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0. INTRODUCTION

This seminar is logically the continuation of the one [1] 1
gave here three years ago. The stimulus to the present work came
from recent results [2] on lattice @Y theory, obtained by high-
temperature expangions, which seem td require to study the A2
corrections { A4 = & = lattice constant) to the formulae of [17
which dealt in detail only with In /{ terms. We shall see that the
numerical g.‘f'results offer a test of the merely techmical (!)
idea of "asymptotic freedom". This is the link between the present
topic and nonabelian gauge theory.

The toel to analyse the A iﬂff/{}corrections is, as for the
(lh/.‘l)‘ terms in [1/, the renormalization group. While we could
work entirely in four dimensions (as we shall indicate at the end
of sect, 2) it is simpler to work initially in 4 + £ dimensioms,
with & generic, and to set € = 0 only later. That a 4 +& -dimen-
sional lattice offers no difficulty in perturbation theory (and
this suffices for our purpose) we shall show in sect. 1. This
allows us to write in sect. 2 2 simple effective Lagrangean for
small- & dependence, and to analyse its consequences, using the
renormalization group, in sect. 3. The results in terms of formu-
lae that can directly be compared with numerical data are given
in sect. 4. Final remarks are offered in sect. 5.

1, LATTICE ¢4 THEQORY IN & +¢& DIMENSIONS

The Euclidean Lagrangearn of hypercutic lattice f 4 theory in
D=4 +¢ dimensions is



) L2 . A
where Z 52/. 2 +4¢ is the lattice point next to 4 in the
positive 4£~direction, and the AC-sum is from I to .

""ﬁa‘ -2 ,-(’(%, @ "f'} ,_-5') 145 the bare-mass—squared of the
massless (critical) theory. For am€¢, > , and we shalli only con—
sider this case, we are in the symmetric (<@ps»/Jphase. <--->
is the "true" vacuum expectation value, i.e.™the Gibbs—ensemble
expectation in the thermodynamic limit.

We define the theory formally by perturbation expansion in
i.e. by Feynman graphs with bare propagators
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where € Zone finds that summation over lattice points gives
results completely analogous to continuum Feynman graphs: momentum
conservation holds modulo2fr/& , and all loop momenta are inte-
grated over one Brillouin zone the precise location of which is
immaterial due to the 20r/mx periodicity of all factors. E.g., for
a one-loop graph with external momenta PyreePy (in order | ... n



along the loop) one finds
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where the £ play the rdle of the usual Feynman parameters,

The use of momentum vectors with 4 +£ components will, as in
continuum dimensional regularization /37;not give rise to problems,
E.g., we could.think of external momenta with only the first four
components different from zero. Moreover, the coefficients in the
effective Lagrangean, to be described in the next section, can be
expressed in closed form in terms of functions on the lattice at
zéro external momenta or derivatives there, see (2.3) below. -

We do not know, however, whether the dimensional interpolation
used here is the same as the one obtained from high-temperature

expansions [ 4].

We shall always work with vertex functions (VFs), i.e. the
full—'-propagator.—amputated one-particle-irredicible connected parts
of Green s functlons. Zhe Fouré,er transform of the VF to 2,

9- (¢ ¢J~ - ¢v_¢> , with <4r)

- momen tum conserv:.ng delta function, as in (I. 3), omitted we denote
as [ CPor - Pans T Yo ; ’G'A}”Elazq) y OT
7"((2,)) /e)) for short. We shall suppose these functions to
have in perturbation theory the small- &X-expansions
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The f % are finite for generic £ but have singularities at
positive rational £ in such a fashion that the r.h.s. of (1.4)
stays finite at all g (if Amg = 0, at all £=2 ¢ for nonexceptio—
nal momenta) due to the 1.h.s. being finite, At £ = 0, (1.4) re-
duces to
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The argument for (1.4-5) is given in the next section.
2, EFFECTIVE LAGRANGEAN FOR LARGE-CUTOFF BEHAVIOUR

The expansion (1.4) arises from the following effective
Lagrangean:
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The (.,D2r¢25.,) are all monomials of order 2r in derivatives

and order gs in ¢5 » having the lattice symmetry and be:.ng linear-
ly independent at zero momentum, (For r + s 23, Tpag > 1 in general,)
Computations with L a¢¢# are meant by use of continuum Feynman rules
with bare propagator and vertex as cbtained from the first three
terms; all other vertices, J_nclud__& the twé-vertices, are to be
treated as insertion into graphs, with dimensional integration

rules [3 ] to be used throughout.

