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1. INTRODUCTION

The purpose of this talk is to discuss the present status of
scalirg violations in deep inelastic lepton-nucleon scattering
procaesses. Specifically, I will discuss in great detail which ex-
perizentally measured structure functions (or moments therecf)
nave to be used in order to discriminate between various field
theories of the strong interactions such as (non—abelian) QCD,
abelian vector-gluon ( ¥y.wR") , non-abelian scalar-gluon

R P , and abelian scalar~gluon (¥4 ¢ ) theories. More-
over I will delineate the sensitivity of certain structure func-
tionsto the fundamental couplings of the theory, i.e., to the quark-
zluon coupling and/or to the gluon self-couplings (triple gluon
;ertex) — a measurement of the latter would provide us with a

direct and unezbiguous test of the Yang-Mills structure of QCD

wiiich is so very essential for asymptotic freedom. Furthermore,

we will censider three-jet events with special emphasis on deep
irelastic heavy quark (c,b,...) production via virtual Bethe-
Eeitler processes. Finally, I shall briefly discuss the relevance

of non-leading 2-loop contributions to anomalous dimensions and

the effects of "finite terms" in Wilson coefficients and their im-
pcrzance for the analysis of deep itnelastic reactions such as the
determination of moments of "'sea' distributions from measured
neutrinc cross sections. The relevance of these "finite terms'
Crell-Yan dimuon production cross sections will also briefly be
—entioned.

' for

for a detailed discussion of semi-inclusive deep inelastic
ions, such as hadronic final states and QCD predictions for



jets in lepton-hadron interactions I refer you to the talks
. Landshoff and P. Binetruy.

Tn Secticn 2 I will briefly recapitulate the structure of QCD
other asymptetically non-free (finite fixed point) field
ories and those parts of their predietions for scaling viola-
i cture funmcticns which will be essential for our present
wsis. Here we shall use the classical language of the light
expansion and the renormalization group. Section 3 will be
ced to a detailed comparison of these prcuxctlons with experi-
usi:g (cf iﬁc*ehsin5 CO“plEAlty) {A) moments of rnca-singlet
ure Zunctions (FiP-Fi%, FJ%"), (B) moments of flavor singlet
ceosure functions (-2“, erc,) and (C) the explicit =~ and G-
fzmze of structure functions. Here, QCD will prove to to be the
‘nlv renmsrrmaiizable strong interaction field theory compatible
: wperinent! However, as,we shall see, present measurements of
zla t¢ous in -1(z O } are rather imsensitive to the gluon
:he nacron. In Secti 4 we proceed to discuss (very
nut eq"”ll} diffi cu’t) measurements wialch are particu-
:i ‘e tc the gluon self-couplings of a (locally gaugze in-
~¥i11ls theory, and which would provide us with a direct
test of asy:;”“tic freedom. In Section 5 we give pre-
cdeep inelastic¢c heavy quark (¢,b,...) production via
ne~Heitler prccesses and, finally, in Section 6 we brief-
~cn-leading 2-lcop corrections to anomalous dimensions
e zzrms' in Wilson coefficlents and their relevance for
JCD and the parton model with experiment; we co wclude
ef discussiocn of the effects'of "finite terms” in Drell-
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where #, are the Gell-Mann matrices of color SU(3) acting on the

lor triplets ¥ = (q,, q,, q4) with q = u,d,s,¢,... . Renormali-
tv recuires the theory to be locally gauge invariant which,
cause of the ncn-aselian interaction in Eq. (1), implies self-
the gluon fields A" via the Yang-Mills Lagrangian
with

“o -
o ra.uw?
1

PY Pl vt 0 (2)
L le’f fucﬂ Q
whera S VLD SSS RS U . It is well known1 that the
1I-d ons of the vector fields A implied by Eq. (2) are
2 r asymptotic freedom, i.e. the effective coupling



2 . .
censtant o,= 4°/47  decreases for increasing momentum transfer
A . .
squared Q° (or decreasing distances)

(8% = S €
(33=2N;p) 2n &7/A

with N, being the number of flavors and A is the only free parameter
of QCD which has to be fixed by experiment (A=0.5 GeV). Equation

(3) is the solution of the renormalization group equation

SAL/dé = 2(T) for the effective coupling g(g,Q"), where the
Callan-Symanzik function [(3{gGi] = poalnifdp describes the
variation of the renormalized coupling g(r) if cne changes the
arbtitrary rencrmalization mass parameter g. The reason for asymptotic
freedom is that the gluon self-couplings in Eq. (2) allow for a

color charge transfer from the quark fields & to the gluon fields
A% and thus create an anti-shielding around the bare charge g, which
cominates the color charge shielding (opposite sign charges) around
g, stemming from the usual vacuum polarization effects, due to the
coupling in Eq. {(2), which do not allow for a color charge ex-

ciange with the field. The net effect is that [(3) = -4g® <0

gs shown in Fig. | which implies that perturbation theory becomes
tetter (o, small) the larger Q° (%2 GeVy),

The situation is very different for "conventional' field theories
such as acelian vector glucn theories where, as in (QED, there 1is
no group structure in the quark-gluon coupling in Eq. (1), i.e.
the vertex is described by gﬁjgrb’ﬂr , and consequently there
is no gluon self-coupling term in Eq. (2} and the field strength
tensor is simply Fr7 = ¥ RY - VA" . Similarly, the interaction
in Eg. (1) takes the form gﬁ?kqu¢m for non—-abelian scalar
gluon theories, and %Qtv¢ © for abe}ian scalar glvon (Yukawa)
theories. In all these cases we have” (}11}= +kg*> >0 and
thus these theories are not UV stable near the origin g = 0, i.e.
the coupling will become larger the larger Q° since now the only

ﬁ QED and "fixed" point theories™

Fig. 1. The 3 function for QCD and conventional field theories
which are assumed to develop a finite UV fixed point g¥*.



cuzntus effects which contribute to charge renormalization are due

to vacuum polarization (shielding, but no anti-shielding exists)
Secause o self-couplings of the gluon fields (A" or &, &) exist.

in crder to proceed perturbatively at large energies (small distances)
w2 have to mare the (so far unproven) assumption that there exists a
finite fixed peint coupling g* as Q*»w, 1.e. 379") =0, such

thzt the elfective coupling «%%w &« | - a necessary requirement

in order not to reject a priori conventional field theories as

tossible candicates Zor explaining (perturbatively) the experirmentally

ciserved gmall scaling viclations. This situation is shown in Fig. |
nd we shall call hereafter these conventional field theories simp-

ly "fixed point theories'. The fixed point coupling g* is then the
cnly Iree parameter of the theory to be determined experimentally
5 the case feor A ia QCD).

Ite izportance of deep inelastic lepton-nuclecn scattering
TTocesses 1S that ghere exists an operator product expansion (OPE)
c¢n the light cone,” a direct generalization of Wilson's short
distance expansion of the product of two currents, which can be used,
together wWith renormalization group techniques, to calculate scaling
viclaticns Ia field theory. Symbolically we may write
v gluon
12 -
-
. I E .
‘ 07 field theory 2]
xn [xpeq ~ Iee Theen + i ...
: 2
b#ﬂ;*’ﬁ:T:}} ‘1-’09
‘b
3 2
T (x) Fix,8%)
Fig. 2
wrere U7 are the various 1ig§t—cone (Er Wilson) operators of different
t¥se 1 &nd spinn, and x = Q°/2p-q, Q"= -¢" 2 0. Yote that in any
interacting field theory Ehe structure functien F will depend on
the two variables x and Q7, say, in contrast to the naive parton
medel where in the Bjorken limit F = F(x). This additional Q° de-
pendznce 1s usually referred to as scaling,violation. The OPE to-
gether with field theory makes predictions only for (Mellin)

[

m2nts of deep inelastic structure functions defined by

<TG, = fox &7 Fle,a®) (4)

