a dispersion relation in (p-p')2

holds for fixed p2 and p'2 and this gives
S - the following contributions to A, B and C:
S~ o7
/A\
‘(\\ /,/’
~ 2 > e, 2
~._ .~ AA(P)=‘3J;{P CC=0f (2.5
(R
4 A
B,y(PY) = —;1JA{PP’- -7'33 (X—ft)] (2.26)
Fig. 2
Diagram leading to a-exchange C;l (P = [P'P'} 2.27)
with
*1

! d” V(p, p-POA (P }""((PPHM ”:(12)28)

D + U S 2 iz 2 rz
XZ(MA+ PP ) et - PV, (PPP™)



Here MA is the A-mass and VA(pz,p'z) is a WMA vertex function which

is taken from a BS-study (8) of xN-scattering,

v o2 . (2.29
VA(P.'P ) = 4/(4"(?1-”-#-39’:"",:.)/‘:*#1‘) )
We have multiplied in (2.28) this vertex with the general wN-vertex and with

the dressed propagator % ((P-P)*s M*~ M) | which is somewhat
arbitrary and deserves further study. The A4 coupling constant 3* Was

(7) s
taken from ref. as g /#x = 0.26.

We now discuss qualitatively the properties of the individual terms. We realize

2 2
2y

that with the first guess 1r(p2) = 7% (p") we obtain BN(p ) <_CN(p . In pure

z
perturbation theory this comes from the fact that the second term in (2.22) has
the opposité sign as compared to the first one as follows from symmetric inte-
gration. Similarly one finds that By 1s smaller than C, » and both properties
persist in numerical calculations in the skeleton theory. The A -exchange en-
hances this situation further since BA has the opposite sign of Bn_ and BN' Al

this implies via (2.7) - {(2.9) that in the spacelike region one has Rz(p2)< Rl(p2

).
We shall discuss some consequences of this small mass term in sec. 5.

Before we could consider to solve our complicated system of eqﬁations, we have

to ask whether in our model the identity (2.9), B = A' is valid. With any kind

of reasonable nucleon propagator this turns out to be not the case. Instead Qe

find

S B(mr) x4 5 A(mT)

T, N, A TN, O (2.30)

The origin of this discrepancy is clear: In our skeleton expansion the vertices
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depend also on the external momentum p, and this fact increases the derivative
of A, without Teading to larger values of B(pz). Because of the good convergence
of the B-integrals this cannot be changed by varying the large p%-behaviour of
the propagators. Consequently we must change the BS-kernel. Let us consider a

specific contribution to the ®N vertex F; , namely a ®N Toop. This leads to

the diagram of fig. 3a). In order to conserve the e.m. current, we have to

(b)

Fig.3

Crigin of crossed
meson exchange

couple the photon also to the nucleon Tine in the vertex, which leads to the
crossed meson exchange of fig. 3b). We cannot calculate this diagram exactly
nor would that be too helpful, since it certainly is not the only important
addendum. In the next section we analyse its spinor structure, parametrize it
conveniently and determine the parameters such that (2.9) is fulfilled. This

parametrization we deduce from a rough calculation.
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[1I. The Crossed Meson Exchange

The diagram of fig. 3b) leads to a rich spinor structure of the BS-kernel.

The Feynman amplitude is

[
d

c(am)®

e (T q-m N EL q-M)Florl9) s

where q is the relative momentum of the two exchanged mesons, and

¢ (p) = S(p)/ (P SC(P). (3.2)
A~ A~

The scalar function F(p,p',q) contains the scalar parts of the propagators and

is even in g. In order to evaluate {3.1) we neglect terms like (p-q)2 in
F(p,p',q) which is a reasonable approximation for not too large p, p' because

of the large nucleon mass. This allows symmetric integration over q and leaves

us with four different terms. We 1ist then according to their Dirac decomposition

(omitting gé“) with the abbreviation

_-3 /d"'7 F[P,p’,cf) .=./ : (3.3)

i) The scalar part
S(rp) =-rs M 104 [ (3.4)
F

It behaves like a scalar meson exchange and is attractive.A5 is an ad hoc



- 12 -

normalization constant which will be discussed below.

i) The vector part

V(P,P') = %“ J" @XV /q . (3.5)
=

This acts Tike a vector meson exchange with a wrong sign (repulsive), which
is due to the opposite flow of q in the two nucleon propagators.

