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Abstract: We compute certain contributions to the lattice 52
coefficient. These imply possibly, up to 30% corrections on m/A
determinations from Monte Carlo calculations with Wilson, Manton
and Villain actions. Other modifications of the standard Wilson
action may have large corrections which may completely obscure
the expected asymptotic freedom behaviour for moderate values of

the bare coupling.
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(1)

Since Creutz's results indicating the existence of a phase in
lattice Yang-Mills theory with static quark confinement and asymp-
totic freedom there has been a rapid development and enthusiasm

in performing Mon%g)carlo (MC) experiments. The stage has been reached

where some groups are determining QCD hadron spectra using MC
methods and claiming good agreement with experiment, even for the
"ﬁy4ﬂp and ﬁ}4§~ ratios. This state of affairs is very encouraging.
However, tc ensure that the MC experiments are giving us reliable
results for the continuum limit, which are more significant than
mere strong coupling expansions plus some extrapolation procedure
incorporating asymptotic freedom, various improvements must be made.
These include

i) proper account cf finite size effects(3)
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ii) estimates of lattice cutoff a ' effects (a = lattice spacing)

and their reduction by working with systematically improved
(4)

lattice actions

iii) a better treatment of lattice fermions than the methods at

present available
iv) an estimate of effects of working at finite bare coupling g.
It is the latter perturbative effects with which this letter is

concerned.

A physical mass m (i.e. having a finite continuum limit without
multiplicative renormalization) behaves in the limit a—5 0, g— O,
AL finite as

m o= N, ( I+ C(u‘/\{)) (1)
with
- -J—z =y -
A= ae ™Y (pg) P L eairan ] (2)
with
3= L (g'- B O(a* 3)
r(S) ).'3: ﬁl F" P ) * 5)




Here Bo, B1 are the universal first two coefficients of the

Callan-Symanzik B-function, which for SU(N) Y.M. are given
(5)
by

WoON Qoo %N\ (4)
Be ™ 3 pr P = (l ")

If we have two masses m1, m2 we can get an idea of lattice cutoff
effects by studying the ratio "b/ﬁwx + which shoulé be a constant
with exponentially, damped corrections. Frequently, however, we
have only one sufficiently well measured massive quantity, (eg.
string tension) at our disposal and we use MC data to determine c.
In practice, since as yet not even the lowest order correction
£(0) has been calculated the MC data has been fitted to

_‘— .
mo= Gale %Py (B9 il (5)

comparing with (1), (2) we see

G = © (ve lj; *(5;)) ;O "‘A\hﬂny Fegps » i

Since on a finite lattice we work in a region of finite bare coup-
ling where thecorrelation length is not so large that finite size

effects dominate, the correction factors in (6) may be significant.
Indeed this appears to be the case in analogous calculations in the

CPN-1models(6), first pointed out by Martinelli, Parisi and Pe-

tronzio.

We should therefore indeed check for the lattice action under con-

sideration, that the correction factor in (6) is not too large.

An impression of the corrections involved comes from comparing mea-

surements of a physical gquantity using different lattice actions.

Defining
A Coe
L - 3
( /A;) %, i
Llp

. P N . NS ol &
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Lang, Rebbi and Salomonson'’’ fing (A‘//\,_) ., differing by 40%
from the theoretical value in the compatigo; of standard Wilson
and Manton actions (see Table 1 taken from ref. 7).71t would be satis-
fyincif the perturbative corrections described above could account
for.ﬁhese differences. In principle one should determine the relation
between g and g' in the physical limit and compare the data in terms
of one coupling. Without the raw data at hand we make the rough

approximation 9, = 9, in (6) and thereby estimate

~ [N .
AL/A; N ( 4\“)“0 kv - 99 dee )
(8)
with
- /32.1- - ,3“" (9)
ol = 1P

One way to determine the relation between g, g', and thereby de-
termine &, is to compute the effective action I'(F) in the small

coupling, slowly varying weak F approximation

PlF\ = QLF) [_ ;:. ¥ (Z[b‘ (nu\fi.) f‘j"(l[!‘(«t\k\v(,_)v (10)

0—0(&\]] +
with A an IR cutoff and
o o .
QiR - «S“"*«Fw (11)

Given two lattice actions I'(F) should be the same in the physical
continuum limit and thus

!
.

gr L= ay) - ) g s (12)

An. *

Comparing with Eq. (2)we can relate the li coefficients to the /AL
ratio and the quantity &, viz

i"-e,'

Ao = ( L

N € (13)

