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Abstract

We calculate exactly the centribution of instanton fields to the partition
function of CPn_1 models in two dimensions. For n = 2, the pure instanton
gas is infrared finite, infinitely dense and generates a mass dynamically.

For n 2 3, the gas corresponds to a system with complicated n-body inter-

actions, whose properties are yet o be explored.



1. Introduction

n-1 models 2) in two

Previous work 1) based on the 1/n expansion of CP
dimensions revealed that topologically non-trivial fields make a significant
contribution to the Tow energy dynamics of the fundamental particles in
these theories. How much of these effects is due to instantons was not

clear, however, because their contribution appeared to be infrared divergent.
In fact, the single instanton contribution is proportional to

[~ ]

(1) S da A2 ; A :scale size of the instanton,

o
which diverges for large A . Assuming the instanton gas is dilute does
not help but merely exponentiates the divergence. In other words, the

thermodynamic Timit of the dilute instanton gas does not exist.

Eq. (1) says that Targe instantons are more probable than small ones so
that the instanton gas may well be dense, i.e. the average thickness of
an instanton might be much larger than the mean separation between instantons.
Once the diluteness assumption is dropped, it may turn out that the exact
instanton gas has a thermodynamic 1imit, In particular, for the partition

function Z of the instanton gas in a volume V this would mean that
2) #n 2 = P-\/ (V= o0)

where p is proportional to the pressure of the gas. To investigate the
question of whether or not the instanton gas behaves thermodynamically,

one has to compute the contribution of dense multi-instanton configurations



to the functional integral.

The main difficuity in the derivation of the exact instanton gas is the
explicit computation of the determinant of the fluctuation cperator A
in a multi-instanton background field. In outTine, our strategy to solve
this problem Tooks simple. Let PO be the projector onte the zero modes

of & and
3) M= Trin(A+P)

Varying [7 with respect to the parameters of the general multi-instanton

solution, we obtain

(4) 8T = Te{(g+P,)(sa + 8P}

where G is the Green's function for &) :

(5) MG = 4-P, . P,G =GP, =0

G and PO can be computed explicitly so that [ can be calculated from

eq. (2) up to a number independent of the instanton parameters. Finally,
this number is determined by considering a special symmetric background
field, where the eigenvalues of £n (O + FB) are kncwn and can be summed

by standard methods (see e.g. Ref. 3).

The computations sketched above are complicated by the fact that [* as

given in eq. (3) is 111 defined and must be regularized. To cope with the



ultraviolet divergencies we shall introduce Pauli-Villars regulator

fields (details are given in sect. 4). To make the spectrum of & discrete,
one could put the system in a finite box with appropriate boundary con-
ditions. However, a far more convenient way is to formulate the theory

in a spherical space-time with world radius R and to take R > oo at

the end of all calculations. Due to conformal invariance, the classical
theory is independent of R, but after quantization, R can no longer be
scaled away. This R dependence is governed by the conformal anomaly, see

Ref. 4.

The one instanton contribution to the partition function of the CPl mode]

5) following 't Hooft's method 3). While

has previously been calculated
completing this paper, we received a preprint by Fateev, Frolov and
Schwarz 6), where they derive the exact instanton gas for the CP1 case.

Their method is different from ours, but the final formulae are the same.

Except for a few remarks in sects. 7 and 8, we shall not elaborate on the
physical significance of our results, but discuss in great detail the
derivation of the exact instanton gas. We assume the reader is familiar

with the definition and basic properties of the classical CPn'1 mode 1 1)2).
In sect. 2 we project these models onto a spherical universe and discuss

the instanton solutions in the new formulation. Fluctuations around multi-
instanton fields are considered in sect. 3 and the ful] regularized instanton
gas is set up in sect. 4. We then proceed to compute the regularized deter-
minant of the fluctuation operator A . We first do this for the CP1 case
(sect. 5), which is much simpler than the general case (sect. 6). Our re-

sults are summarized and discussed in sect. 7, and conclusions are drawn

in the final sect. 8.



n-1

2. CP models in a spherical universe

- T
c?" 1 models in flat Cuclidean space-time R describe fields
%
(6) Z,(; d=4,.n 5 x=(%x,%); 2] =1

of complex unit vectors. Mot all degrees of freedom of Z, are considered

physical: fields =z, and 2; related by a gauge itransformation

WALES)
(7) Z'd(x) = et Z,(x)

should be identified. The gauge invariant action is

Fields 2 (x} apprcaching the ciassical vacuum as x| —> o0 s

(9) 2,0 = hx) vy 5 |hl=4, v, = constant

fall into topclogical classes characterized by the winding number

(10) Q@ = f,,-t- %9 dx,, W (%) 3, h(x)
1%| = oo

The action S is conformally invariant so that the whole theory can be

projected onto the conformal compactification 52 of space-time [Rl.



Points of S2 are labeliled by
(11) Yo 3 o = 4,23

R? is imbedded into 82 via the stereographic projection

= _R¥u
Xy = R+ v (p=1,2)
(12)
2 2 2
MR X2 0 3 R* + x2

Correspondingly, the field z,(x)} projects onto a field Y (#) by

%a(*) = zd(x(ﬂ)

From eqs. (9) and (10) we see that for Q # o, %“(‘ﬂ is necessarily
discentinuous at infinity (r = (0,0,-R)). This discontinuity can be moved
around on the sphere by making gauge transformations, but it cannct be
transformed away. It can properly be handled by choosing patches on the
sphere, setting up a principal U(1l)-bundle and identifying Yot with a
smocth cross section of this bundle. For calculational purposes, this is
not very practical and we therefore resort to another method borrowed from
the theory of induced representations (see e.g. Ref. 7, § 5.3.3). It is

based on the observaticon that



(13) g = SU(Z)/u(ﬂ

where U(1) is the subgroup of SU(2) generated by &2 { 82 denote the three
Pauli matrices). More explicitly, the isomorphism (13) identifies the coset

g+ U(l) € SU(2}/U(1) with the point ra&S2 given by
(14) &% = R ge?q™
When r % {0,0,-R), g can be decomposed uniquely and differentiably into

h 3
156
= ux)-e ; xe R

vl

; "N & T £ 2w

(15)
-1
Wx) = (R2+ x*) > (R + ix, &% - ix,6%)

where x and r are related by the stereographic map (12).