All coefficients f,» ¢ 2, can be expressed by the regularized
g-: with 440y = 0, at zero momenta and derivatives there: We de-—
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Then the (total) coefficients in Leff of these operators are
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Oy : ga“" lg (0000,0; 95,C, ¢ a) = x2lg

O 3(02.00, 514,0,8,0)= a2Z,, .

Hereby Zg, Zg9, 24 are defined by analytic continuation fromé& > o
being IR singular at (ratiomal) & § 0, and Z4... Z,, are defined
by analytic continuation from £ > 2, being IR singular at (rational)
£ 2. The role of these singularities is seen by writing (2.1-3)

as
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Le#(dyields finite results tox ~loop order for (not only generic)
E<cl/8. fefd,t‘/é)-:allwagoes so forg<« /4, whereby
the IR singularities of the Z (i = 4 ... 10) act as final subtrac-
tions for graphs computed from Ze,ta(gand no longer convergent
for £ 2/&(and for graphs with lower—orderd e ecejinsertions),
etc. For & ~ O, Ledeco)is a dimensionally regularized Lagrangean
with counter terms, however, not precisely of the 't HooftZ 37 but
of the Zinn-Justin form [6J: Z;~1 (i = 1,2,3) are.not pure pole
terms in & but have also regular parts, determined by the regu-
larization (2.4) comes from and characterized by having in their
perturbation theoretical expansion only powers of « & or, foré&= 0,
Inx appearing. If we only consider £ % 0, then Ze#(.,) is an
altogether finite operator insertion, at zero momentum,,of dimen~
sion six, and so on for higher insertions. Hereby the a” explicit
in (2.4) can be chosen different from "normalization length" & that
plays the rdle of 4”7 in 't Hooft's approach [57.

The reason [7] for validity of (2.3) is that at the momenta
indicated, all non-Born contributions from (e,lg with Am‘g"‘aﬂ
vanish for dimensional reasons as far as Z,.., Zz are concerned,
and for Zg .. Zy4pone uses that for 4 R "8 /92 insertion at
zero momentum is equivalent to differentiation w.r.£. -~ dseg™.

In a fully perturbative construction, in (2.1)
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with meromorphic )Ar; +u R (&) holds, where o2 is the number
of loops in the VFs in (2.3). In this way, (1.4) is obtained and
J.n the £ ¥ O 1limit (1.5). However, formulae (2.3) are meant
"exactly", i.e. computing from (i1.1) to arbitrary order in gg -+
In this sense, L oyp 1is not mere perturbation theory.

The argument for validity of (2,1) (with only covariant opera—
tors needed) for Pauli-Villars regularization and 'Angao , using
oversubtraction, is given elsewhere L7J. The extension to 4 *0
is straight-forward, whereby one uses that differentiation w:.tf
respect to the bare mass, all other bare parameters fixed, reduces
UV divergence degree by two. (A related argument within merely di-
mensional regularization is used in [8]).

The present point is that (2,1) seems to hold also for lattice .
regularization at least to order a , Consider the one-loop graph
contribution to the four-point VF. Using (1.2) we can write in
obvious notation ia

2.4) I (& p)= TT(go(k ) N k)TN kep)
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sertion term is a regularized form of the graphs with dimension-—
-sixX insertions in the two lines. As 2N O, this term would be
quadratically divergent. Thus, with Tgh(p) the Taylor operator
around zero momentum, according to BPHZ [9] in the identity

Ins. temm = [1 - Tz(p)] Ins, temm +_T2(p)-lns. term
the first term on the r.h.s. has a limit as a¥0, which is the

square bracket applied to the unregu]:arized.insertion term. In
order to split the square bracket up, we need to give an inter—




pretation to the unregularized unsubtracted insertion term, which
we do by the dimensional-integration rule /3]. It gives always a
finite result for generic & , and we denote its use by under—
lining. Thus,

(2.6) Ins. term = Ins.term (a=0) +
+ Tz(p)[lns.term - Ins.term(a=0)]+ O(az).