F F, or xF_. In terms of these moments the above OFPE
1

S9Ny = T CQAE 4005y LpL 07 1 pd (5)



where the Qz—independent matrix elements <p|(9: |p> which describe
the bound state (wave function) of the nucleon cannot, at the present
state of art, be calculated perturbatively and will be reiatedzto the
parton distributions in the nucleon at a fixed value of Q7 = Q_,
which,in turn will be determined from experigent. On the other hand,
the Q -behavior of the Wilson coefficients ¢y - the expansion co-
efficients of the OPE - gan be calculated perturbatively which will
unicuely determine the Q° evolution of quark and gluon distributions,
provided Q° is large enough. To this end one writes a renormaliza-
ticn group (RG) equation for the Wilson coefficignts (which ex~—
pressas the invariance of any measurable physical quantity with re-
spect to changes of the arbitrary renormalization point u} in order
to sum the leading log contributions to all orders o, , i.e. one -im—
prceves simple order by order perturbation theory. For non-singlet
(¥S) stryucture functions there is only one leading fermionie Wilson
operator  O... which contributes to the sum in Eq. (5), for which

case the RG equation reads

(T‘%,:x*!/s “3_%' Yus ) C:s(al/l“l) ) = 0 (6)

whare the "anomalous dimension” X:; of Oé , which governs the Q2
deczndence of structyre functions, is the coefficient of the loga-
rithmic contribution of the one-gluon-loops in Fig. 2. The solution
cf £Eg. (6) is well known to be

&
r. Ty oo . _ . _ cJ.Q’ n P
C (87, 2,00 = C (1) o (M) axpl. r§ T @] @
whare C:;(les(Ql)) ~ e O,y results from
g "
1., A + o
q q ¢

and the non-leading U{#s) contributions are the so called "finite
ter=s", i.e., all non-logarithmic contributions from y*q-4q.

As leng as we work in the leading l-loop approximation of yi , we
have to keep only the leading naive parton model contribution (= 1)
and disregard the O(x;) terms which we will do for the time being.
Thus the final result for the Q° evolution o _ghe moments of a non-
singlet structure function can be written as (I follow closely
tte notation of Refs, 5 and 6)

CF 8, = <F (aby, e 20w

(8)

g} - »
where Qi(ﬁ 2-4 GeV™) is the input reference momentum at which the



ructure function has to be determined experlwentally, and for QCD
*ﬂe rerormalization group exponents are given by

¥ L (G5/AY)
X, = ————F S = L Y (9)
2T b I (R2/A%)
with fr= o l(i‘“‘N ). For fixed point theories these exponents read
2
¥ :
= 24 = —_ i0
a,= - ) = k. Qz (10)
where now the value of the UV finite fixed point = =™ , appear-

izg in Y:s 0&s to te determined by expeglment. The YS anomalous
o ~ — F
dix e“51on Yus E JFF(R) is given by

.
+42—i'] . (11)

h(hl) j=2

XT;?_ HAVIEE

In the general case, structure functions (e. E. FVP) receive con=-
tributions also from flavor singlet operators. There are two different
tvpes of singlet Wilson operators contributing to the sum in Eq.

(3}, o fermionic operater O and one gluonic operator 03, the
iattef ﬁe::E comstructed from the fundamental vector fields af.
In this case the RG equation becomes a matrix equatlon according

tc the 2%2 singlet anomalous dlmen51on matrix K(n, . because of the
focur possible matrix elements of JF y between the external fermionic
(F) and gluonic (V) states: the operators mix under renormallzatlon
which is usually referred to as "singlet operator mixing". This
singlet P1YLrg will play a crucial role for dlscrlmxnatlve tests
0f QC2! This singlet matrix reads (in a straightforward notation)

n

0 Oy

[N
o
T
::D@)

+

+
h Y

+

R

s F v
- [ ¥er frf
¥ \%

va } XVV /



with XEF given by Eq. (I1) and&

LI S, ; 4
?.(w S {Ca(&)[ 3 n(m-D (meD(ne) "fz-l i 1+ T(P)}
oo _ %s hin"+n+l) 1
va 2T () (me 1) T(R) (12)
v e 2{n*+ns+1)
=T oo (R
XFF L n(y\"'._l) C‘l )

where the group invariants are as follows: for non-abelian vector
theories (QCD) we have

= —ﬁ - ]"
C,(6) = 3, C,(R) =3, T(R) =¥,

and for an abelian gluon field theory these quantities simply read

(13)

CZ(G) =0, CZ(R) =}, T(R) = 3Nf. (14)
For all subsequent considerations we shall take N_ = 4. Note that
enly G0, =%, .4%,.4 in X:v is a direct measure of

the gluon self-interactions {(triple gluon vertex) in Eq. (2). Simi-
lar expressions for anomalous dimensions can be derived for non-
abelian and abelian scalar gluon theories.®7 The Q? evolution of
singlet structure functlons is now obtalned by diagonalizing the

RG matrix equation via K y-" T Y. P with

| 1L¥?f- XW J(VN X?F) Lr}(WX?F] (15)

and where the projection operators are given by

,$ - _ [/ Pupne

'P;\)‘—PT\
and P =1 - P with
F v
,l- - X‘F"‘ K‘b , P- - x'\f'\l , P_ - XF‘F ] (16)
R S X Moy, S T

sa . 2
The RG prediction for the Q° dependence of_a general structure
function in Eq. (5) is then obtained to be



CFEY, = 2 CFais, et a7)

ANS

with the RG exponents given by Eqs. (9) and (10), and

‘t(&j»n:(‘;in) CXZ(E)Y T P <xG A, (18)

where for brevity we have defined o, = ra(n) and B,t— qu(“)
as we shall see &, will play a crucial role in discriminating be-—
tween different field theories. The gluon distribution G(x,Q%) in

.
2>

the nuclecn is defined by <xG(Q%)>, = <pi1 0% Ip> and the
fermionic singlet, defined by ¢« Z(a5)», = <pl O;"lp> , 18
just :

x 2 (%, &%) = xg[q(xjaiﬁq(x)&l)] (19)

which is directly measured by FEN (above charm threshold and always
assuzing s = s, ¢ = ¢). Using Eq. (18) the singlet contributions to
Eg. (17) can be rewritten in the following convenient form

IO, = Lo, XT@D, + b xG(@hyy, e S5 |
‘ (20a)
N a-m T2, A X G@y, Te T
(ot - T Fnt d(dh) L sa {n)
<xGA™S, = [-a,)<x G, > + —a 2N e
-Y/ N "y (208)
+{a, G, ~ Bl gy Je P

It sheculd be erphasized that these equations are not 1ndependent
cuce <xZ{(82)»,.  and <xGQN,. are fixed from experiment by
fitting, sax, Eq (20a) to the measured Q* dependence of <xT(31)>,
then Eg. (20b) is trivially satisfied and does not constitute an
independent test of QCD. We shall come back to this point later.

3. COMPARISON WITH EXPERIMENT

The zost straightforward and simple, although in many cases not
very stringent and instructive, tests of field theories are to
compare just moments of structure functions with experiment which



are directly predicted by any field theory. Let us start with the
theoretically most simple case of non-singlet structure functionms.

3.A. Nen-Singlet Moments

As we have seen in Eq. (8) the Q2 evolution of the moments of a
non-singlet structure function TF,,=Fi"-F;" , ?;N , etc.
i1s governed by only one anomalous dimension X:F' Considering first
F’% | Eq. (8) tells us that for QCD

N —1/ @ Q*
ey T~ e (21)

i.e. the “~1/2,.) -th power of the n-th moments are expected to
lie zlong straight lines when plotted against In Q° with a common
intercept 1n Q° = ln A%, These predictions have been found to be
in very good agreement?® with the data for A=~ 0.5 GeV as shown in
. 3(&). Similar conclusions have been reached from analyzing9
ZZBC cdata but 1t should be emphasized, however, that these

er results rely heavily on measurements between Q° = 0.6 and
"% - a region neither appropriate for the parton model nor for
the legitimacy of perturbative calculations. Even in the CDHS ex-
perizent,’ where Q- 26.5 GeV', i1l understood kinematical target
rmass effects ~ x*w?%/4%) play a non-negligible role: Assuming
thet these effects can be in part accounted for by Nachtmann moments
(which results from the trace-terms in the NS Wilson operator of
cdefinite spin), the fitted slopes decrease by more than 10 7 as
showz in Fig. 3(b). The importance of this statement will become
clear in a toment.