Instead of fields %4 (") we now consider homogeneous fields F(9) (g€SU(2))

WG -1k

(16) \'ﬁll—: 1 3 %d(%ei ) = e w’gd(%)

where k is some integer. "3&(%) projects onto the oricinal field Z_,(x)

by

(17) 2,00 = %, (uw)

Provided %d(%) is smooth, it follows from



. . 1Pe? ,
Ux)y = ~ic*e (Xt =>00) 5  x = Ix|(cos?, sin®)
and the homogeneity property of '}d(%q that the topological charge of
Z,(X) is equal to k. Conversely, any smooth field 2y (%) with charge
k 1s gauge equivalent to a field obtained via eq. (17) from a smooth field
%d(%) homogeneous of degree k. Thus, homogenecus fields %d(g) on the
group SU(2) provide a complete and non-singular description of CP”bl fields

on the sphere.

e next proceed to formulate the action S in terms of %x(q) . A conventent

set of differential operators acting on functions f(g). g&SU(2), is

1t o
4 d 136
18) (T8 = T @ 3(ge * V|, _ | a=42;3

More explicitly, when g is parametrized by x and T as in eg. (15),

+
IJr = I1 - 112 and 13 take the form

AT

I,=- 2= {(R*+1s1*) 85 - iT 3.}

-1T

gy I_ = _gé_ {(R*+1s™) 8¢ + 1s50,}
4
Iy= 1 %%

Here, s denotes the complex variable xl—ixz. Note that the operators Ia

are self-adjoint with respect to the natural scalar product
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20) (45,%,) = Y dg 4, @ 4,(9
dg: Haar measure on SU(2); Sdg =1

and that they satisfy the angular momentum algebra

[Ia;Ib] = 1 € abe L

(they are the generators of the right regular representation of SU(2)).

The action eq. {8) can now be written in the symmetric form

RN % -
(21) S = __‘;} Sd'% 130317 Ja = Ta~ % Ta3
S is invariant under smooth gauge transformations

1N\ (g)

(22) 3(g) = e 3.(3) /\(%-e{wsa) = Ngd

Instanton solutions are easily described within the new formulation.

The projected form of the most general instanton configuration is

(23) 2, = Tol

where p, 15 a vector of polynomials of s = Xy - 1'x2 with no common roct.

The instanton number k is equal to the maximal degree of the pg's. It is
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not difficult to show that the field w,(g), g€SU(2), defined by

. 3 -'k
Wy (ge* ) = & w, (g

(24)

k
- %
Wy (U0) = Py (x) (R*+x2) *

is smooth and satisfies

(25) T_wy o)

From egs. (16), (17), (23) and (24) we then conclude that

26 (@) = Walg)
(26) 32°3 tw ()l

so that

N
O

(27) '3__%‘1
Of course, this is just the selfduality equation in the new language.

3. Fluctuations around multi-instanton fields

Let 30((g) be a k instanton configuration as described in the preceding
section. An arbitrary field ?5d_(%J with topological charge k can always

be written in the form
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~ i 4,
By = € { (- m™Y™ T+ S
(28)
- 3 _
3 =05 mulge ) = e,
Noting

(2.

33?3:0 ;

Vdg {15,312~ 133"} = &

the action of "% becomes

S —_ " In

o+ TSd%l'ﬁ_'g\l

Because 3_%&= o, nﬁ_"'% is of order 4 :

3% = (8~ 3u3) Dy + Olig?)

i.e. up to higher orders in n

(29) S = 2F

: k + sz Sd%](’\w%@’})n_lez

It is helpful to introduce some more notation. Let '}f‘e . L€ Z  be

the Hilbert space of complex wave functions (%} ) G € SU (2))
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such that

iwe? it w

1-¥ =0 |, ’llf(%-e ) = e ’llf(g)

Wi = Sdg 11 < w

9€k~is simply the space of all normalizable fluctuations M o dround Fu -

Next, define an operator

T #Hy - i
(31)
(Trqf}dz (Sdp_’é‘&%ﬁ) j_ ’I.Ifﬁ (weq{k)

The adjoint

32) (Tre), = (Sdp—fﬁd%@)3+<pﬁ (Pe,,,)
maps g€k+a. into ¥, so that T'T is an operator acting in W, .

The Gaussian approximation (29) to the action of"%d can now be written

compactiy:

i

IEE.‘< + 0]

-@ g_ (12 ) [3'*2)

where
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(34) A= TVT

il

The fluctuation operator A has zero modes. They arise from fluctuations
N » which are tangential to the k instanton manifcid and can therefore be

computed explicitly. The general solution of the zero mode equation
T'Q'-:O

has the form

There are precisely n(k+1}-1 linearly independent normalizable zero modes
corresponding to the equal number of complex parameters of the general k

instanton solution. A convenient choice of parameters is (cf. egs. (23)-(26)) +)

k .
F(S—Oi)g ol = 4,., 1 Cp =1

(36) (sy = ¢C
Put o s

Labelling the complex parameters € JzJL by ?Li, i

"
[
M
.

"
jun}
.

