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Abstract

In the present report we present a highly condensed summary of our previous
works [1], [2] and [37] in which we investigated the spin-orbit motion of par-
ticles in a storage ring. The starting points of these investigétions are the
Lorentz equation and the BMT equation, Having defined a suitable coordinate
system in chapter 2 and having described the external fields in chapter 3, the
linearized equations of motion are derived in chapters 4.7, In the discussion
of t%e orbital motion (which includes radiation damping and quantum excita-
tions) the betatron oscillations and synchrotron oscillations are treated si-
multéneously (coupled synchro-betatron oscillations; six dimensional phase
space:vector(x, Pxs Zs Pzs Ty Pg = gEJ).Explicit expressions for the transfer
matrices of the orbital motion are given in chapter 5.2 for the most important
beam line elements (i.e. quadrupoles, drift spaces, rotated quadrupoles, sole-
noids, cavities, electric and magnetic dipole fields). In the appendix a nume-
rical scheme is described for calculating the spin transfer matrices, Using
Bogoliubov's averaging method the following physical quantities are calcula-

ted:
i) damping constants of the synchro-betatron oscillations (o)
ii) beam emittance matrix (< yp(s) yp(s) >si;at);

iii) depolarization time (tp) due to quantum fluctuations of the radiation.

Finally, as an extension of the investigations {1, 2, 3], we showv how one can

express these quantities in terms of the dispersion.
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0. Introduction

In the present report we describe a general linear theory of particle dynamics
in electron-positron storage rings. This theory treats synchrotron and beta-
tron oscillations simultaneously and it includes radiation effects and the
spin motion.

Various methods and techniques are described in the literature to calculate
the orbital motion of a particle in a storage ring [4, 5, 6, 7, 8].

For example, in investigating the synchrotron and betatron oscillations one
usually assumes that the transverse oscillation amplitude of the circulating
particle, measured with respect to a given closed reference trajectory, can be

separated into two parts (y=x,z)

¥(s) = n(s) D (s) + ygs) = £, (0.1)

The. first part takes into account the dispersion of the machine and the second
part describes the free betatron oscillations about the instantaneous orbit
7 Dy(s). This decomposition is well justified if n(s) is a weakly varying
function of s (arc length along the reference trajectory) cqmpared wvith Dy(s)
and yB(s). Even in the case that synchrotron and betatron oscillations are
coupled, this separation allows one to write down analytical expressions for
the complete revolution matrices of the transverse and longitudinal oscilla-
tions. Knowing this revolution matrix aone can study problems like the stabili-
ty of the particle motion or synchro-betatron resonances [9, 10].However this
decomposition, although appropriate for the investigation of many questions
has the disadvantage that the symplectic structure of the transfer matrices
for the transverse and longitudinal oscillation amplitudes is lost if these
two degrees of freedom are coupled. On the other hand, this symplectic struce
ture of the transfer matrix allows one in a straightforward manner to extend
both the linear theory of Courant, Snyder [6] and the theoretical treatment of
radiative processes (influence of the synchrotron radiation on the particle
motion} to the genmeral case of multidimensional coupled systems. The problem
of the coupled betatron oscillations (which requires the use of only the 4x4
symplectic matrix formalism) has been treated already in this way [8], [11],
[12].

In order to include synchro-betatron oscillations in a consistently symplectic
marner without decomposing the oscillation amplitude according to (0.1), it is
necessary to introduce a full 6xé matrix formalism which handles all six de-

grees of freedom simultaneously, This is the approach proposed by A, Chao,



Using this method and a suitable set of variables for the description of the
particle motion, he has investigated the influence of the synchrotron radia-
tion on the particle dynamics in the thin lens approximation for the general
case of a coupling between the synchrotron and betatron oscillations [7].

The purpose of the present work is to demonstrate that the equation of motion
approach { 4, 5] allows a unified and systematic treatment of an arbitrarily
cuupled linear machine including the influence of radiation effects, and it is
also demonstrated that this approach contains as special cases both A, Chao's
result and the results of [11], [12].

In pa?ticular, it is shown

1) how to extend the theory of Courant and Snyder to the multidimensional case
of coupled synchro~betatron oscillatiens.

2) hou to extend the investigations of A, Chao systematically to thick lenses
(for a separated function machine or a combined function machine).
(Explicit expressions are given for the most important beam line elements
such as quadrupoles, skew quadrupoles, synchrotron magnets, solenoids and

cavities)

Furthermore, analytical expressions are given for the damping constants and
the beam emittances for the most general case and a general proof of Robin-
son's theorem [13] is outlined, These orbital results can be used for six di-
‘'mensional tracking programs.