The boundary term in (2.;) is a sum of 3 +'8 -dimensional
graphs with mass amg -« 4& " “and has a Taylor expansion in poa
with finite convergence radius. Thus,

(2.7) Bound,term = T2 (p) Bound.term + O(a?'-e)

Using (2.6-7) in (2.5) and integrating yields

(2.8) I(a,p) = a’ Ins.term (a=0) + R(p) +
+ T,(p) [1(a,p) - a’ Ins.term (a=0)]+ 0" €)

whereby T z(p)R(p) 0, with the interpretation. The first term
on the r.h.s., is the contrlbutlon from the insertion of the @%
part of the fourth term in (2.1). The third term is the sum of
the + . 01> féi,,,f and Xy¢4 04 contribution, plus part of the
ordlnary one-loop graph the remainder of which is in R(p). All
integrations are to be done dimensionally, If Aﬂp"-‘ra, the Taylor
operator should be taken around some nonzero & -independent momen-
tum. (2.8) as well as agreement of the constants therein with
(2.3) can also be verified directly on the basis of (1.3}, In a
similar fashion, correctness of (2.1) for all one—loop graphs is
easily shown.

For graphs with & 2 loops, the BPHZ method requires to sub-—
tract all subdivergences before performing the final subtraction
whereupon one proceeds as before, For the second-order self-energy
part, I have verified that (2.1) does describe it to order @
correctly., Hereby_ the subdivergences are cancelled by the contri-
butions from the O,,and 0g counter terms in (Z.}) to the order
stated. The total effect of the boundary terms is again absorbed
by the constants in (2.1). On the basis of this, we here take
(2.1) as valid at least to order a®, the one we are interested in.

Working in four dimensions throughout would require to write,
for reproducing (1.5), to use an effective Lagrangean with normal
products in the sense of Zimmermann {107, which imply an elaborate
subtraction prescnptlon, in particular in the massless theory.
The coefficients prop. 0% in such effective Lagrangean would be
proportional to the difference between VFs computed with regularl—
zation and computed from the a? terms alone, with 1n a occurring
in the finite renormalizations, This difference-taking is replaced



in our case by the need of continuing analytically Z4... Z4p in
(2.3) from £ »2 . (Effective Lagrangeans of the Zimmermann type,
for large-mass rather than large-cutoff behaviour, have recently
been used by C.K. Lee [11] and Kazama and Yao [12].)

As pointed out before [ 1], there is no local L,;,edescnb1ng
large—cutoff behaviour beyond the order/_l (Zn/_( _)for e.g. sharp
cutoff, i.e. using propagators ﬁ(A ,4‘3-) [/pi,-mﬁj in
momentum space. The origin of this is that in this regularizationm,
the cutoff-change effect is carried by boundary terms only. In
contrast, in lattice regularization, the effect is mainly carried
by insertion terms which are essentially local but depend on the
choice of the Brillouin zone of the integration momenta; the main
function of the boundary terms is to restore the Brillouin—zome
independence, as in the transition from (2.6) to (2.8) above.

3. RENORMALIZATION GROUP PROPERTIES OF OPERATOR INSERTIONS

To obtaln the consequences of (2.4), for convenience we tempo-
rarily use 't Hooft's Lagrangean ['5]

G0 Loy -ZZ O,

et
and define

A . .
3.2) O i%ijoj (1,5 = 4 ... 10).