-~
+
—
—
1
—

a basis of zero modes is
*) Setting C, = 1 eliminates a complex overall factor, whose moduius drops
out, when forming the ratio {23) and whose phase corresponds to a constant

gauge rotation. The parametrization {36) is valid rot for all but almost

all k instanton fields.
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(37) N = (8qq - %’d%{b)éai;_'ﬁs

Correspondingly, the projector PO onto the null space of A can be re-

presented by the following integral operator

(P, (g) = Vdg' PP(q,4) Vaig); (ven,)
(38)

P lag) =l I Al

where

Y

@ 3y = = Seg Bhoa-gen 2

4. The reqgularized pure instanton gas

This section is devoted to the derivation of the pure instanton gas, the
computation of the regularized determinants being postponed to the subsequent
sections. We begin by writing down the functional integral for the expectation

of a (gauge invariant) observable O :

(10) <oy = Z7 Sa)[;z,] ce ®

The partition function Z normalizes the expectations: <1%» = 1, The pure
instanton gas arises from integrating (40) by the saddel point method,
the saddel points being all the instanton solutions. The full semi-classical

approximation to eq. (40) requires that all finite action solutions of the
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second order field equations (in particular: anti-instantons) are taken
into account, and possibly other "almost exact" solutions such as dilute
instanton anti-instanton configurations. Here, we concentrate on the pure

instanton gas (see, however, sect. 8).

The saddel point approximation to eq. (40) in the k instanton sector

goes as follows. Let 'Ed(%,?\,) be the general k instanton solution para-
metrized as in the preceding section (egs. (23), {24), (26) and (36)).
Denote by e:; (%,'M .1 =1, 2, ..., a complete set of orthonormal
eigenvectors with eigenvalues E1. #% 0 of the fluctuation operator A . Any
field %a(%) with topological charge k, which is sufficiently close to

the instanton manifold can be parametrized by (cp. eq. (28))

~ 1 N (g) A : o 1
(1) §,(q) = e {a-1M™ g0 + 3 g el (g, 2]
the (complex) parameters being ')Li and '€1-_. Briefly, ¥ (%,'JL) is the
instanton solution closest to %d(%\ and the parameters 'g,; measure the

displacement of %u away from the instanton manifold.

We next insert the parametrization (41) into eg. (40) and make two approxima-
tions: firstly, the action S is replaced by the terms of zeroth and second

order in § (cp. eq. (33))

T 2 2
(42) S = %’"k +"‘? E« ;]!

Secondly, the observable & is replaced by its value C(A) for the instanton
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field 3(1(%,?\) . The pure instanton gas expectation of & then becomes

@, = Z T ouy"{T d*a; d* e, T(r,8) B

(43) nst. k=0 it

xexp—{ﬁgk + 9‘—*—;—7‘—' §4E h;l}

The Jacobian J{A ¥) comes from

l

(44) D3] d'a; '8 I g

L L .
- a—
o

To compute it, we have to make precise what Sb["ﬁ'_\ means. Let M be the
manifold of all gauge equivalence classes of fields "’%d(%) with topological
charge k. Mk carries a natural metric: given a path %d (g,t} in Mk’ the

Tength “c%tl\ of the tangential vector 4

dt

Tl Sd% (1-383)-22

Note that this is independent of the gauge chosen along the path. The metric

described here naturally induces a measure @[’5] on Mk' More explicitly,

when a portion of Mk is parametrized by a set of real coordinates W, W,

we have

1
O3] = T dw; [det(ay))

)
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where G{,J. is the metric tensor in this coordinate system. In our case
the coardinates 3 are the real and imaginary parts of ‘X,j and E{ .

A short calculation then yields
(45)  J(n)g) = de{:(jij)
with Jij being the zero mode matrix (39).

Since J is independent of €, , the integrals over € 1in eq. (43) are

Gaussian so that

- _nx
22 T (T T 600 € F <
=0 J -

<82,

inst =

20 -1
% [de‘l: (T A)]

(the zero modes of A should be omitted in the determinant). At this stage,
we have to regularize the theory, because det & is divergent. To this end,
we introduce complex,scalar Pauli-Villars regulator fields (b; (%) JA=A LY

with large masses Mi and alternating "metric" e, to be chosen such that

(46) > e MF =0 (p=1,..,v-1)

T Me
(D
!
|
e

The regulator fields interact with the fundamental field Yo via the

constraints (in the k instanton sector)

-4l =05 P (%ema) = ot ¢i(%)
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and the action *)

\ dg I5E (A3 + (MRY)-¢°

M«

_ 2%n
S%%“"%

A

P
[

Taking into account the contribution from the regulator fields we arrive

at
-1 & g 2
(O = 2 L G ST L) 300 o0 -
(47)
"R
xexp—-1—k + T
P { £ }
where
(48) P%= T&{%(A-&-POB + é:deien(a +(M,—LR\1)}

When ¥ 2 2 , this expression is finite and will be computed in the sub-
sequent sections. Eq. (47) is our final formula for the regularized pure
instanton gas. After computing r‘reg we shall remove the UV cutoff while
renormalizing the coupling constant f and also take the world radius R to

infinity.

+) The mass term is chosen proportional to (MTR)Z rather than M? so that
254,02, 2,2

when projected onto the plane, it becomes MiR (R%4x") ". As R =% o0 ,
this smoothly approaches M?.
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5. Computation of r;eg: the CP1 case

For n = 2, the computation of r*reg can be reduyced to the calculation of

the determinant of a Dirac operator in the presence of an Abelian external
gauge potential. This problem has been solved long ago by Schwinger 8) in
the case k = 0. When k % 0, some complications arise from the zero modes,

but the calculations are stiil fairly simple.