With regard to the spin motion in storage rings, Sokolov and Ternov [141 have
shown that, as a consequence of spin-flip synchrotron radiation, the electron
beam becomes polarized antiparallel to the direction of the bending field, Vaw
rious depolarizing mechanisms have been discussed and investigated extensively
by the Novosibirsk group [15], [16]. Our purpose in this report is to show how
one can include certain depolarization calculations in the equation of motion
approach by just adding the BMT-equation to the LORENTZ-equation. in particu-
lar, we calculate the depolarizing effect caused by random changes in the or-
bital motion of the particle due to the stochastic emission of synchrotron
light (spin diffusion). The expression for the depolarization time’@D is equi-
valent to a result of A, Chao [17] derived from an extension of the 6x6 matrix
theory (8x8 matrix théory). Finally we give a new and general expression for
Tp containing the dispersion. This expression can be used to derive general
spin transparency conditions and spin matching conditions for more complicated

storage rings [18].



1. Spin-orbit motion under the influence of an electromagnetic field

The LORENTZ-equation and the BMT-equation are the starting point for investi-

gating the spin-orbit motion in electron-positron storage rings.

1.1 Orbital motion (LORENTZ-equation), (CGS-units)

L B Y

_)
X-§+R: i(-cE-f

-
ee + dt

olo

) (1.1)

vith

E = 2 (energy of the particle)

and the following definitions

e = elementary charge

3
1l

rest mass of the particle

= velocity of light
= electric field
magnetic field

= radiation reaction force

=y o b O
1t

= radius vector of the particle

The radiation reaction force in (1.1) can be separated into two parts:

a continuous part ﬁD describing the radiation damping and a discontinuous part
5ﬁ caused by the quantum fluctuations. The explicit expression for ﬁD is given
by [4]

R=-2 g YR + 5 @ D) (1.2a)

s
and 6R is a Gaussian white noise process with [5]

<R >=0; (1.2b)

< GRi(t)sRJ.(t')>= ciJ.(t) e 5t - t') (1.2c)

Cij(t) will be specified later (see (4.6b)).



1.2 Spin motion (BMT equation)

%E ? = 50 X § (1.3a)
- _ e =+ az -]'_- -;--)- .-;
g = - v {(1 + ya)B - T—E—? = {(rB) T -
: >
-(ay+-l—+Y—Y)rx -f}. (1.3b)

The following abbreviations have been used in (1,3b):

? = sbin expectation value in the particle's rest frame (effective spin of
an ensemble of particles)
a = anomalous magnetic moment
- . 2
Y = E/moc

2. Reference trajectory and coordinate frame

Egs. (1.1) and (1.3) are expressed in terms of the laboratery coordipates. In
accelerator theory, in order to simplify the equations of motion for the cir-
culating particle, one usually introduces a new coordinate system, which is
‘comoving with the particle under consideration.

For this purpose we shall assume, that an ideal closed orbit exists for a par-
ticle with fixed energy Eo’ if we neglect the variation of enefgy caused by
the radiation losses and the accelerating fields. We assume that this closed
orbit consists of piece-wise plane curves either in the horizontal plane or
vertical plane, so that there is no torsion.

Vectors lying on the reference trajectory will be called ?o(s) vhere s desig-
nates the arc length along this orbit.

in the well known manner we can now define a coordinate frame moving along the

reference trajectory and consisting of

the normal unit vector 3(3)
the tangent unit vector T(s)

: >
and the binormal unit vector B(s) = ?(s) X 3(3).

We require that the vector $(s) is directed outwards if the motion takes place
in the horizontal plane and upwards if the motion takes place in the vertical

plane.



Choosing the direction of 3(3) in this way, implies that

appearing in the Frenet formulae

'f(s) = %g?o(s) z 1"3(5);
g% = K(s) Ws)
£z Ks) Ts)
L. o

the curvature K(s),

(2.1)

(2.2)

is always positive in the horizontal plane and negative in the vertical plane

iff the centre of curvature lies above the reference trajectory.

In principle we can now expand each vector in (1.1) or (1.3) in terms of the

. + > >
unit vectors 1, v and B.

However this representation has the disadvantage that the direction of the

normal vector %(S) changes discontinuously if the particle trajectory is going

over from the vertical plane to the horizontal plane and vice versa. Therefore

e - . > > > i
it is advantageous to introduce new unit vectors T, e and e, vhich change

their directions continuously. This is achieved by putting

3(5), if the orbit lies in the

EXCS)

-
-8(s}, if the

B(s), if the

e (s)
z 3(5), if the

The Frenet formulae (2.2) now

orbit lies in the

orbit lies in the

orbit lies in the

read

i gg-gx(s) = K (s) ?(S)
{ L2 () = K (o) Us)
. %E' %(S) = “Kxg¥(5) - KZ;Z(S)

horizontal plane

vertical plane

horizontal plane

vertical plane

(2.3)



with

%(s) = ;é(s);

Kx(s) . KZ(S) =0 (2.4)

vhere Kx(s), Kz(s) designate the curvatures in x-direction and z-direction
respectively.