Fa-

3 b rt Hd
U
Gyt om

et

(4]

However, these measured NS moments,.can be equally well explained,
in the presently measured region of Q7, by conventional fixed point
field theories. For an abelian vector gluon theory, Egs. (9)~(11),
(13) and (14) tell us that

vector AL e

0. =
NS |41 M3

wnere 2, 1s the RG exponent of QCD, and thus Eq. (8) predicts

15"
G\ e (22)
Q .

-V /
‘L‘VN AN N3 = (0t
<xH (4 )’ ,W(Jo)k

Qo

. . . N, , 7 ""/G-N
where the unknown normalization constants C.(93) = <xF (@))> "

tave to be fitted to the data at an arbitrary value of Q% = Qi.]]
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Fig. 3. Fit to the Q2 dependence of (a) ordinary Cornwall-
Yorton moments M, = <xF3Mia)> and (b) Nachtmann
moments according to QCD. The flgures are taken from
Ref. 8. .

A similar power~like behavior in Q2 is predicted by, for example,

non-azbelian scalar-gluon theories®-73" where
scalar g% o
Cye  =gr O, (23)
with 2,=%01- :';%;‘:,;3 which gives for Eq. (8)
J‘-
il Ve, = e {&2 3T (24)
Ly ?-3 (£*) N Ch JD}ITEF,\ .

The predlctlons of abelian scalar-gluon theories are as in Eq. (24)
with «” rultiplied by a factor of 3/4. From Fig. 4 it can be seen
that the predictions accordlng to Eqs. (22) and (24) are in equally
zced agreement!! with experiment as are the straight line fits in
Fig. 3. Thus non-singlet quantities can only provide us with a
consistency check of a given theory but cannot discriminate between
QCD znd other finite fixed point theories of strong interactions
(unless p*ec15101 measurements can be extended to QZ = 200 or
300 GeV* , as it is evident from Fig. 4). This, however, is not
to> surprising since the Q? dependence of NS moments is uniquely
deterxined by just one anomalous dimension and, therefore,
quantities such as (‘Fﬂs(gy,,wvaus are mainly sensitive to

i0
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Fig, 4. Comparison of measured8 moments M, = <XF;Nf&Q)>n
with the predictions'!' of abelian vector-gluon theories,
Eq. (22), and non-abelian scalar-gluon theories, Eq. (24),
for various choices of the fixed point «*. The low-
statistics data (open circles and triangles) are from
Ref. 9. '

differences in a logarithmic and a power-like behavior in Q2. This
is in contrast to structure functions which receive also contribu-
tions from flavor-singlet Wilson operators, such as F,, the Q° de-
pendence of which is determined by three different anomalous dimen-
sions in Eg. (17): These subtleties of singlet-mixing will play a
crucial role in discriminating between different field theories
which will be discussed in the next Section.

Another theoretically very attractive test of field theories,
“hich measures ratios of anomalous dimensions directly, is obtained
by ccmparing the logarithms of two moments <TF, . >, and <Fyo 5.
which, according to Eq. (8), should result in straight lines (in
the l-loop order) with slopes a,  (v)/6 (W) )

91 'J’,‘v'__ ‘< FNS >Y‘u Q“S(VL) ( )
_ . 25
Cj oE't'\. < -F ’ ; O-'u;(\’\-’)

These slopes are obviously independent of A and «®, as well as of

11



the number of flavors. Morecever it should be emphasized that

Eg. (25) can discriminate only between vector and scalar gluons,

but not between subtleties such as their abelian or non-abelian
group structure: This is because the only difference between an
abelian and non-abelian structure of the qqg-coupling in vector-
gluon theories is due to the "color charge of a quark! C,(R) in

Eq. {(1!) which cancels in the ratio in Eq. (25); and similarly for
scalar-gluon theories. For illustration we compare in Table | a
typical prediction for the ratio of anomalous dimensions, according
to Eq. (11), with the mcasured F;” -moments.™7 As we can sce,

the =measured slope'> of ordinary x-moments (x???(&1)>“ is in

zood agreement with the predictions of vector-gluon theories. How-
ever, as in the previous case, target mass effects (Nachtmann

=czents) play a non-regligible role, although Q*32'6.5 GeV*® for the
DES experiment,® which decrease the slopes by more than 10 7 as
compared to our ordinary moments. On the other hand the slope pre-

dictions of scalar theories are typically 20 7 smaller than those

of vector theories. Thus, at present, not even scalar-gluon theories
can be ruled out within !% on the basis of this non-singlet moment-
slope test in Eg. (25).

A similar conclusion has been reached by Harari]3 as far as the
slopes of NS moments are concerned. He assumes that ng(x,Q:) is
a2 slowly varying function in the whole x-region for increasing
valuas of Q! which, by the usual bremsstrahlung effects of field
cuanta in any field theory, led him to the ansatz
i

(0,61 = ) (T (26)

oY

with f and g arbitrary but slowly varying functions of QZ, obeying
f(Qi) =g(Q3) =1 and £', g' 3 0. From g'/£' = 0 and f'/g' = 0 omne
gacily finds lower and upper bounds, respectively, for the slopes

0oi the logarithmic moment ratios in Eq. (25) which should be vaiid
for a general class of field theories. Since, as we have already
discussed, the measurements °7 for ordinary and Nachtmann-moment
ratios scatter throughout the whole region allowed by these upper
and lower bounds, Harari!? concludes that this specific test pro-
vides no evidence for QCD. It should be pointed out, however, that
iz general Earari's "general"” bounds are not general. This comes
about hecause Harari assumes more than can be tested by n>2
—sments: whereas n > 2 moments are sensitive to the large-x region
caly (x20.3), the ansatz in Eq. (26) assumes the structure functiom
to e a slowly varying function of x and Q% in the whole x-region
Jogwett |, 1t is well known ' that scalar-gluon theories do not
satisfy this latter assumption over the whole x-region, and thus
it is not surprising that the ratios of anomalous dimensions in
£g. (25) predicted by scalar-gluon theories, using Eq. (23), lie
outsicde Harari's "upper" and "lower bounds: specifically, the

12
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experiment theory
{gFf:]}h Nachtmann vector { scalar
[
+ + '
2,050/ 0 & | 1.3470.07 | 1.18-0.0% || 1.29 ’ 1.06
Table 1. Comparison of the theoretical predictions for the
n/n' = 6/4 moment ratio with CDHS measurements.®'?
ratios aigalar( )/ aigalar(n,) lie always below Harari's "lower
1 n - i

Pezently, a similar moment analysis has been performedls’16 using
the Fermilab data for F," and FYF-F/" in addition to the SLAC-
¥IT ep,n deta for large values of x. Besides the leading #: con-
trituticns also the subleading <’ corrections'? (2-loops in ano-
walous dimensions) have heen taken into account. [f one naively
uses 2-loop corrections to F,. =¥ "-7+r" one expects
S CEL LA e T, to change from 1.29 in the 1-loop
order to 1.33 in the 2-loop corder'’ (for Q’ = 4 GeV*, Q% = 50 GeV*
and A = 0.5 GeV). The observed value turns out to be somewhat larger,
1.6 £ 0.2, but & very gcod agreement with the measurements of the
varicus structure function:is obtained'®'® by taking into account
n-dependent /f's, 1.e. A, increases for increasing n which is
"naturally' explaired theoretically'® by going beyond the leading
I~Zcop order: typically'® 0.4 GeV and A, ~0.5 GeV,

singlet moments camnot discriminate between different field theories
of the strong interactions and can only provide us with a (necessary)
censistency check of QCD. In order to discriminatively test QCD we
therefore must turn to structure functionms such as F, which contain
deminant singlet components. This should prove more awarding since
fixed point theories differ from QCD mainly in their singlet mixing
properties, because of their very different gluonic anomalous di-
mensions® 6 as for example implied by Eq. (12).