The simplifications referred tc root in the fact that any fluctuation

N« (g) € 'B'Ek (cf. sect. 3) can be written as

(49) M (@) = edp"gﬁ(%)X(%\ ; €up =" €pot 5 Em =1

where X is some unconstrained scalar amplitude. More technically speaking,

eq. (49) identifies € with LZ(SU(2),2k), the Hilbert space of all wave
functions ¥ {g) with

{,ws‘s —i?_h:r.o

Sd% ")(.12<003 Xige" ) = e Xlg)

Similarly, '}fe can be identified with LZ(SU(Z),k+{). The operator T then

maps L(SU(2),2k) into LZ(SU(2).2k+2),

(50) T = T_+ I_(aiwl),

and
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maps LZ(SU(Z),2k+2) into LZ(SU(2),2k). In what follows, we need not know

that Iw\2 comes from an instanton solution and consider therefore the

general case, where lwl2 is replaced by any smooth positive function Q(g),

which is homogeneous of degree zero:
{we? .
Slge™" ) = Q(q)

A basis of zero modes of T is then given by (cf. eq. (15))

{16‘3\ ~ Sj e——-l,k't'

Xj(u(xy-e 2
Qlux)) (R* + x2)

k
(52)

(j= 0,4,...,2k)

y 2

so that the projector PO can be represented by

Polg,q") = X (g) N Ti(g)
(53)

Ny = Ydg %) X (g

We now proceed to calculate r;e along the lines sketched in the introduction.

g
The computations are broken up into several steps.

5.1 The exact Green's function for aX

The Green's function G (cf. eq. (5)) can be written in the form
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(54) G = G_G,

(55)  TG.= 1, P,G_= 0

(56) TG = 1- P,

The operator G. maps L2(SU(2),2k+2) into L

2
(
adjoint of G_. Eq.

SU{2),2k} and G4 is the
(55} is solved by the Ansatz

(5 G.= (4-P)Q &9 5  T_G_= 4

Because I. is invariant under left multipiications on the group SU(Z2), the

integral kernel ﬁ_(g,g') of ﬁ_ can be chosen left invariant:

(58)

G_(q,¢) = 3,(97" g)

As E_ maps LZ(SU(Z),2k+2) into LZ(SU(Z) 2k), ¥, must be homogeneous

PR R i2k(w'-w) {20
(59) glk (e‘LWG' . eiwﬁ-

e

= e Yo (9)
4., therefore depends on essentially only one variable so that the equation

I_G, = 1 reduces to an ordinary first order differential equation for sz .

This equation is easily solved, when written out in coordinates x and T
(cp. eq. {15)). The outcome is

2k +4
: P 2 ¢
(60) X,_k(et’-s ) =_E?S_.)_
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which completes the description of 8?_\‘ and therefore of the full Green's

function G.
For Tater use, note that
(61) ﬁo é, _= 0 3

ﬁo being the projector onto the zero modes of I_ in L2(SU(2),2k). Also,

the adjoint &_'_ of é_ satisfies

(62) I+é+ = 1- ¥>o

5.2 Computation of the variation SF'reg

When the external field § 1is varied, I"}’He changes according to

g
9 —
= e; (A~ (H{R)i) 4]

SI",E% = Tw {SA[(A+?°§_¢+ z

—4
+ 8P, (A+P,) ]
From the explicit form {53) of the projector PO 1t follows that
Te{8P, (A+P,Y'} = Tw{sP, P} = O

Noting O&A = ST T + Tt sT , 4. (63) can be somewhat



simplified:

e; T (a+ (MY 1T+ c.c.

Me

(64) Sl';e% = T«{ST*[G;‘_+

1

e
1l

where c.c. means complex conjugate.

8TV = — I+(Sﬂng’) is a local operator so that the trace
operation amounts to evaluate G+(g,g‘) at coinciding arguments and then
to integrate over g. The short distance singularities of G+ are cancelled
by the corresponding singularities of the Green's functions of the regulator

2,-1

fields. The short distance expansion of GT = T(A+ (MR)™) = can be calculated

perturbatively (appendix A):

G (w0, M) = =~ R U+ 16, %3, tag) 20
(65) ‘
(x = 0)

Here, terms vanishing at x = o have been neglected and the coefficients of

the non-zero terms are given for M =oo,

The short distance behaviour of the zerc mass Green's function G+ follows

from the exact expression derived in the preceding subsection 5.1:

Geluco, 1) = = R (4 + x, 3ﬂ&a?)—§%ﬁ’*
(66)

- Sd%' Q) é+(4)q") 9"‘(%'\130 (g, + 0 {1x1)
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Inserting eqs. (65) and (66) into eq. (64), we see that all short

distance singularities cancel indeed and we are Teft with

Bl = 2 Ydg (1, 09)(T_n9)
(67)
~Tw{sT 04, 97"} + c.c.

Eq. (67) can be simplified noting that
8TT = — 7% 84ng]
(68) P0T+ = 0O ; T+9é+ = 91+é+ = 9(4"?50)

PP, = P, g

We then arrive at

8heq = 23 \ dg (1,€29)(T_£n9)

+2(2k+1) 8 {dg £nQ — 27Tx (P, 8tnQ)

Finally, from the explicit form (53) of the zero mode projector PO, we

deduce

=2 T (P, 81mQ) = & (LndetN)
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which Teads to the re§u1t
F,e% = & {k,M{R) + 4dndetN
(69) ,
+2(dg { (TN T Q) + K+4) 2§}

The constant X s independent of Q and will be calculated in the next

subsection.

5.3 Computation of ci(k,Mj,R)

The spectrum of A can be calculated explicitly in the case 4 = 1.