Thus . we can yrite

(s, x, 2) = Fy(s) + x(s) B (s) + z(s) B, (s) (2.5)

and generally

K(s, X, Z) = AT(S’ Xy, Z) T(s) + Ax(s, X, Z) gx(s) +
e (s) ;

+ A_(s, x, ) (2.6)

Zz
A

(E f} %, By, €...)

-
e
x* 7z

)

Our next task will be to express (1,1) and (1.3) in terms of the (3, @
coordinate frame,
For that purpose we shall introduce, instead of time t, the arc length s as

independent variable:

d - -.C-I-S- '] g& [ -(-1— - - 1— . i— !
T R’ BV E (2.7)
with
= g& . 2 = ) 2
LY = 3§ di? = (dr)? .

Then one gets

.
T o= %§ z ?(s) + x‘gx + z‘gz + ?(Kxx + Kzz)
= ;(l + K x + K,z) + X'gx + z'gz ; (2.8)
(2‘)2=(9&)2 = (i)z =1+ 2(K x + K z) + (2.9)
“1ds - ds - X z v ‘

Ed -> -+ - -> -»> - ->

4]



3. Description of the electromagnetic fields

The electromagnetic fields appearing in (1.1) and (1.3) can be written in the

form:

eT(s, Xy Z) = ec(s) + AeT(s) (3.1a)
with [1]
Ec(s) = V{sind + k %% o(s) cos®¢} Z 8(s - Sv)
v
s s
o= J (ds - d&) = - [ ds [Kxx + KZZ]
0 0
€. = cavity field;
L = circumference of the equilibrium orbit

k = harmonic number

eX(S, Xy 2Z) = Aex(s) (3.1b)
ez(s, X, Z) = Aez(s) | (3.1c)
(o) I8 OB
B (s, x, z) = B 0 (s) + AB (s) + x - + 2§ = + ... (3.23)
X X X Ix z
X=Z=0 X=Z=0

B (s, x, z)

| 3B 2B
B(O)(s) + AB_(s) + x (*-JE) + z(-—gé) + ... (3.2D)
z z )
X=Z=0

3z
X X=Z=0

B (s, x, 2} BT(S, o, o) + (x* + 22)-01 + (x* + 22)2-02 + oaee

1

897 (s) + 8B _(s) + -+ (3.2¢)
T T

[see for example [19]]
ABX, ABZ, 4B, and AEX, Aez, Ae_ designate external perturbing fields.

By Maxwell's equations

B z X=Z=0 b x X=Z=0

¥B. 3B, B )
X, 2t =0
B X ? “ 3 S X=Z=Q




and since the fields Bio) and Bio) satisfy the relations
Kx:: E—Bio)
o (3.3)
e (o)
K. = -=28
z EO X
equ's (3.2) can also be put into the form
-E-—Bx(s, Xy 2) = - K, +-§-—-ABX +x(N = H") +qg z (3.4a)
o o
%: Bz(s, Xy z) = K+ E;-ABZ - z{N +H'Y) +g x ; (3.4b)
B (s, x, z) = 2H + & OB (3.4¢)
E T H 3 - E T .
o 0
with the following abbreviations
H= & E_B(O).H|,}_.‘5_.}B'SO)
= ; = :
2 Eo T ZED'}S
l e }Bx )Bz -
N=z5 gol—-—= (3.9
oldx 2z
X=Z=0
B
e z
g= — |—
o X
X=Z=0

- >
4. The linearized equations of motion in the (T, 4 , ©_ ) coordinate frame
A =AY NS

4,1 Orbital motion

Putting (2.7 - 2.10) and (3.1 - 3.3) into eq. (1.1) and (1.2) one obtains in

linear approximation [1]:

;’ = (A + SA) - ; + Eo + 31 + 8¢ : ' (4.1)
E-E '
>T
y = (x, Pys 25 Py g, nN) 3 n-= T S H ‘ : (4,2a)
Q
El = (o, 0, 0, 0, O, g& sind 5 &(s - s ) ~ C, (K2 + K2)); (4.2b)
;
¢, = (o, g= (8e, - 08, o, £~ (be, + £B)), o,
v} 0
e e
-y be  + 2C, £ [K (de, ~ 8B,) + K (4e, + 4B )1) (4.2¢)



with I
c o= 2 ZE (4.2
1—38 E ’ 4. C)
)
{0 1 H 0 0 0\
2
- (G, + H) 0 N H 0 K,
A=])-H 0 o 1 0 o (4.3)
2
N - H —(G2+H) 0 0 KZ
- K 0 - K 1] g 0]
X z
\_D 0 0 0 g\-fﬂk'-z—ﬂcostI’-.E(S(s--s)U
E L v }
Q v
and
— 2 -
Gl = Kx + g ;
_ k2 .
GZ = KZ - g3
SA = ((5Aik)) H
SA.. = - eV sind « £ &8(s - 5.} 1
22~ E : v'?
o v
8Ayy = Shyy 3
e DBz
SA . = - C, » [(KZ +K2)» K +2K'——(-—--- +
61 1 X z X X EG X x=720
+4KX-H2-2KZ-(N—H‘)] 5
SRy = 4 Cps Ko H
e sz
SA = -« C, « [(K2 + K3)s K _ZK._[._) +
63 1 X Z z z E0 X K=2=0
+4KZ-H2—2KX-(N+H')];
5:’3\64:—4[:1' KX'H ;
_ (K2 2 .
6A66_—2Cl (KX+KZ) ;