The operators Oi are obtained from the 6]._ of (2.2) by the replace-
ments

(3.3) ¢3-7¢, Awg'amg, T3 = 3‘/‘—6‘

and we may identify &4 with a-l. The coefficients
)
G.4 7. = -k
‘g o +£,E Foge ()

are so chosen, uniquely, as to give, as & W0, finite operator
insertions Oy of dimension six,

With
G50 B )= e([a@y(n (22,25 )/‘l
= £ + o, 711'- /@.,75-#-"

where
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.50 b= 3 (1’6::9-)"7) b,z =17 (253 2% *’:

(3.6) r/;l =/s/g-, &/ [0/997(nZy = g: Z,.
@7 fz(g-)= "/"'/?f-‘-')[“’/o’g.ﬂn(zzz 7 bor-

the VFs to (3.1) obey

(3.8a) Op,.,,_r((fn);/a, m,2,¢6)=0

where
(3.81;) Cws, = L/l + 2 e/l 25y T -
4—2n9~/9») + () nr 2 [ Be]

lThen for the VF¥s m.th 0 inserted at zero momentum
. S
3.9 Op,,, 7"’((2»)) Py /;-'/(2;-:))

holds, with an upper—right (4/567/89/10) block—-triangular mixing
matrix

(3.10) 7‘;9(?)—‘- Ly Jig F + Olg2)

with
. - : 4 ) i - AN
S (3.11) : olo o -is 0O - 3 ! 1/f2
0o 0 -3 0. 6 i
_ 0 0 -60 |=-2/3 8 | -2/3
ez~== 0 o0 -3 0 1/3 0
1/3 2 2/3
‘0 -2/3}|-1/3
1/3

.

obtained from one-loop calculations. TheJ7. / with i,7 = 8, 9, 10
. can be expressed, using the method of [-13]': in terms of /_’., X ?
and their derivatives alcne.

From now on we consider £ = 0 only. We set

(3.12) 7':. — M1 (3‘) 77
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and demand

e Oy, 7? c8nl) =0

and invertibility of the matrix W. Then we must solve

e g7 W)= [+ e 9] Wie 7 2]

where u,.(g) = 0(g). The eigenvalues ’?'d'. of q are its diagonal
elements, and one finds that it can be diagonalized by a similari.ty
transformatlon. Consequently, (3.14) can be solved by power series

g- "-(,l’ + & X ¥ .+ ), with /r the corresponding
elgenvectors, except possﬂ:ly lng appearing in

@1 W, = g3 (X gL )+ ing (Kr gy

due to integer—spacing with the threefold eigenvalue zero. To
determine whether the logarithm does appear or not requ:.res to
compute F ¢ and /3 to four loops. There is no 5[»?- in the
solution to e:.genvalue -2/3 as one finds using the known [131

higher terms in a'“‘,/?)

We find the following solution (&= ¥..79)
(3.16) W, = {1, =;==1=pm, = }
W {0,1,0,0,-,-,-
Ve {0,0,1,0,-,-,-}

W, o= g f5,10,20,1,-,-,~f+ Ing {0(1),0(1),0(1),0,-,-,-}

Wz

W = 8 3{00-2010-}
! 89 ~18.-

Wy =38 {9 18,-8,1,- 147}
14/ 1

Wio = 5{00 -4,= 55s2," -1,3}.

Herein, in the wavy bracket only the constant terms are written
and to be amended by terms with higher integer powers of g, except

for the barred entries which are empty. For the inverse matrix we
have

-1
(3.17) W )41
-1

{1 ,0,0,-5,0,2,1/2 } + g 1ing..

(W )Si = {-’I,O,-I0,0’A’I} + 33111.8..
- 3
(W ‘)6i = £-,0,1,-20,2,8,-2} + g’lng..
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(W'—I)Ti - ';'33{":0:0!730!-]3— i—o'}
(W-I)Bi - 8—1/3{ T 132’-}
(w—l)gi - 213 {—,-,-,-,0,1,]/3}
-])105. = 8—1/3{-9-{';-:-’-11}

(W
where Ilng-terms appear if and only if they do in (3.16).