Denote by

<:j)!1L? 5%] j) m'y = o, Yo 4, ...

f - [ L]
mm = =~y FA e
the matrix elements of g€&SU(2) in the irreducible representation of SU(Z)
with angular momentum j. It follows from the Peter-Weyl theorem (e.g. Ref. 7,
§ 2.8) that the functions

Vi = <iomlglj,-k>;5 j=k ke ..
form a complete orthogonal basis in LZ(SU(Z),zk). They are also the eigen-
functions of O = I I , the eigenvalues being

+

Ej = (J-K)(j+k+1); multiplicity: 2j+1
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Defining = j-k-1, e, = land M = o, r‘reg becomes

(2k+4)2 e: &n (M, R) +

% i=4
(70)
o v
S {2 e, o
froms { o e, (?./.a + 2k + 3)%[(p+4)(}.\ + 2k +2) + (M:R) ]}

The master formula for sums of this type is

2 {2 e; (ap+b) e (ur o) (ur o) + (M;RY] ]

1=0

v
= 2 ei{- alMR) &n (MR) + 2 [2b - ale,+ 0] MR

1=

-

(71)
G+ o) - 2 = bld,+ 1)) e (M)}

+ 2 (d,- o) + (ady-5) 0,0, + (ac,~b)E o)

= a %' (-4,0) + €' (-1, a,)

Here, € (z, q) is Riemann's zeta function (Ref. 9, § 9.5). Eq. (71) has

3)

been derived following 't Hooft's method. Since this method is fairly

standard, we do not give the details of our computation nere.

Applying eq. (71) to the case at hand, we obtain

v
r‘m%= 2k .21 e{&q(M{R) F+ 2k (k+4) + (2k+A)0n T(2k+2)
1=

24
—?_';Z A+2) n(A+2) + R(M; R)
=0
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The number[S is independent of k and is therefore irrelevant.

To compare with eq. (69) we note that for @ = 1

_ 21— 2k (2k-! ! .
Ni’j - S{j (R ) _(—-‘2](-*-—4)—!— 3 j= O,'i)...J?_k

so that

Meeq = UMy R) = 22K+ DR + (2k+4) fn Pl2k+2)

24
— 2 2 (a+2)en(n+2)
A=0

It follows that

d\(l()MJJR.) = d\(O,Mj,R) =
(72)
7_k{2 e; L (M;R) + (k+4) + (2k+4)enR

i=1

Qur results eqs. (69) and (72) are valid for arbitrary smooth external
fields § . However, in case § stems from an instanton solution, the

formulae can be simplified even further, a task, to which we turn now.

2
5.4 More explicit evaluation of Freg in case 9= |wl

Recall from eqs. {14} and (36) that
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2 N k/a_
Wy (uxy) = (R™+ x*) Po (X)
X : X .
P.‘(X) = C _H (5"'0:1) 3 Pl(‘x) = .ll (S_b.\)
‘1:1 J:’l

¢} . .
For @ = {wl, the integral in eq.

of c, a' and bY

(39), (45), (66)), which will then cancel in the instanton gas expectation
values <G>{ns’c

(69) can be computed explicitly in terms

. Furthermore, det N can be related to the Jacobian J (egs.

In x-coordinates, the integral in eq. (69) reads

e
Aol

A= 2 (dg {(T,enw YT falw) + (k+1) tniwi*}

=3:-Sd9- l IP\i 2 (2k+1)R* ln ‘P\z
K x{— BSM(R"-\—XZ)“\ + (R4 X2V (R"—l—x‘)k}

Partially integrating and noting that
B3 i (R*+ x*) = — kR (R*+ x*)
we obtain

A=~ 2024+ aR) + 2k Zn (44 1c1?)

2 ¢ 2 R* el
+’ﬁ'%dxi'?’h\P\ ‘agas‘eﬂ\P\l E__-'r_X_ (R*+ )k}



- 29 -

Define a complex variable

As s runs through the complex plane, u assumes almost all values k times.

Thus, excluding small disks around the zeros of Py, we find .
2
(d* Balpl® 3595 Lalp™ = (d™ {2n 4+ 1u) 2535 £n U+ i)

+ U ip, 8535 nlpl” — (3395 4n Iy 1) nlpl®

Y

= k(™ (A+rlY " n (44 i)

+ Af{f 83 dx,, €4y {&“P\l 9 %\Pz\i - &l‘Pzﬁ avf‘“‘Plz}

The Tine integral is to be taken over a large circle at infinity and

small circles around the zeros of Py The result is

| Latpt* 3535 Lnlpt® = Wk (4 - Ln(4+1c®) + Lnlcl®)

K L
+ 7 3 Anla- b

i,j=1

The remaining integral in A can easily be computed for R - oo making the

substitution x = Ry. Summing up, we have
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(73) A = —2k* (4 + LnR*) + & (4+1e*Y

k . .
+ W lnlcl + 23 talad-b T+ O(-%)
=1

In order to relate det N (eq. (53)) to det J {eq. (39)) we note that

A Kot :
Yy = G 1P (e Py o) (S Pey o)

2 1 ..
€a&F,Pol§5\ij= S L‘LJ ) (-‘LJj-—: O,...}’)_k)

where the (2k+1) x {2k+1) matrix Lij depends on the parameters ?\z only.
Thus,

2
detJ = |detL| detN

Because det L is a nomogeneous polynomial in a', bY of degree k(2k-1)

vanishing whenever two roots coincide, it follows that

det L o [T (ai-ah)(b'— 6] T7 (af- b))

|
e i)

The proportionality constant can be computed inductively giving the result
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(78)  det I = (detN) el Ti‘ la{—a:‘\llb{-g\"]x
<]

— ‘ VL2
T lat- b
1)

[ Y

We finally collect egs. (69), (72), (73) and (74) to obtain the completely

explicit formula

\
T, = 2k 2 e, &aM; + 2k + In (A+e?Y
ea i=4 v

(715) + % dnlat-bl\* - 2.[%\05:-& 1+ albt- v 12]

1) "1<J
+ Indet I

(terms vanishing for R = 0@ or Mi-w> 00 as well as k-independent constants

have been dropped).