3.2. Singlet Moments

Ihe —ost important and instructive moment to study is the lowest
2 = 2 mement of F,, i.e. the area under F,(x,Q"). Recall that the

T, = 20,0 (27)



whereas deep inelastic e (or u) scattering off nucleons measures
in addition also the NS part, as for example

=N = m xe(x, 0% *% X e h-dd-d-5-5+¢+2] (28)

] 2
PR

with u = u(x,Qz) etc., and where the Q2 dependence of the N$ ex- -
pression in square~brackets is determined solely by a,. as in Eq. (8).
For brevity we will discuss the area under the pure singlet structure
functicn F3% although the discussion of <TFEP/D)), is very
sizilar.® According to Eq. (20a) the Q*-dependence of the lowest

(n=2) moment of the singlet component is given by

4 -5 o.+(2)
! :

A T(Ehy, = o, * Levztgiy, - « e (29)

“—

2

where we have used o,=[, ,.and <¥%3>,=1-xZ%, and a_(=0,
Ey energy-morentum conservation. This quantity, being the total
racticnal momentum carried by the fermionic constituents in the
uclecn, 1s then directly measured by

I ot

r

Oy _

Fz“(i)gljg{i = (xZ(Q2>>2 : (30)
2 2 . . 2 e

At mederate Q7= 2-4 GeV', corresponding to our input Q,, experiment
tells us that 13 ¢xZ (RS, = c.52 and hence, according
to Eq. (29) and since a,(2) = 56/75>0, <»Z7%», 1is an increasing
or decreasing function of Q% depending on whether o, is larger or
smaller than 1/2, respectively. Substituting the different possible
values of the group invariants of Eqs. (13) and (14) into Egs. (11)
and (12) and also into the appropriate expressions for anomalous
dizensions of scalar-gluon theories,’ it turns cut that o, <1/2 only
for QCD where #, = 3/7. It is a unique feature® of all other pre-
sently known field theories that «,>1/2 (specifically® o,= 6/7,
9/10 and 72/73 for abelian vector-gluon, non-abelian scalar-gluon
and abelian scalar-gluon theories, respectively) which forces

' 3 3 . i -
TEL e aTy dy to increase with Q?. Since SEmaldx s
experimentally observed %.1%,27 to decrease with Q? (or at most to

be constant), all theories except QCD are already excluded on the
basis cf this single qualitative observation! In Fig. 5 we compare
the cata for J'Ti(&;ﬁjAv with the predictions of QCD (solid
curves) and of the abelian vector field theory (dotted curves),

fer which we have taken the fixed point «* to be 0.5, in agreement
with ocur analysis! of NS moments in Fig. 4. The predictions of
scalar-gluon theories are in even worse agreement with the data
since their values for o, are always larger than 6/7. Similar con-
clusions have been already reached some time ago by a more detailed
quantitative analysisi* of FI 1M (x,4%) .

14
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Fig. 5. Comparison6 of the Q2 evolution of the area under F,,
predicted by vector gluon theorlies, with the vN data
of Refs. 9 and 19, and with the PP data of Ref. 20.

It sheuld be ncted that, although for n = 2 we have

K] Iod 1,5"
Y "r‘é )
v 2\ ;«3) -+ *w + 2 Qﬁb‘
Ly £ 31

————————— — Iy

/:\ /ﬂ\

this discriﬂinative test of QCD is not sensitive to the triple gluon
coupling since the coefficient of C,(G) in x” (2% vanishes, and
tnerafore the whole contribution to yy,/2' 1is due to the term pro-
cortional to T{R) in Eq. (12), i.e. to the external wave function
renor=alization, the vacuum pelarization ~~2~ in Eq. (31). Thus,
, =—easures mainly the coler charge of quarks, i.e. the quark-

luon coupling in Eq. (1) but not the color charge of gluons, i.e.
Te Yang-Mills structure of Eq. (2).

o= —
L Y “:““ g ,V n
Lo D+ Yy, (1)

L

[ 1]

Since higher n (z 3) moments weigh mainly the large x region
(x £0.3), the study of n>2 moments of any structure function cannot

15
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provide us with additional information on the gluon structure of
the theory. This is so because y,(r) > y_(n) = girfm)-O(i/n“Lwn)
for n>2 and thus always just one anomalous dimension y, = yi.
dezinates. Therefore, the subtle and very important singlet-mixing
properties of the theory, which allows us to study the detailed
gluon structure, is only effective for small n, i.e. in the small
x~region, not accessible to any moment analysis.

To summarize, recent measurements on ofF;(*;&1}Ax enable
us 2lready to eliminate all possible finite fixed point theories
by purely cualitative arguments, leaving us with QCD as the only
viable theory of the fundamental strong interactions.?' Since this
very discriminative ‘test, as well as any higher (n >2) moment
aralysis of F,, is sensitive only to the quark-gluon coupling of
ZCD ir Eg. (1), we have to resort to the full x- and Qz—dependence
o structure functions (especially in the small x-region, x%0.2)
in order to test and learn about the specific gluoan structure of
QCD.

2
3.C. Scaling Viclationms in FZ(X,Q“)

The most efiilcient and direct way to obtain the explicit x-depen-
dence of structure functions is to do a numerical Mellin-inversionl?
of the moments predicted by QCD in Eq. (17):

~ ~l —_— L
Tl gsy=— ' dr s TNy, (32)

4s it is apparent from Eq. (20a) we now need, in addition to the
irput quarx distributions (which we have fitted in a standard way
toc experiment at Qi::A GevV?), the gluon distribution G(X,Qz). To
checx the sensitivity of the predicted scaling violations to the
choice of CG(x,Ql), we have performed the calculations once with

the "standard" gluon distribution xG(x,Q =4 GeV?) = 2.6(1-x)° and
once with G(x,Q%) = 0. This latter choice obviously violates the
erergy momentum sum rule and is intended only as a check on the
atove mentioned sensitivity to G(x,Q.). To further make sure that
the results do not sensitively depend on our "standard" input gluon
distribution chosen, we have repeated the calculations using a
broad gluon xG(x,0%) = 0.88(1+9x) (1-x)* as sugrested by the Caltech
group’? and which appears to be in hetter agreement with recent ex-
erizents »'5'7: within a few percent our predictions in Figs. 6

nd 7 (sclid curves) remain unchanged. As one can see from Figs.
and 7 the scaling violations with the "standard" gluon distribu-
tion (full lines) do not differ significantly (i.e., by less than

a standard deviation) from the ones with a zero input gluon distri-
bution {(dashed lines}. A distinction can be made only in the small

jol
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Fig, 6. Predictions6 of scaling violations according to QCD as

compared with neutrino data'? (solid points) and ed datal*
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x (< 0.2) region and at higher values of QZ: future precision
measurements of F, for 0.052x70.2 (heavy quark production should
become important?® only for smaller values of x) and for Q* up to
100-200 GeV?, say, should prove very useful to pin down the gluon
distribution in the nucleon! Thus any moment analysis of F, with

n z3, which is sensitive to the large x-region only, for testing .
QCD and determining the gluon distribution®!5:2% ig rendered
Teaningless and statistically insignificant. ‘

The fact that the predictions for scaling violations in F, are
insensitive to the gluon content of the nucleon for x>0.1 can be
easlly understood from the explicit values of the projection matrix
elezeats %, and (3, and how they enter Eq. (20a): From Table 2 we
see tnat ¥.¥1 and 3.«! for n:>2, and therefore only the term pro-
portional to «, <xZ7451%>,. in Eq. (20a) will survive, except for
smzll values of n (small x) where the gluon-terms gradually begin
te contribute. This is, of ccurse, in contrast to the Q" -evolution
of the gluon distribution itself where the terms proportional to
{xG(Q3)>_ in Eq. (20b) always dominate. We shall turn to this point
in the nEx: Section.