]

4, APPLICATION TO LATTICE VERTEX FUNCTIONS

Vi d '
We now can organize gnd resum the Q'z(z"“)terms in (1.5) as
it was done for the (lna) terms in [1]. To this end we identify
(2.4) with (3.1) amended by the appropriate linear combination of
the i. Returning for the moment to £»> 0, we set

WD T
gpat= G
Py = c/pe) P

Am:-- o(/g;r./mz
Defining in analogy to (3.5a)
(4.2) /3'/5,:):3([‘&/.75.]1;4/52;?; ))"f___.
= EF + 5:-"_')9'"—& oy @S> o
=c3 + /b (§/+ £405) 4

one finds that

“3 A5 /ofy = ﬂ-/ﬁ',eJ//bfg,g/

is uniquely seolved by
(4.8) E = £ (g) + € £,(&) +£°E,(8) + ..

with fo(g) =g + O(gz), whereby
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= -1
(4.5) £ =~$ (96

with the definition
(4.6) ﬁ(?} = fo/g(ﬁa(if)-fj
9,
pcg) = [ Acgi0)7T

(The integration constant in (4 53) is determined via fitting (4.3)

in order & .) With gﬂ'and QZ defined in analogy to (3.6) and (3.7),
one finds

(4.72) alg, €)=
& -
= exp {2 (3! st g~ Feaiel]
&
= 7+00y% for &=0

w1y of’g,8) =

%+ -
= erﬂ[‘- Solo iy )™ [ (o) - 2("}’6)]}} =
— 14 0Cq)  For exg

whereby (4.4) is to be used. One now sees that
QZ (912/0 -

where the c (2, £€) are linear comblnatlons of the Z. (g,E)

{i-= .10%) of (2.3) with coefficients, gbtained from (4. 1),
(4.&) (4 7), and (3.2), such that the c‘(g,o) are finite since
the l.h.s. of (4.8) is finite at & = 0. Explicitly, one finds from
(2.3)

(4.8) L (1att1ce) = L't Hooft

49 @G0 = {+o0@h, i -4
0(g) , i=6,7,9,10
0G:%) , i =5,8.

(4.8) now gives at £ =
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10) 73 ((8n)y; oy, amy, o) =

= (o)) 7 .
[T+ 27 505,07 ] (C2ni; & 50,0, oAy api) amt ) -
=¥ .
+ Ol (thal)

with the obvious insertions, The use herein of’

o

(4.11) /-:—‘-r() - Mﬂ (}/ﬁa/) 7;’.(:”)

from (3.12) yields, with (3.16,17), the desired recrganization of
logarithms due to (3.13).

For application to the setting of [2], we define

. o -2
w1z ga - [ Brem), ] Iy (0004),

S en [Gutn T o)), ]

Here t'ﬁz is the, for Euclidean computations convenient, second-
~-moment definition of mass, and § is a normalizatien-independent
renormalized coupling constant., Inserting (4.10) into (4,12) and
omitting at first the et parts, indicating this by a zero sub-
script, we find from (3.8) that

(4.13a) go = A(C],Cz),
~e 2
{4.13b) m "= B(C],Cz)
with
(4.14a) c, = & (gB) + lna,
) 2
(4,14b) C2 = d'(gB) - lnAmB

—

where -3

w15 TCF) = [T B (FIT 5 cFla).
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Solving (4.13b) for C
sional reasons,

(4.16) 5, = “’/,o/ga + (n (oc i, ))
It is not difficult to show that ?(})* fd? /3

where /.; is the A3 functlon to 1ntermed1ate renormalization
specified by oo )=—is Z‘O’/J/v"??‘()‘(—ﬁ?)/ oo = = ’f}

Hrovoo) = -'-9'. Therefore, in (4.16) only the function
a -7, -
b ga) s, OT f{a‘,)z-f (9_5) of (4.35), depends on the re

gularization chosen.