6. Computation of F;eg: the general case

n-1 (n23) case, too.

1

The scheme outlined in the introduction works in the CP

The details of the calculiations, however, are more involved than in the CP

case.
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6.1 The exact Green's function for O\

Again, the general structure eqs. (54)-(56) holds with T, 7" and P0 given
by egqs. (31), (32) and (38) respectively. G_ mapsg'ek+2 into 'J‘ek and can

be written in the form

(76)  G_= (4=P) Iwl " & wi

Here, the integral kernel éfﬁ(%J%') of ﬁ_ satisfies

(Sotp - %o((%)%p(%ﬂ .G (4,9 =

3

5 (%eimc : %l)

A(k+2)Yw

g
(85~ 3(9)34() \ 52
=K

where S(g,g') is the B-function on the group SU(2) (the right hand side
of this equation is the integral kernel of the unit operator in '3fk+l). One

solution is

G2 (g,9) = (8- 3 @ 3 @) 3, (g7 g) =

(77)

* (84 = 34(9"3p(g")

with Xk defined by eqs. (59) and (60). For brevity, we shall use

the symbolic notation

G. = - 383)- ¥, - (1-387%)
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6.2 Computation of rreg

Consider a curve}(g,t), 0£t <1, of instanton fields. We would like to

compute

d ' .
s, = — I
¥eq dt *g |t-o
Eq. (64) is not straightforwardly applicable here, because the Hilbert
spaces ?ek depend on Far This difficulty can be overcome as follows.
Define a unitary matrix ud\g (%)-\:) by

U=1{38% ~38% + (33 (ep}Iu ; Uge) =1

(the dot denotes differentiation with respect to t). Cbviously,

U ( iwe? .
ge ,t) = Ug,t);  Ulg,t) 3(q,0) = F(g,t)

so that U(g,t) can be used to identify the Hilbert spaces %, along the
a 1" by n —4 - by

curve 3(g,t): if Y e ®, at "time" t, Udp (%J'I:.) 'llfp (%) is an

element of '33.9 at t = 0. Correspondingly, any operator 0 acting in some

‘}Ee at time t can be pulled back to an operator U lou acting at t = o.

Because U is unitary, eq. (64) holds, provided we define

5T+ = & () |
t=0

(78)

= — (4- %®73)-{(1+°a)® 83 + I+(Bﬂn\w\)}
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As in the CP1 case, the short distance singularities in eq. (64) cancel.
We shall not repeat this calculaticn here, but merely state the result

(cp. eq. (67})):

B = 2 §dg (T_eniwl) {83 (4-3@7)- T,

(79)

+ (n-1 {I+8&m\w\)} - Tr {877 Wi é+lwl*4 1+ c.c.

Unfortunately, the reduction of & r;eg to a local expressicn reguires a
fair amount of algebra, which is deferred to appendix B. The outcome is

(cp. eqs. (37), (39))

ST;Q% = 3§ dg 2 (T 2ntw)(T, aiwt) + (k+4) & Iwl]

(80) = T gd%{(qj 8%)\w1 (’3 )+ Wi ( }“S% ) ")
| A3

- 2T (P, §Lniwl)

The terms in eq. (80) involving the zero modes Q‘ can be related to the

variation of det J:
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-...- i = 3 a a
835 = — Vg {H'q" 28 eniwl + (-8 1wl - 53

I G -3 ) (8] + fag T s[5 ) ot + 71 8(55)]

The first integral here matches with the zero mode contribution to eq. (80).

To evaluate the second integral we note that

]
Sw = 2182 ;;;‘E W },ee = constant
ow 'Blw m 3w
S(EXN — ovw Bw
(3’)\{) be—f 3%, 92; ¥, xzi A n

m
where the coefficients XEi (A) are independent of g. We then find

which is not difficult to compute with the choice (36) of parameters:

. n . .
BQEX;{ +cc. = & {k-@n\cd\i + 2 .&(L\q:-oi\l}

ol=4 1<}

Summing up, we have
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(81) 8 = 8120 (dg [(T_Lniw) (T ealwl) + (k1) 2alwi)

n 2 { 1.2
~ 2 [wenicy + £ atal - al1"] + fndetd}

A {<j

This equation determines r;eg up to a constant which can be computed by
considering a CPl instanton imbedded into CPn—l and comparing with the

results obtained in the previous section. The final formula is

W
, r;eg_ = nk T eg Mg+ ko+ (% +4) en (T c,)
(8

0t . .
— 5:‘ [k-?)l’t\ca\l + = %la;—aﬁll]

1 i<j

+ 5= Nd¥ fnlpl* 3gdg Lalpl® + Lndetd

7. Summary and discussion

Composing eqs. (47) and (82), we find the following expression for the

instanton grand canonical ensemble

n-4
- o0 - g% n ok .
oy, = 2 5 (k)" | ez d T dtal
(83) L

€ Gley,ab) exp— Ulcy,ad)
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Here, z is the fugacity,

w

v
+ 27 G{EA’LM{ +E—t-2'—'}1

In
(88) zZ = = exp—{-{ =, Py

4

U is the many body potential

W= {d% nlpt® 950, fnlpi® + 4 nk (Enlt,c) - 1)
(85)
n . .
- Z[k%\cdlz-% 2. %la‘;—aﬂ\l]
=1 i<}

and the instanton parameters C , CLE are defined in egs. (23), (36).
In eg. (83), the woerld radius R has already been takern to infinfty. When

the ultraviolet cutoff is removed,

ded . L4
'&'L/\ = - Z e{’ZnM{ —> o0

4=

the counling constant f must be renormalized according to

2% N 2w
(86) — = ALn R
% / M 4.