ﬁAik = 0 (otherwise) s (4.4)
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¢ = (o, 0, 0, 0, 0, SC); (4.5)
8R
§c = -E—-I H
o
<8c(s)> = 0 ; {4.6a)
<8c(s) 8c(s')> = w(s) » &(s - 8') ; (4.6b)
55 rg B 3
D w(s) = [KP(s) e e Te
243 Mg ©
2
I‘e = ---—fm:c .

4.2 Spin motion

Equ's (1.3) and (2.7) imply that (v = c)
d 2 1 >
-a—é-;: Eﬂ'ﬁox}

‘or taking into account (2.10) and (2.11) this equation can be rewritten as

3. % + 1 EX + 3 ;z - 0x3 (4.7)
with
1 ~ -
B=(1+ Kox + Kz + ceo) E-§0 -K e +K e .
In linear approximation % is given by [2]:
Yo e Yo
5_;..—2H[1+a-l—+:\—{-;] - E-*ABT[1+a1+Y0]—

o

- 2H (Kxx + Kzz) [1+ ay, ]+

1
1+yq

2
Yo Yo
+2Hn [1 +a my] - EYO Ty (x! KZ -z KX) H {4.8a)
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- ‘- 2
Q = K ay, + {1+ ayo) K2z =-K n-

X

-{l+ay ) [(N=-H) «x+gz] +ay Yo 2Hx' +

o 0 l+7°
+lay. + =) e S U singz 8(s - s) » 2' -
Yo l+y_ - L v
o ) v
e Yo
- (1 + ay,) E: mB. - (ay, + Tov, )+ be, (4.8b)

2
!
1

- 2
Koay, = (L +ay ) « K2 x+Kn +

+

(1+ay) [(N+H') < z-gx] +

Yo
+ ay, l""Yo 2H « z' -
Yo Y
- (ayo + T:;; ) . E; V sing 5 §(s - Sv) » x' -
Y
- (1 +ay) =M +{(ay_+ )+ fe . (4.8¢c)
EO z o l+'y0 X

5 Intreduction of a new reference orbit (closed orbit)

5.1 The equations for the new reference orbit

The equations (4.1) form a system of linear and inhomogeneous differential
equations with the inhomogeneous parts 63, Eo and E1° The term 8¢ is due to
guantum fluctuations of the radiation field and Eo is due to the variation of
the energy of the circulating particle because of radiation losses and the
presence of accelerating fields. The vector 31 originates from fields‘dE and
A¢ which can be interpreted as field errors or perturbing external fields.

~The term A which contains the accelerating fields and the radiation losses
(see eq. (4.4)) will be treated with perturbation theory. From a physical

point of view this term causes a damping of the particle motion,

For our later discussions of the orbital motion and the spin motion it is ad-
vantageous to eliminate the inhomogeneous parts%0 and 31 in eq. (4.1). This
is achieved in the well-known manner by looking for the (unique) periodic so-

lution ;6 of the inhomogenecus eqguation
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y' = (A+ R Y +E +E (5.1)
namely

Vs (A SR Y+ T w E, (5.2a)

I§0(so +L) = ?5(50) (condition of periodicity). (5.2b)
Then the general solution of (4.1) can be separated into

3 - Vo *+ ¥ (5.3)

-~
vhere. the vector ¥ describes the synchro-betatron oscillations about the new
closed equilibrium trajectory ;O, vhich is called "six-dimensional closed or-

bit" in the following.

For an approximate calculation of this newv reference trajectory we are allowed
to neglect the perturbation matrix §A in equ. (5.2) and thus equ. (5.2a) or
(5.1) reduces to the simpler form

>
C

;‘ =.ﬂ§ +C, +'El (5.4)

-of the undamped synchro-betatron oscillations.