2 and inserting in (4.13a) gives, for dimen-

. 2 . .
Including also the a” corrections, ome finds from (4.10) after
an easy calculation that

(4.17) ?/dﬁ‘/m;) = ,5"'/.5(?3)1‘-4»(@»‘:3/-/'
10 190
7 (a&)2£C“-/;@)Jé;w‘.j(%/?ﬁ))-
5/5”(5(3@/%&«[@&')))4‘

# O caw)? (tna) )

where, besides g//‘.?)or ?(}3} only the- c; /}3) depend on

the regularization chosen. Now cbserve that, with MQ’ - f

(4,183) .. _ — ~ —_—
BB G5) ~ nF) 2 Gy = b, AF %

£ /?0 /:'}' '7}5"7?5),._/9;251 (,,/,5’ Z/-J?énff-vj-f-
+ O0CF %)

where

gy  (nE = lmF e ps e, lalnf,

such that it goes to zero as avo . For the E; andW-@' in
(4,17), only the power series in Gg are (in principle) available.
From (4.9}, (3.16), (3.17), and (4.12) we finally get
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(4.19) §(?3, F)= 5}0? -+

-3 A ~ - s -3~ & % -'.2/ ~‘fé
~E7 Fiog “ 35 B3 s ~ 45 % ° Fear It

+ OCFlnt))

where :Ln the square bracket only terms with at least one more
factor ;2, relative to a kept one are omitted. Slnce the
estimate ‘?4 18) 1s only meaningful for ¥ »>» 7 such that 22 43 )
(4.,19) is well behaved. °J é

The interest of these corrections formulae 1s.MAssume that g
is inside the region next to the origin where /3 f;—)ls positive
(g is always positive due to the Lebowitz inequality). ThenP
1s a monotonic function of its argument. Therefore, if in (4.18)

‘ has a maximum at for some fixed ? , 1t has a maximum
at % for any fixed § = provided § stays in the mentioned regionm.
If the observed ('9;,;)5] does not behave so, this can only
happen due to the correction terms in (4.17). (4.19) shows, how—
ever, that these corrections can be estimated quite well and are

OCF 20 tn$)™") for §w oo,

1f, on the other hand, g is not monotonlc 1ng’ and if this
cannot be ascribed to corrections to g,cag; , then

P(ﬁs = P(;(?‘g)) is not monotonic in 96' Due to
/—5(?5/ = [[9’/07?8] 5(?3)j“7=
= /% (?(9@))[ 9(;3)]

this would mean, if the A-functlon is poesitive, thatﬂ /thas

at that g-p a pole of first (or higher odd) order 1fﬁ'/g‘) is
differentiable there., Such behaviour was indeed already found by
Wilson [147J on the basis of nine-terms high~temperature series,

and this feature was confirmed by Baker and Kincaid [ 2] with ten—
~-terms series, Neither authors found a Gell-Mann-Low elgenvalue g
defined by [H"'}-,.,. g ,}')-- g-.g}a R orp('% =409,
and such 9: is needed for a nontr1v1al continuum ¢4 thec;;:y (or
nontrivial continuum Isingy model, which would require gy = + &9
to be such fixed point) to exist, at least as a limit of the

T T T T T L IR R S TR S R I
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lattice~regularized theory (I.I). - However, Wilson ({14], and

discussion remark at the lecture) has remarked that (l.l)ﬂpay not
be a suitable starting point for finding a fixed point g(;‘.: oo)
different from the vanishing Gaussian one.

5. DISCUSSION

Anyone familiar with the idea and practice of "asymptotic
freedom" (AF) [15] will recognize that the assumptions that led
to {(4.17-19) are formally identical with the assumptions that
underlie AF. AF of nonabelian gauge theory is not understood
physically, however, but (so far) merely an outgrowth of the per-
turbation theoretical formalism, Thus, failure. of (4.17=19) to
account for non-perturbation theoretical results where these for-
mulae should do so would indicate a serious flaw in the AF reason=-
ing. Note, a%?in, that (4.17-19) do not presuppose a nontrivial
continuum ¢? theory to exist.

The method of effective Lagrangeans applies directly to all
renormalizable theories regularized on the lattice such as to have
vertices and propagators. For Abelian gauge theory such form has
been discussed by Sharatchandra (17]. An equivalent discussion
for nonabelian gauge theory has not been given yet; however, the
‘questions one is interested in there are not in the realm of per—
turbation theory, and the cutoff problem is supposed to be not
acute due to AF,
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