i11) The scalar derivative part
Dlr,P') = - ’.‘; (F+#') @(fff’)/ - (3.6)
F

iv) The mixed part

' )'H + F + e’
M (rp) = Zom(@rFIea 4®( ))/F e

These four spinor structures add quite differently to the A, B and C amplitudes,
as we shall indicate qualitatively (the fuill formﬁ]ae are in the Appendix). We
note that the superconvergent integral }( drops rapidly with p”} therefore the
scalar part S increases A and A' somewhaf, and, because of missing .yg as com-
pared to T -exchange, gives a negative result for C. This amplitude ié further
reduced by the vector term, which also has a Targe negative A content (due to
the factor q2 in the integral it does not converge quickly). The derivative
term D is very important since Y. & = ZPp. - P fm
where the first part directly enters the B amplitude positively, and the

7

second part Towers A and especially A'. Thus D essentially restores (2.9).
The /zf’terms have a large positive A-content of short range, which we expect

to be cancelled roughly by the vector part V' since both terms come from
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the two intermediate nucleon momenta in fig. 3b which can be taken as in-
dependent integration variables instead of q and p'. Therefore they do not
survive symmetric integration. Finally the mixed term Mi mainly adds to C

because of {,P’d/#}.’_ = 2 P..

In principle the individual weights A  to -, should all be 4 , and 4;
and 4;q‘shou1d be calculated numerically. Instead of this we nave calculated
‘L' and _fq‘ for some special values of p2 and p'2 by keeping only the §-
wave in t;; 7 channel. Relative to this reference amplitude JED must be
roughly 2 in order to satisfy (2.9). This is not alarming, but one may
speculate whether higher order corrections might change the crossed box.
First of all one verifies easily that a term (F-F1)fs (#—r ) in the

o N vertex with the sign given by the lowest order vertex loop will increase

the S, D and M, parts. (Such a term will have Tittle effect in the nucleon box
(2)

for the 7T channel, as it does not contribute to the leading NN s-wave state).

Cn the other hand the diagrams of fig. 4 give rise to large cancellations in

those terms of (3.1) which are proportional

to M or MZ. This will be shown in the

Appendix., A derivative term in the xN

,;:>(:: ) vertex will of course also enter into the
basic triangle diagrams fig. la and 1lb, but
we shall omit these terms until a thorough

Fig. 4 discussion of the &N vertex is completed.
Corrections to crossed We therefore proceed in the following way:
meson exchange A, will be taken as 1, but S will be

multiplied by a strongly decreasing function

of p2 and p'z. The ratio of A, and Ay is

choosen such that the A-contributions at large p'2 cancel, whereas )gn is ad-
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Justed via (2.9). }ln is choosen close to 1 being "fine tuned" by the

charge normalization condition (2.2). Thus Ab and Ay have to be read-
Justed slightly when we iterate our system or equations. The final set

of parameters will be shown in the next section. We only remark here that
finally the contribution of the crossed box are of the order of - 10 % in

A and, for p2 > 0, + 20 % in B and C. Only at pz-s: - M2 the box terms be-
come more important in B and C, where the pion and nucleon diagrams decrease

quickly. Thus the fourth order contribution is, even after multiplication by

2, really a correction.

IV. Results for the Vertex and the Propagator

In compact form our problem is to solve

2
E 1 (AI Bl ¢
(A(P‘)I:B(P )’ C(r ))jg/ K‘_ c)(?’ p’) ,<.; (P™) (4.1)
Pf
together with the relations (2.3) to (2.9). The kernels Kj(A’B’C)(p,p') are

given in (2.16) to (2.28) and in the Appendix. An iterative solution of this

system is the only promising way. The situation is quite favourable since the

equations behave stable under variations: Imagine we have found two functions
1: (pz) and fi(pz) which solve (2.3) to (2.9) and (4.1). If we change 1:(p2)

by a high mass pole, say

T(P) — () + /(P amt) e

with d >0 A >4
'
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then A(pz) will decrease less steeply with p2, and correspondingly the out-
put propagator; 1'; (P")Pr:;;/PtA(f‘! becomes closer to the free one,
which would correspond to an output & <o, similar arguments hoid for the
ratio 'ﬁi(pz)/ f; (pz) as can be seen from (2.23). The mathematical frame-

wark for this iterative procedure has recently been given by Stichel (12).