Alternatively, instead of using the "heavy artillery" of the re-
nerzalization group, the insensitivity of scaling violations to the
cetziled shape of the gluon distribution in the nucleecn can be under—
stood using the physical more transparent and intuitive language
cf Altarelli and Parisi.?’ Here the Q* evolution of q(x,Q%) and
G(x,G%) is cescribed by a coupled set of integro-differential equa-
tions which are uniquely determined by the parton i -» parton j decay
prcbabilities P;i(x). These probabilities can be obtained from the
fundamental interaction vertices of QCD in a probe (beam) indepen-
dent (!) way,?’ which is in contrast to our renormalizarion group
approach using the light cone expansion. Moreover, the (Mellin)

nodoa e b on o RN Ay A
2 | 0.427 | o 0.747 | 0.429 | 0.429
3 | 0.667 | 0.609 | 1.39 | 0.925 | o0.288
4 | 0.837 | 0.817 | 1.85 0.98 0.17
5 | 0.971 | 0.960 | 2.19 0.992 | 0.119
6 | 1.08 1.07 2.46 0.996 | 0.09]

Table 2. Values for the renormalization group exponents a;(n)
and for the projection matrix elements «, = 2L v
and 3 = pL{n) for a four flavor QCD (Ne = 4).



~oments of these coupled set of equations are identical to the RG
Toment—-equations (20a) and (20b) by keeping in mind that

) [ F )
Py Yre (™
Ylol o ZNﬁt ag(’" _ow | oy (33)
X X = - —
5 (NE I IR MY

P%%x%) ) k va(n) J

Since P,,, which couples G(x,QZ) to the evolution equation for
q(%,0" ) is small only the term proportional to Pqqdominates the
eifects of scaling violations and thercfore the latter are rather
insensitive to the gluon content of the nucleon.

For alternative, non-field-theoretic (Regge-like) approaches to
scaling viclations we refer to Refs. 28 and 29, and to the lecture
¢f G. Preparata. However, these (generalized) vector-meson dominance
mccels can be "trusted" mainly in the small x-region where they

serve to extrapolate‘ 7% gtyucture functions down to Q*=0 -
iom which cannot be reached by perturbative QCD. The power
teauty of eXplalnlﬂg scaling violations with field theoretic
~z+=sds (i.e. radiative corrections in QCD) remains, however, un-
chzllienged in as much as they provide us with a framework feor the
whcle x-region with essentially only cone free parameter A.
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4. MEZASURIXNG THE TRIPLE GLUON VERTEX

'So far we have seen that all deep inelastic tests strongly favor
QCD over any other field theory, and these tests were sensitive only
ro the quark-gluon coupling and left the non-abelian vertex in Eq.
(1) unchallenged. Needless to say that, once the non-abelian charac-—
ter of the quark-gluon coupling is established, renormalizability
of the theory requires the giuon self-couplings of Eq. (2), i.e.

a Yang-Mills gauge-field Lagrangian, which are so essential

sy"ptotlc freedom, This argument in favor of the full QCD

gian 1s certainly conv1nc1ng enough to most theorists, it

v is of little - if any - "proof" to most experimentalists.

therefore also desirable to look for additional measurements

are directly sensitive to the gluon content of the nucleon

:s to the triple-gluon vertex of QCD in order to ''see' ex-

. ally the Yang-Mills structure which plays such a prominent
n GCD.
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The most direct wav to test the,triple-gluon vertex directly
would be the QF evolution of G(x,Q”) itself?! as predicted by the
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moments in Eq. (20b). As it has been already discussed, the terms

in Eq. (20b) proportiomal to <xZ{Q%L)1>. are suppressed for nz 3
because of the values of o, and 3, in Table 2: Thus
<xGIE®Y>, [ exGatyy, o« ey (-5 a (n) with

a,(n) being critically dependent on ng(h) in Eq. (12) and thus on
the triple-gluon vertex. This sensitivity to the triple-gluom vertex
(the term proportiomal to C,(G) in ¥|,) is demonstrated in Fig. 8

by the difference between the solid and dashed curves, the latter
being the result with C,(G) = 0 in Yy, . For these quantitative
predictions we have used?® the input ratios <xZ(&1)7,./<XG@%),.
determined experimentally ™' from the Q* variation of F,-moments
predicted by Eq. (20a2). (Similar results hold of course also for

the explicit x-dependence, but in order to aveid any ambiguities

on the theoretically i1l understood x-dependence of G(x,Q%*) we dis-
cuss only moments of structure functions)., It should be emphasized
that the predictions of Eq. (20b) for <X6&G{(&*)>, cannot serve

as an independent test of QCD if one determinmes®,'? the gluon distri-
butions from fitting to the scaling violations of F, predicted by
Eq. (20a) since, once <xZ(QL}>, and <xG(A>, are fixed

by experiment via <xT(&%)>, in Eq. (20a), Eq., (20b) is tri-
vially satisfied.zThus we need an additional, independent deter-
mination of G(x,Q”)! This can be achieved3' by measuring the longi-
tudinal structure function FLEin - 2xF1 which, to leading order T

TP T LA R 1 ) T T TTTTTI

{xG@*)>, /<x6(&})§n Nelels

L it asiagh Lol L) gesll] Lol Rl

0 10° 10 10*

Fig. 8. Predictions3] for the Q2 evolution of gluon moments
according to Eq. (20b). The dashed curve for n = 3,4
demonstrates the sensitivity of these predictions to the
gluon self~couplings and corresponds to the contribution
with the triple-gluon coupling turned off
(C,(6) = 0 in yJ,), and is similar but slightly larger
for n = 5.
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receives its contribution from

\EF“M_“"*H .
/
T x,65) GOx, Q)
i,e
CFED, = CLCF (@9, + alf<xG (@M, (34)
with a.=§ eﬁ = 10/4 for electroproduction and a4 = 4 for v and ¥

scattering on matter, and where the moments of the longitudinal
projections of the fundamental parton processes are given by~*~

~a _ thsfgl) CS,_ 2—‘7(;(‘22; . (35)
YT Ry teeny RO (ne) (ned)

From Eq. (34) we see that good data on <FL(&1)>h_ , together with
the experimental knowledge of %1410 {F a9 s 1= 2,3.,.,
can be translated into a reasonable knowledge of the gluon density

T{n+)(na2}
200 (8%

2{n+2)
Ta

<xGRMY, = CF, (a4, - <F 8>, . 39

For n >2 moments, measurements for x20.3 should suffice. Further-
more, as can be seen from Fig. 8, measurements in the region

10 GeV*<£0Q* %100 GeV? will be required in order to clearly pin down
the triple-gluon coupling; at these large values of Q', non-pertur-
bative contributions to F, can be safely neglected®® since they are
of the order k?\'./Q2 or m*/Q* , with k+ being the intrinsic trans-
verse momentum of partons and m some typical hadronic mass scale.
We are aware of the fact that measurements of F,, or R = F,_/F,, are
exceedingly difficult,3* but feasible®® in the not too distant
future. However, a precision measurement of F, would be equally
fundamental in providing us with a direct and sensitive test of

the Yang-Mills structure (gluon self-couplings) of QCD.