Here, M is the normalization point and %Rﬂyd the rencrmalized coupling

constant. Defining the renormalization group invariant mass



- 38 -

eq. (84) reads *)

Rt
(88) z = m 3155 e 2n
Eq. (86) completely agrees with the renormalization of the 1/n expansion 1).

For Targe n, the mass m is just the mass of the fundamental Zg particles.

For n23 we were not able so far to explicitly compute the integral appearing

in the potential U. On the other hand, for the CP1 case we have {cf. sect. 5.4)

U= 3 tnladt -t

1]
= T {tnla - al1* + tnlbi = b 1]
1.45

T s a} and by = a%. This is precisely the Coulomb interaction

where ¢ = Cis @
energy of k positive charges and k negative charges sitting at ai respectively
bj. Thus, the pure CPl instanton gas is equivalent to the two dimensional
classical Coulomb gas, whose partition function in a volume V and at a

temperature T is

= -2 9 —E- 24 42,
ZV(TJz)= > (k) =z g o da db «x
k=0 at bl ey BT
{87)

.2 . .
« (T 14~ bil"%)(.ﬂ'. PUSPTLRTCIIRIE
4,4 <)

+) The coupling constant down-stairs is not renormalized to this order

in the semiclassical approximation.
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(in our case T = 1).

Fortunately, a number of interesting properties of the Coulomb gas have

16)

been established rigorously by Frohlich . First of all, he showed that

the thermodynamic Timit of the pressure p exists, provided T>1:

(88) P(T,z) = &m V™ Ln ZV (v, 2)

N —= 0o

The number @ of instantons per unit area is *)

X

(89) §Q = =+ zaa-—; p(v,2) = Py

2 piT,=2)

which is therefore finite for T>1. Qualitatively, -in this range of
temperature, the Coulomb gas is in a plasma phase. In terms of instanton
thickness and positicn variables, this would be a dense phase, the instantons

overlapping each cther more and more as the temperature rises.

As T approaches 1, the Coulomb gas condenses. It follows from Fréh]ich's
work (§ 4.c) that the pressure p(T,z) diverges as T ™ 1 while keeping the
fugacity z fixed. The equation of state (89) then implies that the density
Q is infinite at T = 1, i.e. in the cP! model we have an instanton fluid
rather than a gas. Superficially, the condensation of the Coulomb gas can
be anticipated from the fact that lal- bjl_'%' becomes singular as

T w1 so that the charges preferably form neutral dipcles, which can be

+) Eq. (89) is a simple consequence of the scaling properties of ZV(T,z),
and eq. (88).
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densely packed. This argument reveals that the pressure p diverges at

T = 1, because of the ultraviolet rather than the infrared divergencies
in the instanton scale size integrations (cp. eq. (1) for n = 2; for a
single instanton A = 12- la-bl ). In particular, we do not expect

such a condensation to take place for n3z 3.

At first sight, one might fear that the CP1 instanton fluid does not make
\
sense at all, because its density is infinite. This is not the case, how-

ever, because the expectations {&). usually have a 1imit as T ™ 1,

inst
In other words, the UV divergencies factorize and cancel in the ratio (83).
This follows from the fact that the expectation value of & in the Coulomb
gas can be represented by the expectation of a corresponding observable

X 11)10)

® in the massive Thirring model when T>1 . This model is5 formally

defined by the Lagrangian density
= T (if -/ ¥ — Ao (T z
(90) VE-m )W — § g (TY, V)

where the mass m' is proportional to m and g = ® (T-1) (see Coleman's

article 11), in particular § IV, for more details). As T %1, g o0 so

Cb.gas — < CPyrh

expectation value in the free massive Dirac field. -

that the expectation <& converges to an

The equivalence of the CP1 instanton fluid and the free massive Dirac field
not only shows there are no infrared divergencies but also reveals that a
dynamical mass generation much like in the 1/n expansion has taken place.
The equivalence could be exploited to compute correlation functions of the

spin field )
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a _ 3 a
C‘ = ZEy Cfd@ EEB

but we are not going into this here.

n-1

We have Tittle to say concerning the physics of the CP instanton gas

for n23. We only remark that for k = 1, the potential energy U is

o1 U= T i lcyic

kg8
2 A 4 .2 LT
- o | — 2 dn
oA ol 1oy 1 z lcy!

This expression is already much more complicated than in the CP1 case, in
particular, the parameters Cy nc Tonger play a passive role. With respect

to the "particie" positions a’

ol ° U is a Coulomb Tike n-body potential., It

is singular when all positions are equal, but for n23, this singularity

1s harmless, because it is integrable (cp. eqg. (1)).

8. Conclusions

The most important insight provided by our investigation is that the infrared
diveraence of the one instanton contribution tc the path integral not
necessarily implies that the whele instanton gas is divergent. More pointedly
expressed, the divergent scale size integral, eq. (1), merely means that the
instanton gas is dense. The dilute gas intuition, which has been gathered

by studying models with built in mass scale {such as the two dimensicnal
Higgs model), may be rather missleading in the & -model case. For example,
there is no dynamical mass generation in the cutoff dilute instanton gas

approximation.
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Technically, our computaticns were rather involved but the overali strategy
was simple. We hope to apply our method to the general Yang-Mil1s instanton
solution in four dimensions. A crucial ingredient of our computational

scheme, the relevant exact Green's function, has already been found 12).