2

In order to calculate the propagator functions 1:(p2) and ¥, (p~) via (2.8),

the above ratic was parametrized in the form

TP r (pr) = 4- (P‘—”')[J«/(P‘—ﬁ:) - crl/(Pl-/*f)} (4.3)

and with a trjal choice for the parameters therein and in (2.14) the form

factors A(pz) to C(pﬁ) were calculated. Then the difference C(pz) - B(pz) was

interpolated numerically by 4 pole terms and then Rz(pz) was calculated from

mterp .

P ,
R,(p*) = R (M) + /d" (Cex)- Bexy ) ' (4.4)
N!—

In this way small violations of {2.9) drop out, since under a change of para-
meters B(pz) and C(pz) change essentially in parallel. Rl(pz) is simply given
by {(2.7). Thus the output values of 1:(p2) and 1:(p2) were determined by
(2.3) and the averages between them and the trial values was used as a new
input. Affer one or two iterations the normalizaticn constants ,Aj)and ,a,ﬂ
((3.6) and (3.7)) were readjusted to satisfy (2.2) and {2.9). This procedure
converges very well, In figs. 5 and 6 we give the resulting propagator func-

tions 1“(p2) and 1“(p2)/ 77, (pz) together with the difference between in-

4 2,

put and output functions. The coefficients of the parametrizafion (2.14) for
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b p,(pD)= 171, (PH(P?-MD)
10

05

i -IO X ( p?Ut_ p;n

-(p?-M?)
ol 02 . 2 0. 20.[GeV/c)?

Fig.5

Ratio of free propagator to dressed one, g-term

Ary(p2)/ry(p?) input

———- output

10

05

-(p?-M?)

| L1 o1 aa1al 1 ! L i1l

01 02 T 2 10, 20, [GeV/c12

Fig.6

Ratio of mass term to /p’-term
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the propagator are collected in Table I as well as the constants 6} and M
For comparison we also list the parameters for the pion propagator (2).

The pion propagator after the proper mass shift, is closer to the free one

Meson Nucleon
INCR) ¥ (%) . (%7 ¥ (0%)
i |D, hgﬁmﬂ D, i, (Ge\d 51 u; [Gev]
1 |0.0045] 1.71 0.0057| 1.71 0.9 2.1
2 {0.1 0.98 0.32 1.1 0.1 4.5
3 4.0 8.8 4.3 10.8 - -

Table I. Parameters for the meson and nucleon propagators. See

eq. (2.14) for A(p®) and * (p?), and (4.3) for

.
as the nucleon propagator, especially for small p°. This is connected with
the absence of the low mass & N continuum in the pion spectral function.

(p2) becomes uncertain at high p2 since we only can
2
)

The mass term v3

calculate the derivative Ré(p » and consequently large numbers are to

be subtracted for pz—v--oo. This explains the large difference between
the input and the output values for f;(pz)/ 75 (pz) as shown in fig. 6.
[t may be intefesting to cempare the form factor A(pz) with the strong
vertex function V(P,P) in (2.11), which are presumably similar since for

both the one pion exchange diagram is attractive and even the crossed box

diagrams have the same sign. It is satisfying to see in fig. 7 that with



- 18 -

10F

A (p2)/A (M?)

——= V{(p.p)
Q5

I L1l L 1113 4al 1

a1 02 12 10. 20 [GeV/c)?
Fig.7

~— _(pz’Mz)
-

Comparison of e.m. and yB—vertex function

1
A =21 M2 the two vertex functions have indeed essentially the same p2

2:: -3 M2. For Targer p2 the different asymptotic be-

dependence up to p
haviour of V(p,p) and A(pz) of course becomes apparent. If we nevertheless
take A(pz) representative for the strong vertex we can study the consistency

of our theory. For instance if we reduce /f'to AT - M2

» Say, and determine
a new propagator, then the new A(pz) will decrease much more slowly than the
new V(p,p). Thus the value of /ﬂx= 2.1 Mz, as presently determined from the

§? -dynamics may actually come out from a selfconsistent solution of the NN

vertex BSE.