For the present status of the measurements of R= ¢ /¢, =F /7,
we refer to the talk of R. Taylor.?¢ Here we only would like to men-

tion that at least the qualitative trend expected by the parton model

and the QCD prediction in Eq. (34) (using a "standard" gluon distri-
bution xG(x,Qz):!2.6(1~x)5 as input) is in agreement with the scarce
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data available up to now. Let us compare these data with the pre-
dictions for32.37 R(x,Q%) = Ri™trinsic 4 RRD harye the intrinsic
part is due to taking into account kinematical target mass effects
(intrinsic transverse momenta) and R%® results from Eq. (34):

The SLAC ep measurements (0.3£x%0.8, 3 GeV®g Q?£18 GeV?) give
on the average35 R =20.21 £ 0.1 to be compared with R(0.5, 8 GeVz) =
0.025 + 0.035 = 0.06, whereas the Fermilab pp  experiment

(0.003 <x <0.1, I GeV*£Q* £ 30 GeV?) gives an average value of !5'6
R = 0.521:0.352which can be compared with the prediction

R(0.0Z, 15 GeV™) = 0.0 + 0.2 = 0.2, The expected increasing trend
of R for decreasing x seems to be reproduced by the data. To
illustrate the expected®:.37 x- and Q®*-dependence of R(x,Q%) we
give a few predictions in Table 3. These values can be increased
if one chooses a harder (flatter) gluon distribution than our
"standard" choice.

Similar direct tests of the triple-gluon vertex can be obtained
by looking38 for the Q% evolution of gluon jets in heavy quarkonium
decay, i.e. measuring the gluon decay function Dg(z,Qz) in
e‘e” > QQ - 3g = h + anything of successive 135, quarkonium states 2
(e.g. at Q;rrloo GeV* and, provided toponium exists, at Q:ErIOOO GeV7 )

QZ(GeVZ) x R Rintrinsic RQCD
0.8 0,1 0.08 0.02

2 0.5 0.1% 0.1 0.06
0.2 0.19 0.04 0.15

0.02 0.53 0.0 0.53

0.8 0.025 0.015 .01

10 0.5 0.05 0.02 0.03
0.2 0.08 0.01 0.07

0.02 0.23 c.0 0.23
0.8 0.014 0.006 0.008
2 0.5 0.035 0.01 0.025
= 0,2 0.063 0.003 0.06
0.02 0.18 0.0 0.18
c.8 ¢.007 0.002 C.005
100 0.5 0.02 0.002 0.018
0.2 0.04 0.0 0.04

0.02 0.12 0.0 0.12

Table 3. Predicted values for33 R(x,Q2)=RlntrlnSlc+RQCD for

electroproduction. The predictions at Q° = 2 GeV?
correspond to naive (Q?-~independent) parton distribu-
tions,



Since Dh satisfies39 a similar renormalization group equation as
in Eg. (20b) (or, equivalently, similar Altarelli-Parisi equations
as do the distribution functioms), the predicted®® @* evolution is
again critically sensitive to the gluon self-couplings and is
similar to the predictions in Fig. 8.

Finally it has been suggestedéo to look for T-odd asymmetries
in the hadronic decays of heavy quarkonia produced in e*e” c¢olli-
sions, where electrons and pesitrons are longitudinally polarized
with opposite helicities. Foer ¥ production this asymmetry is ex-
pected to be as small as*® 0.3 %, and therefore non-perturbative
effects due to final state interactions may totally mask these
predictions.

5. DEEP INELASTIC HEAVY QUARK PRODUCTION

Due to the large mass, all heavy quark flavers (e¢,b,...) in the
nucleon are expectedM to exist only as quantum fluctuations at
short distances and the corresponding distribution can be consistent-
lv calculated within QCD. Therefore at Qiyﬁén@, heavy quark Q=c,b,...
production in deep inelastic electron {(mucn) nucleon scattering
should, in leading order, be adequately described 4,18 by the re-
normalization group improved virtual Bethe-Heitler process

N
=

which is proportional to the gluon content G(x,Qz) of the nucleon.
Thus the nucleon should be considered to consist only of the three
light quarks u,d,s and of gluons G, with all other heavy quark
flavors being produced via these light quark and gluon fields. The
total charm contribution to F, can then be calculated to be?® (bb
production is gbout two orders of magnitudes smaller than cc)

- Yeay Fyacl
ce ‘ i Tad 12
PSR - AN-ORMAR N 37)
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. 2, 2 2_ 2 - .
with a = | + 4 m./ Q°, Q"=-¢”, and for total charm production
N=1, Yua = 1, whereas for J/¥ production N = (number of charmonium
states) 28, Vumax = x(1 + 4m§/Q2); furthermore the fundamental sub-
process f*%-ﬁcE gives

¥ z \] 2
LU 0 = ¢ Sy - 2 - 29 )
2 > 9 F & (38)
9 &
2 _ 2oy, AMe Sl aay_Ame J3, l+v

with v2 =] - AmEz/Qz(l—z). From the predictions for "open charm"
and J/%¥ production according to Eq. (37) as shown in Fig. 9, we
observe a very steep and non-negligible contribution for x £0.01
which increases rapidly not only for decreasing values of x but
also for increasing Q*. For example, fitting the x dependence of
the charm predictions at Q® = 4 GeV?, the charm sea is expected to
behave like (for m, = 1.25 GeV)

3
e (x, @~k GeV?y = 0.05 (1-x)° | (39)

Furthermore, Fig. 9 tells us that, at Q2 = 10 GeV2 and x=0,01,

the total charm and T/¢ production in F, is about 0.08 and 0.003,
respectively, which is about a 20 7 con%ribution to the measured
total value of F,. To illustrate the size of F;ﬁ“'m, we compare it
with actual data in Fig. 10 on top of FiP(x=0.01) = 0.365. It seems

( e ra—— r vt 7
x i

mw e //f—\\\\ : )
.//// o b T NN,

f : //"“*_\ N .
10-:{ ot et - y \\_\ - e !‘
i F N S Noes i

; az ‘ / AN \ I\ Fzm .
w? 3 0% /f Y ]
H 03 :

: f :

o « 1YY 5

g g
a3
[
\\\.
/

=l

\\

/TN i

AN

N
¥ a /’ /\\\ ;
e / / /_\ : wt / \\\\ BUSFLM]i
: N
L/ LN

02
L+

0o 1 0w

00 ™
o (Gev?) Qo tGev')

Fig., 9. Prediction525 for total charm and I/¢ production
according to Eq. (37).
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Fig. 10. Comparison of the predicti0n525 of total charm pro-
duction, Eq. (37), with pp data.?® These predictions
are added to the short—-dashed curves which correspond
to the light quark contributions to F;F(x=0.01)=0.365.
The full QCD predictions of Eg. (37) yield the sclid
curves, while the long-dashed curves correspond to
using a naive Q*-independent gluon distribution in
Eq. (37).

appropriate to conclude that the amount of charm produced by the
process g*g - ¢c accounts for all the charm component of Fl(x,Qz)
presently observed. The CERN-EMC#3 and the Berkeley-Princeton®* up
experiment at Fermilab should provide us with stringent tests of
this production mechanism of heavy quark flavors.

Furthermore, photoproduction of charm is also expected to pro-—
ceed via the Bethe-Heitler process yg - c¢ for which QCD makes
firm predictions.*® Again, pp Pprecision measurements®34* should
be able to discriminate between alternative production mechanisms.*7

In neutrino scattering charm is already produced by the weak
current in zeroth order, in gontrast to electroproduction, via the
naive quark-parton process W s - c¢. Additional (non-leading)
correctiops originate*%€¢ from the virtual weak Bethe—Heitler
process W g -+ c8. Such calculations, however, depend now critically
on the light s—quark mass chosen because of the appearance of terms
like o (&-m2)/mi ; these large logarithms should be absorbed
as usual into the RG improved strange quark distribution s of the
O0-th order W s - ¢ process.