The solution of (5.4) can be written in the form

¥(s) .. ¥(s,)
= M(sy s,) (5.5}
1 1

vhere ve have used the "enlarged" transfer matrix

(s, s.) h(s)

ﬁﬁs, S,) = (5.6)

0 1

M(s, so) represents the (simple) transfer matrix belonging to the homogeneous

equation

.

y!' = Ay

- and M(s, So) satisfies the following conditions
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& WGs, s,) = Als) M(s, s )3 - (5.7a)
M(s_, s} = 1. (5.7b)

The vector ﬁ(s) in (5.6) is a special solution of eq. (5.4)

o1a

= A(s) = A(s) R(s) + €, + ¢, (5.8a)
with the initial value

'ﬁ(so) =0. (5.8b)

Making use of (5.4) and (5.5) the condition of periodicity (5.2b) then takes
the form

ﬂﬂso+L, so) ﬁ(so+L) ;O(So) ' ;O(SD)
0 1 1 1

from which one can calculate the "initial vector” ;0(80) of the closed orbit:

Vo(sg) = [L=Hs_ +L, s )17 Bls_ +L). (5.9)

5.2 Calculation of the transfer matrices [1]
5.2.1 The transfer matrices for the miscellaneous beam line elements
5.2.1.1 Synchrotron magnet

0

1
=
m
1]

AB

(13

N =z=H=z=H' =V = 0;

const £ 0 ;

K2 + K2
X z

K+« K_=0;
X Z

§I( # 0 curvature in x-direction;

K. # 0 curvature in z-direction;

=
n

K; +g ;3 G,= K; ~-qg 3 g=const #£0.
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In this case the equations of motion (5.4) and (4.2) read (p0 =)

x':px
|
px_-G1x+Kxn
z' = pZ
pé = - GZZ + Kzﬂ
o' = -Kx -K_z
X z
M=o C, (KE KD (5.10)

The elements of the (enlarged) transfer matrix M(s, 50) are given by

ﬁll = cos [/_G_l'(s -5,0] 3
o 1
M. =z ~= sin [V G (s - 8)] 3
12 1 '
a
iy X
Mg = E—; - {1 - cgs E/Ta‘_l(s -s )} i
y 1 - -. 2 2y e -—l—- 1 : 3
My, = -E-I c; Kx(Kx + Kz) {(s - so) -/G_sm[ftfi-(s - 50)3},
1l
;\EZI = - fﬁ; *sin ['/E;-I(S - so)] 3
My, = cos [VTy(s - 501 3
- K
M. = —= +sin [/G.(s - 801 3
26 1l e} ?
G
- 1 2 2y o .
M27 z - E—;-Cl'Kx(Kx + KZ) {1 - cos [/G_l(s - so)]} 3
l:’ll33 = cos [fﬁ;(s- so)] :
y 1 .
M. = == sin [¥G,(s -s)] 3
34 2 fa] ’
{7
- K
2z
Myg = T, + {1 - cos [/G (s =8I} 3
o l - 2 2Y ) _,..!'_u s .
Mgp = = T;';'cl |<z(l<x + Kz) {(s - so)- = sin [/G_Z(s - so)]},

Gy
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=7

43 = = Bp sin [/Gpls - 8]

Maa:cos[VGz(S-So)] 3
a K,
M, =—=e35in[v G, (8 ~-5)] ;
46 2 o ’
. /E% .
9 —— u!'-—. - 2 2 L]
Mg = - 5 c, KZ(Kx + KZ) {1 - cos [ VGZ(S - s )1} ;
- K
X .
M51=-—G— sin [V'Gl(s-so)] '
K 1
MSZ:-ﬁ {l-cos[a/Gl(S—so)]} H
- K,
M53=--£';-— sin [VGZ(S-SO)] ;
K 2
Mg, = - -ﬁ-z— {1 - cos [VGZ(S - So)]} 3
N55=l;
” . |
- _ _8. — .
M56'-Gl {(s-so)-— - sin [fGl(S-SO)]}'
1
K2
z 1 .
-== {(s~8) -—3sin [/G, (s -5 )]} :
G o] 2 o] ’
2 VGZ
" _L,C,Kz(Kz+K2).{l(s_s)2.,.-‘5_(;03[./[; (s = s )] l—'}+
57'81 1 "% 'x z/ 2 o Gl ' 1 0 _Gl
s Ao Cek2(KE 4+ Kz)-{-l- (s - 5 )? +;-cos[/G (s - s )3——‘1—}'
Gz ‘1 Tz x z 2 0 Gz 2 I} GZ ’
M66=1=M77;
M67:—Cl'(K;+K;)'(S-SO) ;
ﬁik =0 othervise ., (5.11)

If the quantities Gl and G2 are negative, which may be the case, we can make

use of the following relationships

cos [V - |G| (s - so)] = cosh[¢|G| (s = so)] 3
1 sin [V~ ]G] (s - so)] —" sinh [¢|G| (s - So)]'

/ol /Tl

(5.12)
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5.2.1.2 Quadrupcle

N=H=H"'=z=V=K =K_ =20

X z
> .
AB:AE:U
G, =+ g e )Bz
with g = &— | — = const #0 .
G, =-19 o] 0 %

X=Z=0

The:equations of motion now read

X
. p; = - g X
z' = pz
p! =gz
z (5.13)
0':0
n' =0

with the transfer matrix

i=>»

= ((Mik)) 3

ﬁll = cos [V gis - s;) 1 3

- 1 .