V. Discussion

We have shown that a BS-kernel for the coupled srwand KN-system can be
found which aliows a selfconsistent solution for the e.m. vertex BSE obeying

the WI. The dominant part of the interaction is still given by one meson or
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one nucleon exchange, and the necessary additional spinor structures are
qualitatively in accord with the crossed meson exchange diagram. Their

most important effect lies in the derivative couplings of the 1ntefact10n.
The "cut-off" parameter A* which determines the effective n NN vertex at
large momenta and thus partly governs the strength of the interaction, is
taken from a dynamical model for the P -meson. The resulting nucleon pro-
pagator in the spacelike region is characterized by an increase by a factor

2

of 2 compared to the free one at p“=x —M2 for the +-term (see fig. 5) and

by a decrease of the mass term relative to the * -term by a factor 1/2 at

pzz— 3 MZ.

In the past only rather restricted sets of diagrams have been

considered (8-11)

» mostly nested bubble diagrams for the propagator. This
~would correspond in our formulation to the BSE-ladder approximation with a

bare meson propagator and bare vertices, leading to divergent vertex integrals.
The difficulties of such an unsymmetric expansion - only propagator corrections,
but no vertex corrections - show up in the occurrence of ghosts in refs. (8_11).
Such ghosts, i.e. propagator poles on the physical sheet different from the
nucleon pole, could here only come from zeros of the functions Rl and R2. In
ordinary perturbation theory with ocn-shell subtractions these zeros arise
easily by a cancellation of the bare vertex term and subtracted vertex correc-
tions, which become large and negative in the spacelike region. Since we set

Z1 = 0 from the beginning, i.e. subtract the vertex at infinite momenta and

omit the bare term, zercs in the vertex could only come from a repulsive part

in the BS-kernel which is not present in low orders. We have to pay for this

by difficulties in the charge normalization condition, which restricts the
kernel. Stated differently we assume that the hadronic vertex functions cancel

the divergences that would arise from dressing only the propagators and con-

spire with crossed exchange diagrams etc. to conserve the charge.
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Possible apptications of our results to Tow energy hadron physics will only be
mentioned shortly here, some will be published soon. We can now try, with
confidence, to calculate the contribution of the pion e.m. current to the
nucleon isovector form factors (magnetic moments, radii etc.). For this
especially the mass term Rz(pz) is important, as it leads to non-pole

terms in the = N-ampTitudes which strongly affect the Pauli form factor
Fz(qz). Another challenge is a direct calculation of the pion weak decay
constant f, by fermion Toops, which again crucially relies on the mass

term. Finally the deeply bound state problem for the NN system (i.e. the

Vvector mesons) can be attacked, beyond that what we have done already for

the 9-nmson.

The question whether our basic assumptions, i.e. pseudoscalar mwN-Lagrangian,
usefulness of the skeleton expansion, simpie form of the dressed = N-vertex,
are realistic will not be discussed here. But inside that framework there are
many possibilities for improvement. One crucial problem is the e.m. structure
of the neutron or the isospin structure of the BS-kernel. For the crossed
diagram with modifications this is rather subtle, but it seems that in total
the isoscalar charge is too large. The crossed box gives a negative contribu~
tion to the proton charge in contrast to naive expectation and the Tikely ex-
planation is that the vector term (3.5} is overestimated. Lowering it would
give an attractive "potential” in the isovector NN-channel and /\t would have
to be Towered. Furthermore the NN annihilation in the isovector state is
presently given only by the dressed =¥ -channel. The inclusion of more states
also would lower A and reduce the isoscalar charge if we could prove in our
model that the annihilation in the I = 0 channel were smaller than for I = 1.
Finally a better understandfng of the =ntN-vertex in a BSE-model can certainly

be achieved, especially with respect to induced derivative couplings.
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Appendix

Here we give more details how we estimate the various spin terms in the de-
composition of the crossed box diagram. First of all the break-up of the
four terms S to Mi into the amplitudes A, B and C will be given in Table II.