In the semi-classical approximation we did not consider contributions from
solutions and "almost" solutions of the full field equations other than
instantons. As the instanton gas is dense, however, we doubt whether instanton
anti-instanton configurations can be safely distinguished from vacuum fluctua-
tions. Neglecting some exact solutions may be a more serious mistake. For-
tunately, in the CP1 case there are no soluticns of the full field equations
with finite action other than instantons and anti-instantons 13). The situation
is different for n2 3. For example, an infinite set of solutions for the

CP2 field equations is given by choosing Z2,x), o =1,2,3, to be any
real 0(3) instanton or anti-instanton. The CP2 topological density of these
solutions is identically zero and the action is quantized. It is an interest-
ing problem to classify and describe ail solutions of the full

field equations of non-linear & -models and to clarify their r8le in the

semi~classical approximation.
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Appendix A: Short distance expansion of T{A + (MR)Z)_1

2,-1

The integral kernel D(g,g') of (A+ (MR)®) ~ is homogeneous

fwed ‘iw'sa) A2k (w'= )

D(ge ", ge = e Dig,g)
. . . . 1 Tw's?
We are interested in the behaviour of D(g,g') as % —> % e .

Provided the field Q 1is rotated as well, D(g,q') is invariant under

Teft retations. It is therefore sufficient to consider the case g' = 1,

Define (cf. eq. (15))

The differential equation for D(x} is

Iy
[- DuD +-(E———E~—]D(x)= b 8§ (x)

Du= Gu+ifus Ay=-e,d, (R 9 (ueo)

We compute D(x) perturbatively:

x 2 2
Dxy= 4® 21 Sd X d %y, Dy (x=x%,) V(x,) Dy (x,—x

V=0

VIxy) Dy (xy)

The perturbation V(x) is

V= i (A3, — Su AL — AuAu + 84— RY R+ )2 ]
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and the "free" propagator DO is taken to be

D, (x) = ‘-’1—31 o P (p™+ bMY = S K, (2MIx))

(KO is a Bessel function, cp. Ref. 9, § 8.432).

The operator T acting on D(x) reads
- A (R4 2 _
T = = (R*+«) (D, ~iD,)

From power counting it follows that the terms of order ¥ 2 2 in the
perturbation expansion for TD(x) give rise to a ccnvergent one loop
integral when x = ¢, As M —> oo these integrals vanish, The terms of
order ¥ =0 and V¥V =1 are easily computed in the 1imit where first

X =» ¢ and then M —%o0c0:

. X, —1X
TDR) = - R.(/i—tAHXH) -—‘_xi._l
Appendix B: Proof of eq. (80}
Let

A, = Tr {T, (88niwl) twl &yt 0,3

A = T«*{(I+%3®5’%'\W\ é‘+lwr4P°}

p
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We first compute Al. Noting

(- 303V I, (82niwl) = [TF Stniw]
we obtain

A

I

== T B oniwt) TF wi (‘:_,.\W\_« P}
= = T {8 2niw) twl (4= D) twi™ P}

+ T {82 \wl) (1+3,)® 3 - iwl XI Wi P, ]

Here, 50 projects onto the zero modes of I_ (cp. sect. 5.3):

-&:P (%5%') = (89(3 - %u(%) 33(%)) (k+4) <k" --‘i— ] %‘"4.%\%

2

A MCSEREL)

In particular

Bolwl "B, = B (wi

o

so that
A= = T (P 8oaiwl) + (n-t)k+4) {dg & 2alwl

+ Te{ latwl) (T,3)0 % - vt 3] lwi"' B, )

ar——

2

LEN
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Next, observe that

T (- 3®@%) lwi" 3 lwl-g = O
and therefore

e fwl ‘a’:— Wl P, = 3. Iwl 81- lwi " (4-3873)
Thus, we finally obtain

Ag== Tr (P 8nlwl) + (n-t(k+1) (dg 82nlwl

= Y dg (82alwl) (T 5)-1- @7 HT.3)
= S dg{[n(kM) 4] eniwl + (T_tiwd I, tniwl)}

— Te( P, Staiwl)

We next compute A,. Because (4 - %@‘5)-33 is a zero mode of T, we

have

T {w " & 1wl -3y — (4-383)-83 3,3 = 0

Therefore,
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A, == Te (P lwi " & Iwl-83@ 1.3}
= - (dg (13) t-g0 " T,[iw (1- 3 07)- 84]

- Ta {Po- S% 3, ® I_"%—i
Recalling the explicit form eq. (38) of Po’ it is easy to show that
— olf N -1 _ dw -4 _j
(1.3 (9 P2 (g,9) = T_{wi "a-g;)(% Jij Mg @

Partial integration then yields

-4

Te{P-3y ¥, @1 3} = Y By

By = \dg (§I-83) 1wl (@-gﬁ{ — (dg (53.33)80\%'_lw1“(3-33—§)

1

and consequently
A, == Sdg T_[w185-(4-303)] lwl ' (1-38%F) T,

_ =4

Combining the results so far obtained with the other terms in eq. (79)
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gives {after some trivial algebra):

By = 8 Vg 2 {n (T alvDIT niv) + Dnerny = 4) gt

-4
~ 2 TP, 8oatwl) — Ty (B_:-} + B4p)
A further simplification is achieved by noting that
-1 IW
8’3 = (S%IW\) ’B- +  fwl ?Jf_e ;{ﬂ
with some complex constants bﬁz . Then
-1 _3 - .
and therefore

—4 =} 1 A= Bw
Uij Sd% (ql.Sfé)gd% wl (}-%{)—‘r— c.c. = Sgd%l%\wi

which, when inserted above, yields eg. {30).
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