M)y =‘—/-Es.m [(Vals =s) 1 ;
My = - /3 sin [/g(s - 51
I?’lzz = cos [Vg(s - so) 13

1?133 =cos [V -gls -s) ] ;

My =7}E—a sin [V = g(s - s.)]

ﬁa3:-/:_§ sin [V =gls =80 1 ; \
ﬁuzcos[uf—gfs-so)] ;

Mss = 13

T“;I =1;

66
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M77=l

33

-~

Mik 0 otherwise (and see eq. (5.12)). (5.14)

H

5.241.3 Skevw quadrupole

NZO.

The equations of motion are given by (see eq. (5.4), (4.2) and (4.3))

L -
x' = p
p)’(:N'Z
L.
z' = p,
' (5.15)
pzzN'X
g' = 0
n' =20

which means, that the betatron oscillations in x- and z-direction are coupled:

XM = Nz

2" = N * X . (5-16)

It foliows from (5.16)

{x + z)" = N(x + z) ;

(X - Z)H

1

- N{x - z).

In this form the differential equations are decoupled and they can be inte-
grated easily. Thus we obtain the following expressions for the matrix elements

of the transfer matrix Eﬂso, s)t

ﬁll = %-{cos [V-N(s -s)] +cos [V+N(s -5} ;

Icllz = é—'{—/{:N_sj_n [I/, - N(s - so)] +,/1+H sin [vV+ N(s - So)]} -



=»

13

=

14

- }

21

=

22

=)

23

=

24

3 )

31

=>

32

2>

33

=

34

=

41

=

42

=3

43

=

44

=

55

=

66

=

77

=»

ik

It

n

"

2

%{-——1—- sin [V=N(s - 5)]

...%{ - N sin [V =~ N(s - so)] +7+ N sin [¥+ N(s = so)]};

M)y

-%{#-Nsin [J—N(s-so)]- /+ Nsin [V + N(s - so)]};

M
13

M3
M4
A

"1
Mo 3
Mos
My
M3 3

M1

0 otherwvise.

1 {éos [V - N(s = 30) ]-cos [v + N(s - so) 13}

- -—;:r-sin [V + N(s = 36)]};

wa

e

-
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5.2.1.4 Solenoid

G]_:Gz:N:K =K, =V=0;

X z
H = const # 0 ;
>
E\E:AB:U.

The equations of motion read

x':px+H'z

| 2
Py = H%x + sz
z' = - Hx + P,
py = - Hp - H*z (5.18)

and the tranfer matrix is given by

My = %--(l + cos 28);

~ _

M12 = 3 ¢ sin 28

S

M13 = 5 sin 28
A1

Mg = Eﬁ"(l - cos 28);

M. = -Hexsin 28
21—"" 'ESlnz ]

My = M1y 5

Myg = - H--% (1 - cos 28);

Mog = M3 5

31 = = Mz

Mg = =My 3

Mag =My

Mg = Mg

Mg = = Mp3 3

Moz = - M3 3

Hys = My
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Moy = Mpy 3

Meg = 15

M66 =1

M77 =1

M. = 0 otherwise {(5.19)

ik

with,

- @(s)=He(s - s,) (5.20)

5.2.1.5 Cavity

1 2 X z
V£O

>
Ae = AB =0

The equations of motion take the form

X':px

Py = 0

Z':pZ

p, =0

g' =0

n' =<7§! k o %? cosd & &(s - s,) + %E sind L §(s - s,)) (5.21)
o v s} hY

and the following expressions are found for the matrix elements of ﬂﬂsv+o,sv«0):

Mkk = l fOI‘ k - 1,2...7
~ eV 2
MGS = k T cos®

0
p eV .
M67 = sing

o]

=0 othervise . (5.22)

Mk
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5.2.1.6 Flectric and magnetic dipele fields

GI_:(:J;Z:N:H:H':U:KX:K =0

> A z
AB = AB + &(s = so)

- >

Ae = A€ ¢+ 8(s - so)

The equations of motion read

X' = Py

Py = g; (A;x - Aéz) §(s - SO)

z' = P,

p! = %.- (e, + 8B ) (s - s_)

g' =10

n' = %_’-; AET_ 8(s - s) (5.23)

with the transfer matrix:

Mkk = l fOI‘ k = 1’21-.7
Ml7 =0
M. = & (Ae. - AB)
27 T E0 X z
M37 =0
ﬁ = EL-(A; + Aé )
47 = E0 z X
M57 =0
L. e ~
Mgz = £ 0%
o .
Mik =0 othervise (5.24)

5.2.2 Approximation schemes

In the foregoing chapters we have given explicit expressions for the enlarged
transfer matrices of miscellaneous beam line elements. In more complicated ca-
ses one has to apply suitable approximation schemes for calculating the trans-

fer matrices. Now we want to describe two simple schemes of calculation.
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5.2.2.,1 Series expansion