6. NON-LEADING CORRECTIONS

Finally, I would like to comment briefly on various recent

analyses concerning subleading o5 corrections to Wilson coefficients

("finite terms") and 2-loop contributions to anomalous dimensions.
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Taking into account these non-leading terms, i.e.

2 3
{L("(s\l = _(Lods -4
Vor oy L L o4 (40)
X {0‘53 - XO o(s * Xi ols
ho, n
Ci (d\s\)? |+ C; %y s
and inserting these expansions into the solution (7) of the RG
equation
" N " 2 : Oﬁs{al) Xh.(dxj - : &1)
C. (& /rl)ds(ijﬁ)) = Ci (l,o(s(ﬂ )) MP[‘E S olo(‘-—[—\— . (
4 Ao () E3CY)
[N 2y — n 1 i
where Ci(f)ddﬁ Nz C (408D » the Q@ "=dependence of moments

of structure functions in Eq. (8) is predicted to be

| o .
CRED, = <q.o, {1+« @) +(ﬁ. '%ﬁ'ﬂ} e 2 (42)

Here, <g,>,. denotes the moments of the matrix elements of the
local Wilson operator in Eq. (5) between target states which are
nothing else but appropriate combinations of input quark distribu-
tions fitted to experiment, and, because of Eq. (40), the corrected
form of o (%) is

| ) QAR
S bednd cLog BBy
instead of Eq. (3), with A= plzxpi-lfﬁodsqﬁ)] and
fio=4r4 . It is clear from Eq. (42) that O(.) corrections to

the Wilson coefficients C; have to be taken into account, once the
2-loop contributionms j7 and y to » and y" are considered, in
order to include consistently all contributions in a given order
of perturbation theory. We recall that only the whole Eq. (41)
corresponds to a physical measurable quantity, whereas the indivi-
dual quantities (!(%,(a’)) and exp[...] depend upon the precise
definition of the Wilson operator (the renmormalizationm prescrip-~
tion): Although the parameters Yo s P and (3, are gauge and re-
normalization prescription independent, the quantities ¢y and yV
depend on the renormalization prescription and on the gauge chosen.
Thus ¢} and y must be calculated in the same remormalization
scheme in order to obtain a physical, convention independent



answer for Eq. (41).

The Z? for non~singlet operators(i.e. for NS structure functions)
has been calculated in Ref. 49; comparing these results quantitative-
ly*Y with the data for =/® for x 20.4 showed that the only effect
of subleading contributions being & change in A by about 20-30 %
as compared to the value of A obtained by fitting the leading
order (l-lcop) expressions to experiment.

Furthermore, the rather lengthy calculations of g1 for singlet
structure functions have recently been completed!™ 5! which, to-
gether with the 7%, contributions!'é,5Z to the coefficient functicns
CE, allow now a detailed quantitative comparison of non-leading

terms with experiment. As already discussed in Section 3.4, a

moment analysis!S;'é of F, yields (by using n—dependent't /'s)an
equally good agreement with experiment as do the leading l-loop terms
Yo with N held fixed. Moreover, studying®? the explicit x~ and G°
dependence of ?fimpijﬁt) in the 2-loop approximation gives zisc
an equally good agreement with experiment as does the l-loor approx:i-
mation, provided the scale A of the effective coupling constant is
reduced from 0.5 GeV to about 0.3 GeV. Therefore, although further
detailed anzlyses are certainly required before we can draw de-
finite conclusions, it appears that non-leading terms do not signi-
ficantly alter the successful quantitative results based on the
]-lcop approximation; this gives us some additional confidence in

the usefulness and validity of perturbative lowest order calcula-
tions in QCD.

For practical applications a very neat 'trick" has been
suggested®? to study "finite" «, terms in C) without having to take
into account the 2-loop,contribution XT explicitly. This is achieved
by defining effective Q -dependent parton distributions relative
to F,, i.e. by demanding that Fi(x,Qi) expressed in terms of them
should have the same form as in the naive quark model (F, is given
a special status because it satisfies the Adler sum rule):

. 3%
<alahs = 0 @) <>, g Lee-] (44)
instead of the usual definition <Z(4")>, = <a vy, xpl--.]

where exp[...} is our general RG expcnent in Eq. (41}. Similar de-
finitions52 apply to singlet (gluon) densities. Because of the in-
clusion of the coefficient function in the definition (44) of parton
densities, the Q*-evolution equations of these gquantities are the
same®%Z as in Section 2 keeping only the l-loop anomalous dimensions
yo, with y| being suppressed by O« . Thus, once the input parton
distributions q(x,Q%) are fitted at Q* = Q% to .

T8 = xg{:q(n&ti* aix, @47 , which evolute according

to Egs. (20), say, one can study the effects of finite terms in

structure functions (or processes) other than F2 since
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C'} s Q" noy
< F"' (&1)>n = M Ch(o(sm-); <QO>n MP[ s
(M @) F ‘
. (45)
Cr (089

SECHED)

]

<glahs,

which is of course a fully gauge invariant and renormalization
prescription independent procedure. Thus, expanding in o¢ , we get

always differences c} - cy of "finite" terms contributing to F,
with 14 2: -

<F3(a1>>n=(—<qm’~>>h+<q(@1>>n)[z+o<s(&1)(c;‘)q—c“ i etel (4e)

‘.‘.,qj*’ 3

where the fermionic Wilson coefficients C;q result from 2
2
*
¥, W

. hN
+ + )
Al; /o T
and gluonic Wilson ceoefficients CELG are calculated from

W

=

The importance of these "finite" «_(Q?) corrections for phenomeno-
logical applications are obvious. For example, the effect of gluon

corrections on sea distributions to be determined from neutrinc
reactions are enormous:¥Z

1
6 ~ L {dx (2xF7 4 xF))
[#]

2y 2 (47)

—

= (H+T‘})(E-0.!6ms) + 0,08, (U=D+1S) - Glos 5, G

~ G.06 = 0.003 {swmall) ~ 0.02



Y . - N ¢ / — -~ \ —Y
Tyeg, m g ey v Gy TR T e gy
(48)

T4 ¢ - - -~

= T TN i, f ] AT

P 9] ”:95"4-\4‘ 6d‘s-vj-‘._.a‘ Loy ,\J'J'}EJ

— — - )

w58 = 0.06258 =502

where Uz /xu(Qz)/z , etc. and we have neglected the small contri-
butions from the charm sea. It is already clear from these equa-
tions that the gluon corrections cannot be neglected for a precise
quantitative determination of sea densities; even quarks play &
non-negligible role in determining the deviations from Ilatness

-

in £7%;, as 1t is evident from Eq. (48).

Similarly, one can and has to check simultaneously, using the
same parton distributions determined in deep inelastic reacticns,
the importance of "finite" terms in other reactions such as Dreil-
Yan dimuon production (pp = p'p + X)) . Here "finite" . terms
are obtained®%;5% from the same, but crossed diagrams which yvielded
the above quantities ¢/, and ¢, . The corrected Drell-Yan {or-
rula thus obtained is = '

._T‘IF:"F‘*’—)( .
C).')-,\, LTQ(L :Af .’I u] X [ - - L -
—_— == ;";“l“‘{ T _. = &5 s reny]
'J:\’ IS o X1 (=% Te ; » - -
"I‘\Y
®l Cfo=h 4 ATEPEAY SIS
'._C!(I 2} ds \)(‘ ‘-j\"!'q(%} LTQJQ“%U_‘
(49}
) “ ey Cam Y, -
O S T e o B TR L ST N R
- - 1 - Bt “.:J-
LAY
with z = Q /a x,s and where the two terms -, ~ i7;.q and
A {24 , with ey Sdz S PEEY , are given for example

in Ref. 52. It is now generally a.g'.teeo:i‘s‘s6 upon that the quark-
gluon correctlon in Eq. (49) is small (less than -10 7), prov1ded
the full Q* -dependence of the (nonscaling) parton distributions is
taken inte account! However, the existing analyses<6.57 concerning
the size of the «. correction to qg scattering ir Eq. (49) yield
entirely contradictory results.