and




. . Lp f L (14) The effective action has a diagrammatic loop expansion
L‘- v >4
Cad
Tw = L0 QFE) (17)
2o
The easiest way to calculate the effective action is to use the with
background field method(a) The plaquette variable in the action N b/ .
- G (18)
is then replaced by [ 9
1= 2 te Iy was effectively first calculated by Hasenfratz and Hasenfratz {°)
Wk tagtpu wa Eny ) 8 1
u'” = e & : e and checked by various authors (8:10) | Here we reproduce only the
contribution from Fig. 1 arising from vertices in the lattice
with F £ related to the covariant curls of the background action (15) not present in the classical continuum action. It 1is
v’ v ‘ ; 3 :
and qu:ntumufields respcctivelwtd) Expanding, we obtain den- the only diagram which contributes to the A«/A_ ratio (when b=1)
y E» , we obtain )
FhEtaEs 6E Bha Tee and moreover gives a significant contripution to the ratio A"/A‘_d‘..
in the case of standard Wilson action. One finds
4 ;
ey b — b — 6\ 2 . - -\
e = = JL 4 - (¥r> oo 9 ‘r'v) (15) - Lo g e
a 3 Dty = © = (19)
-~ (e ( ‘jl Lu.l F_u‘___n *g ;“\ Ll Ly P . € il h
4 whed pe Ve Yo L, F y abcd, T *r-- f,_, ‘/._ where
) « © % K i) = ) )
T YTC i b e FL e ) ¢ S C ook e (20)
[
a . w _ 15 e ,N e 1 j
t E_l ﬁ ‘\u':~u\(| Fk‘\'f“' *P“(r\J *f"" ‘P‘" ¥
For
+ i!rn-s \Ar\tu\/ -~ 4 . .
i o ) N 2 dac S '\
C 3% l Y S #® A wd (21)
+ terms  mue thaa qaadruric oa e
Fe, K¢ TETE T2 08 G e TETRTH TS
where b (a) d(4) functions of az regular at uz = 0 and
e b, ¢ i are a , reg 3 = we have
= f S ffici depend on the lattice acticn used and (o] Iy
b(0) 1. These coefficients e (= e e & o i N b = v -
those we need are tabulated in Table 2 for the Mixed Wilson, the 4N 4N (22)

Manton and the Villain actions for which the action densities are, ) a . ‘
The matrices T° in (21) (generators in the fundamental represen-

ke, : i ( ) tation) are normalized by tr ’I‘aTb = %6ab‘
N 2 N l Re o U= ) 4y [we G-u oy ®
3 It turns out that the contribution to & in Eq. 14 from the 1-loop
‘Lh“‘"“ i tr— diagram Fig. 1 is of the opposite sign from that required to im-
~—~ - g prove the discrepances of Table 1. Thus 2-loop contributions must
o . : . oy “ be 1included.
‘{r— e : (§ “E)r e e Wibes € (16)




A full 2-lcop calculation requires much labor and we are not yet Stehr has estimated S using a non-sephisticated MC programme and
in a position to present the complete result. Here we present partial

obtained
results, easily calculable, to obtain an order of magnitude estimate.
S = (PA (27)
The contributions to r, that we calculated are given in Fig. 2. That
For
is to say we consider diagrams arising from vertices not contained
in the classical continuum action, and neglected non-abelian parts ) M , i '
= A T T4+ A € “ 82 A <
of f . Ghost and measure terms are also not considered. Experience 4 abedy chi b T UL P AL TETETRT AT
from the 1-loop calculation considered above suggests that we get b da o7 1A Th e o
b |
the right order of magnitude. Moreover most of the neglected diagrams S
cancel in the evaluation of &  ,. The contributions from Figs. 2a, b, c t30% { G T°T5TC b T2 RN TET S p T et et
are given by: (28)
g 23, §g BT TRTORE o G WP T L T TS
- A b
r‘lu F2oLC
) = _ 30
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- () o -3
m s =ud. € Ve b ,
th 25% (23)
w1 RETRETOTS S Lrsata
9* (3 8) 5“3 “f
P -3 sSc
e N 14 4 one obtains
where 3
- 3 L 1S
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and S, the only nontrivial integral appearing in our expressions,

is given by,

c o T oAl x'b‘l’\ YT YW YLy (25) ‘ . .
») L& QA S oway Collecting the pieces together (Table 3) and using the fact that
b = 1 for Wilson and Manton actions we have
where
) sinr MW ¢ saar S Snu-\h-\,w.u.h \N 2 (-03% y.128 ) - (--035 + -039) (30)

y(P = e i L
L sidten (26) & Fuof
[l
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A
The sign in (30) means that "experimental value" of YA is
expected to be greater than the theoretical value, which is in
fact the case (see Table 1). Taking q% & 2 our correction factor

would be = - 9. Although this is not quite big enough to account
for the results of Table 1, it is reassuring that it is of the correct
order of magnitude.

For the Villain action, b = 1 - %592 . One then obtains

L'Hm\oa\ - Q‘V.\\A-A ' & S
There are no two-loop contributions to the difference
in our crude approximation. The difference arises solely from the
1-loop contribution and the fact that coefficients b, Cqs Cy are
nontrivial functions of g (Table 2 ). We obtain

: ’ ¢
th.,\;..n" lw. Filoses iz = a i'bl“’ Gl '-g‘“’"'}v.u.... N
(32)
L4
9L
From (31), (32) we estimate
Y = 23 = L Jes
Mot V Moan W 055 = 3 (33)

This gives a satisfactory account for the discrepancy between
Manton and Villain results in Table 1.

The Wilson action with ¥ # O whose phase structure has been widely

(12) to be used in studies

studied(11), has been proposed by Liischer
of the topological charge on the lattice. The danger is that for ¥
too large the correction factors may swamp the expected asymptotic

freedom behaviour for reasonable values of g.

In conclusion our results for the actions used so far in Monte
Carlo analyses of SU(2) Y.M. theory indicate that perturbative
effects are indeed of the expected order of magnitude to explain
observed discrepances. A serious MC determination of m/A values

(13)

should take these effects into account as well as intermingled

finite size effects.

Acknowledgement We are indebted to J. Stehr for performing the

numerical integration.
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Figure Captions

1-loop contribution to the effective action (quadratic part).

2-loop contributions to the quadratic part of the effective
action coming from vertices in the lattice action not

present in the continuum action.
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