If the four NN-interactions are written in the form

S = -4@1MF (rp) "
V. - iyey F(rr) (r2)
D = —% (/P/+,)P,’)®(/P/+P') F;(P: P’) (A3)

4 r ‘ '
= {(ﬁ+?}@4+‘ﬂ®(ﬁ*ﬁ )j 7. (PP (A4)

then the following table gives the integrands for A, B and C, after using
F N
(2.15) (again x° = (PP /plprz):

Table II
A B C
S1 (5 «xpr)R ;,‘f— X7 Fs -z PP
V| $ex Pt wOE, | By nF, A pPR
D\ {(pep-x,pm; | 5 iCpertt 2ps) |- £pop) 2%
PRENT Y i1
HP=POXPT ) (s (o )P JE
' _ /2 /
M| -x Po 1 Ry -)-;—(X;_P + PP)TL Fy TE Mz{(P+PP)T‘
+2PP(PPPY) Y FFag
X.f = 3‘2"‘(4-X1)

>
»~
1]

(i)
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In order to get a feeling for the functions FS to FM’ we calculate a
scalar box diagram with dressed vertices and propagators but keeping only
the s waves in the crossed channel. Setting k = p-p', r = (ptp')/2, this

B ()=~ o [ A Eeaf) A 2019 Vi, 73)

V(B r=)V(P rea) V(P r9) % (* q)

where Fl(rlq) is the S-wave projection (in the #eCMS) of the spinor part
of the nucleon propagator. This expression has been evaluated for a number
of points p2 = p'2 and k2, and the result has been interpolated by an ex-

pression of the form with an accuracy of 10 %
A by . 2 2 L 3 S LA
Bin = V(P,p’)g,“cA(4+m.)/(4—ﬂ°+f°-2”)/”:')- (46)

As mentioned in sec. 4 the D term dominates the corrections to A' and to B

and is thus well determined by the WI. The interpolation function FD in how-

2

ever is too small as to restore (2.6) by a factor of 2 at small p“ and by a

factor of 4 at large p2. We therefore increased the masses M2 and M3 in (A6)

by 1.2 and set

Fp (PP) = A5 By @

r £

The final values of the parameters are listed in Table III.
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i a mé(GeVe) | ME(Gey?)
1 1.85| 0.23 0.29
2 1.02]| 1.95 1.31
3 0.55| 77.9 8.76
1.0} 205 2.0 1.12

Table III: Parameters for the interpolation of the

crossed box

The value of )\D:: 2.0 instead of 1.0 as expected has its origin probably

in the omission of derjvative 7 N-couplings. These cccur both in the single
pion exchange {where they would increase B and decrease A' if estimated from
simple perturbation theory, thus requiring less box contributions) as well as
in the box derivative term. The main problem is whether the remaining spin
terms, namely S, V and Mi are likewise enhanced. The S-term 1S certainly
suppressed at large momenta since it is proportional to the squared mass term

2,2

r, (g7 (see (A1), where M should be replaced by Mrz(q'z)

, if g' is the in-
ternal nucleon momentum). Furthermcre the higher order corrections of fig, 4

give a large negative contribution to the mass term. With Feynman parametri-

zation and an effective coupling constant (2) géff = % g2 one finds that

they cancel the crossed box roughly for p2 =:p'2:5 %-. Since such a negative

interaction is overestimated in lowest order, we multiply FD in by a rapidly
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2 2

decreasing function matched to the slope of the correction at p© = M-,

We use the form

A(PP) = B (RP)/(1-(prp=2r) k)" o)

i.e. /\5 is taken as 4 in (3.4). The detailed form of f—;(gp') is not
relevant, as it contributes very 1ittle to all amplitudes. Since there must be
some enhancement in the derivafive term, we assume that the mixed term Mi is
unchanged except taking inte account the mass variation in the propégator. Thus

we set

Fo(p,p) = Ay b (RP)G(T)/7%(F%) (A9)

h -2'=_,!- 2'4- ‘* -Mtz_
wws e g (pher - Y o

is taken as the average momenteum squared of the internal nucleon. ,lrfis

determined by the charge normalization and turns out close to 1 {see Table III).
The vector amplitude finally is calculated by multiplying in {A5) the integrand
by g 2, where g is the T T relative momentum. We fit the result empirical-

ly by

Byin (RP) = =23 5, (7,p) (22 M p 2p)((p-P) = 20m)/ 1
/(P - PV~ 100 may )

and set F;(p’ P’) = /\v ;i:/ih (P, p' ). (A11)

As mentioned in sec. 3, ‘lv is determined such that the contribution of V and

*D to the A-amplitude cancel at large p‘2.
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