ACKNOWLEDGEMENT

Some of the work described here has been done in collaboration
with M. Gliick; I would like to thank him for several helpful
discussions,



30

REFERENCES AND FQOQTNOTES

1.

D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973);
Phys. Rev. D8, 3633 (1973);
H.D. Politzer, Phys. Rev. Letrt. 30, 1346 (1973).

5. Coleman and D.J. Gross, Phys. Rev. Lett. 31, 851 (1973).

R.A. Brandt and G. Preparata, Nucl. Phys. B27, 541 (1971);
Y. Frishman, Phys. Rev., Lett, 25, 966 (1970); Ann. of Phys.
66, 373 (1971);

R. Jackiw, R, van Royen, and G.B. West, Phys. Rev. D2, 2473
(1970).

D.J. Gross and F. Wilczek, Phys. Rev. D9, 980 (1974);
H. Georgi and H.D. Politzer, ibid. 9, 416 (1974).

. M. Gliick and E. Reya, Phys. Rev. D16, 3242 (1977),

. M. Glick and E. Reya, DESY 79/13 (1979), to appear in Nucl.

Phys. B.

N. Christ, B. Hasslacher and A.H. Mueller, Phys, Rev, D6,
3543 (1972).

. CDHS coll., J.G.H. de Groot et al., Phys. Lett. 82B, 292 (1979).

. BEBC coll., P.C. Bosetti et al., Nucl. Phys. Bl142, | (1978).

0. Nachtmann, Nucl. Phys. B63, 237 (1973);
S. Wandzura, ibid. B122, 412 (1977),

- E. Reya, DESY 79/02 (1979), to appear in Phys. Lett. B,

. For further measured slopes we refer to Refs. 8 and 9 but these

are not to be construed as giving several independent tests of
QCD, since the moments are highly correlated with one another
and not much new information is provided once the result for
one pair of moments is given.

. H. Harari, SLAC-PUB-2254 (1979), submitted to Nucl. Phys. B.
. M. Gliick and E. Reya, Phys. Lett. 698, 77 (1977).
. H.L. Anderson, this Conference.

. H.L. Anderson et al., A Measurement of the Nucleon Structure

Functions, University of Chicago preprint, 1979,



17.

18.

19.

20,

21,

22.

23.

Fa
A
.

26,

27.

28,

29,

30.

31.

32.

E.G. Floratos, D.A. Ross, and C.T. Sachrajda, Phys. Lett. 803,
269 (1979).

W.A. Bardeen, A.J. Buras, D.W. Duke, and I. Muta,
Phys. Rev. D18, 3998 (1978).

CDHS coll., J.G.H. de Groot et al., Phys. Lett. 82B, 436 (1979).

B.A. Gordon et al., Phys. Rev. Lett. 41, 615 (1978);
H.L. Anderson et al., ibid. 40, 1061 (1978).

Combined field theoretic models of QCD and fixed point theories,
the latter being treated as a small perturbations, can of course,
at the present state of the art, not be excluded by presently
available experiments. See, for exampie, K. Watanabe, University
of Nagoya preprint DPNU-59-78 (1978),.

M. Gliick and E. Reva, Phys. Rev. DIl&, 3034 (1976).

~

R.P. Feynman, R.D. Field and G.C. Fox, Phys. Rev. D18, 332C
(1978),

E,M. Riordan et al., SLAC-PUB-1634 (1975), unpublished.

M. Gliick and E. Reya, DESY 79/05 (1979), and
Phys. Lett. 838, 98 (1979).

D.W. Duke and R.G. Roberts, Rutherford Lab. preprint
RL-79-025, T.238 (1979).

G. Altarelli and G. Parisi, Nuel. Phys. B126, 298 (1977);
see also K.J. Kim and K. Schilcher, Phys. Rev. DI7, 2800 (1978).

See, for example, M. Greco in Lepton and Hadron Structure,
Erice 1974, p. 262, and references therein;
G. Preparata, this Conference.

G.J. Gounaris and S5.B. Sarantakos, Phys. Rev. D18, 670 (1978).

I would like to thank G.J. Gounaris for a discussion om this
point,

E. Reya, DESY 79/15 (1979).

A. Zee, F., Wilczek and S.B. Treiman, Phys. Rev. D10, 2881

{1974);
A. de RGjula, H. Georgi and H.D. Politzer, Ann. of Phys. 103,

315 (1977);

I. Hinchliffe and C.H. Llewellyn Smith, Nucl. Phys, B128, 93 (1977).

3]



33.

34,

35.

36.
37.
38,

39.

40.

41,

42,

43,

44,
45,
46.
47,
48.

49,

50.

32
M. Glick and E. Reya, Nucl. Phys. B145, 24 (1978).
Conventional radiative correctionms, especially for antineutrino
reactions, might further complicate the matter (A. de Rujula,
R. Petronzio and A. Savoy-Navarro, Ref. TH.2593-CERN (1979)).
See, for example, E. Gabathuler, XIX International Conference
on High Energy Physics, Tokyo, 1978, and private communication
concerning the CERN EMC collaboration;
CDHS coll., F. Eisele and K. Kleinknecht, private communication,
R. Taylor, this Conference.
A. de Rijula et al. in Ref. 32.
K. Koller, T.F. Walsh and P.M. Zerwas, Phys. Lett. 82B, 263 (1979).
T. Uematsu, Kyoto University preprint RIFP-292, June 1977,
and submitted to the 1977 International Symposium on Lepton and
Photon Interactions, Hamburg; Phys. Lett. 79B, 97 (1978};
see also J.F. Owens, Phys. Lett. 76B, 85 (197/8).

A. de Rijula, R. Petronzio and B, Lautrup, Nucl. Phys. Bl4&6,
50 (1978).

E. Witten, Nucl. Phys. BI04, 445 (1976).

M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys,
8136, 157 (1978).

J.J. Aubert, this Conference;
H. Stier, this Conference.

M. Strovink, this Conference.

J.P. Leveille and T. Weiler, Nucl. Phys. B147, 147 (1979).
M. Glick and E. Reya, Phys. Lett, 79B, 453 (1978).

H. Fritzsch and K.H. Streng, Phys. Lett. J2B, 385 (1978).
J. Babcock and D. Sivers, Phys. Rev. DI8, 2301 (1978).

E.G. Floratos, D.A. Ross and C.T. Sachrajda, Nucl. Phys. B129,
66 (1977)5 ibid. B139, 545 (1978).

A.J. Buras, E.G. Floratos, D.A. Ross and C.T. Sachrajda,
Nucl. Phys. B131, 308 (1977).



51,

52.

53.

54,

55.

56.

57.

33

E.G. Fioratos, D.A. Ross and C.T. Sachrajda, Ref.TH.2566-
CERN (1978).

G. Altarelli, R.K. Ellis and G. Martinelii, Nucl. Phys. Bl43,
521 (1978); ibid. B146, 544 (1978).

D.A. Ross, Caltech preprint CALT-68-699 (1979).

J. Abad and B. Humpert, Phys. Lett. 78B, 627 (1978); and
University of Wisconsin preprint COO-881-44 (1978);

J. Kubar-André and F.E. Paige, Phys. Rev. D19, 221 (1979);
K. Harada, T. Kaneko and N. Sakai, Ref.TH.2619-CERN (1979),
and Erratum.

A.P, Contogouris and J. Kripfganz, Scale Violations and the
Quark-Gluon Correction to the Drell-Yan Formalism, McGill
University preprint (1978).

G. Altarelli, R.K. Ellis and G. Martinelli, MIT preprint
CTP #776 (1979).

J. Kripfganz and A.P. Contogouris, The Quark—Quark Correction
to the Drell-Yan Formalism, McGill University preprint (1979).



	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