Since the equations of motion for each beam line element are linear differen-

tial equations with constant coefficients

A(s) = const (5.25a)
EO(S) = const (5.25b)
El(s) = const (5.25¢c)

one can write down the following expressions for the simple transfer matrix
M(s, éo) and the special solutiaon R(s) defined in (5.6)

(==
M(s, so) = eé(s—so) = ngo %ﬁ-&ﬁ * (s - so)n (5.26a)
o0
> - > >
Ay = (I 2 A™s - s )M(ey + 1) (5.26b)

vhich can easily be uerified by putting (5.26a, b) into the equations for
M (eq. (5.7a, b)) and [4 (eq. (5.8a, b} respectively. Thus we have obtained a
series expansion allowing an approx1mate calculation of M and h and hence of
the enlarged transfer matrix M, if we truncate the expansion after a finite
number of terms. The terms taken into account determine the accuracy of the
approximation. It is worthwhile mentioning that the vector ;(s) can be put in-
to the form
f(s) = [M(sy s) - L 1A (6 +¢))

if det (A) # 0 (existence of A™'). In this case one only needs the matrix M

for a calculation of ﬁ.

5.2.2.2 Decomposition of a beam line element into thin lenses (thin lens ap=~

proximation)

If the conditions (5.25a, b, c) do not hold, for example, if we want te inclu-
de the perturbation matrix $A in the calculation, we can divide the given beam
line element into small segments and according to (5.4) one can calculate the
infinitesimal transfer matrix ﬁﬁs + As, 8)

[1+A(s) - As] [Eo(s) + El(s)]As

M(s + As, s8) = (5.27)

0 1
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Multiplying the single infinitesimal transfer matrices we obtain the matrix

_F*j_(s0 + L, so) for the whole beam line element of length £,

5.3 Equations of motion of the free synchro-betatron oscillations

Having set up the transfer matrices for the different types of lenses of a
storage ring we are able to determine the six-dimensional closed orbit y (s).
This means that we know the first component of the oscillation amplitude y(s)
vhich has been decomposed according to eq. (5.3).

Inserting (5.3) into (4.1) and taking into account (5.2a) we obtain the follo-

ving equation for §(s)
5

->
= (A +8A) ¥+ & (5.28)

where the inhomogeneous parts 36 and 31 have indeed disappeared as required.
Eq. (5.28) describes the free synchro-betatron oscillations of a particle

about the new reference trajectory ;6(5).

6. Spin motion

6.1 Perturbation theory

In anmalogy to the separation of the oscillation amplitude ? into two parts

(see eq. (4.7)) we can divide the uector‘ﬁ into two components, namely:

) = 800 L3 (6.1a)
with _
292 3G, T3 = -0, (6.1b)

Then eq. (4.8) reduces to

Y 1 ] -
l+y0 x"o z70 o l+y

2

Qio) = ~2H[1 +a —_] - 2H(K x  + K.z ) [1 + ay

Q

t -_
- ay, 1+Y [x' K -z} K T+ 2Hn [1+a T———-ﬁr- 1

e Q
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(o) _ o K2 o - -
Qx = Kz ay, + (1 + ayb)_ KZ z, Kzno
- (1 + aYb) o [(N = HY) o X, + 9 20] +
Yo e
*aY, Ty 2H + x! - (1 + ay,) g~ 08B, -
o )
Yo e
- lay, + 1o ) e Ae, +
Yo .'e\‘} .
w—— ) o z' o == sind I 8(s - 8 )3 (6.2b)
* (ayb * 1+, ) o Ej v v
(o) - 2 :
Qz = - Kx ay, - (1 + aYb) Kxxo + Kxno +

+ (1 + aYb)- (N + H') = z, -9 XO] +

-~

Yo Yo , eV .
+ ay, 1:§; 2H z! - (ay, + T:?;) x! g sin? 5 8(s = sv) -
e Yo | e
- (1 +ay) p-08, + (aYb * T ) g be (6.2¢c)
0 o o© :
= - 2H (KX + K. [1 + ay 1 1 -
We = X ya o l+wb
| Y T
0 ~ ~ ~ o] .
- ay, Try, (X* w K, = 2" Kx) + 2H7[1 + a TE:§;7? ] (6.3a)
o K25 . i~ . - H")% z
o, = (L+ay) « KZ -Kn (1 +ay))e [(N-HIX +g z] +
Yo ~ Y0 ~, BG . .
* 3y, Tov 2H X' + [aqb-bT:§—] Z' ¢ sing I &(s - s,) 3 (6.3b)
0 o 0 v
w, = - (1 + aYb) K;; + Kxﬁ + (1 + aYb)' [(N +H)Z - gXx]+
Yo ~ Yo ~ eG .
+8Y, Ty 2H z' - [aY0 + T:;;] X! E; sind 5 8(s - s,,) (6.3c)

where we have also used the relations [11:

X

P _H e (6.4a)

ot
Xy N

by
NE X2

Zz

Ve H e

(6.4b)

o

(see eq. (4.1)).
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N :
Thus, & is determined by the miscellaneous field components, In particular, we

consider the following special cases:
a) Synchrotron magnet

Nz=H=z=H =V=0

AE = pE =0

. w2 2 . . -
903 K2+ KAD; K K =0

(o) _ Yo
™ - %% LI+y, (xg K, = 25 Kx)

(o) _ . -
Qy " =K, ay + (1 + ayo)zo G, - Kn,
Q(O) ==K ay -~ (L+ay)x * G, +Kn
z - x @Yo 0’ "o 1 X0
YO ~ ~,
wT = - ay, (k' K - Z KX)

l+76 z

o, = (1+ay)z+6, -Kq

=2
IE

- (1 + aYb)x * G, + Kxn

b) Quadrupole

N:H:H':C’:K =K_ =0

X z
AB = A% = 0
g# 0
(o)
QT =0
(o) _
Q" = - (1 + ayb) 9z,
(o) _
2" = - {1+ ayb) g X,
w =0
T _
W, = = (1 + aYO) gz
w, = - (l+ay0) g X

(6.5a)

{6.5b)

(6.6a)

{6.6b)
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¢) Skew quadrupole
g:H:H':G:K =K =0
: X z
e
AB = 4¢ = 0
NZO
. (o)
SZT =0
(o) .
.gx -(14-3E) Nx0
(o) . (6.7a)
!QZ =+ (1 + ayb) N z,
w. =0
T
W, = = (1 + ayb) « N X
wZ=+(l+ayo) * N z (6.7b)
d) Solenoid
G1:G2=N=KX:KZ=\:’:U
.
AB = A€ = O
HZ O
(o) Y Yz
o ) 0
ﬂ‘[ = - 2H [l+al+Y0]+2Hn0 [l+a-('1—+w]
9(0) = (1 +ay.) H' x_+ ay —2— 24 x!
X Yo o o l+y0 o
(0)_ ' _.._..Yo
Qz = (1 + 376) H z, +av, l+¥b 2H zé (6.8a)
,YZ
~ o
LU,F:ZHT][1+8W}
- v ¥ o vl |
w = (1 + ayb) H' X + ay, T, 2H X
’~ o ~
w, = (1 + ayb) H' Z + ay, Ty, 2H z° (6.8b)
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e) Cavity
G.‘l:Gz:N:H:Kx:KZ:O
-
AB = AF = O
V£0
olo) g
T
(o) Yo eV .
Q = (ay. + ) 2! ==sind I 8(s - s )
X o l+yb a E0 v v
Q(O) = - {ay_ + Yo ) x! Ei sing I 6(s « s ) {(6.9a)
z - Yo 1+y o E v -
0 0 v
w_ =10
T Y S
0\~ eV .
w, = (ay. + ) 2" = singd I 8(s = s )
X 0 1+1b E0 v Y
~ eV .
w, = - (aya + Ty ) X! E; sind i 8(s - Sv) | (6,9b)

f) Perturbing electric fields and magnetic dipole fields

G, =G, =N=H=V =K =K =0

1 2 b z
> I
AB = AB « (s - So)
- Y
Ae = Ae » §(s - SO)
(6 _ e A Yo .,
QT = - F ABT [1+a Ty ]« &(s - so)
‘ o 0
R(O)_—(l'l'a )E._Aé.é(s_s)—(a"( +-12-) ‘e"“A;OS(S—S)
X - Yb E X o] 0 l+y E z o
0 v) 0
2% - . (1+a ) S~ 4B« §(s ~ 5 ) + (a +12—)-3-AA-6(3-S)(6103)
z Yo E0 z o To l+y5 E0 S 0 *
wT=D
W, = 0
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In the following ® will be considered as a small perturbation., Making the "an-

satz"
$:=%0 . 30 (6.11)
§(°) = 3(0) 3(0) + ?go)gz (6.123a)
f(,l) = "5'(1)1 + ? e + }(1) (6.12b)

and using (see eq. (4.7))

e d (o) (0) .2 , 4 _ o) z(0) (6.13)
. ;. ®x ds I €, ' T 3§ X3
we obtain the following expression for ;ﬁl) in linear order of perturbation
theory
d + d +> d -y > .
:F*"c'i'é'}il) + 3 d_}.(l) .2 'a"?(l) 20 3 L 3 ,;:(o) ‘ (6.14)

A, Chao[17] has shown that eg. (6.13) can be used to define a new system of
orthogonal unit vectors which considerably simplify the spin motion determined
by (6.14).

6.2 The (ﬁ, %, %) coordinate frame describing the spin motion [2]

In the following we shall introduce a compact matrix notation, Rewriting an
+

arbitrary vector A

> > -+ >
A=AT +A e +A_e
T X X z z
as a column vector with components AT, Ax’ AZ
AT'
-+ > > :
At +A e +A_ e =
T- X X z z X
’ A
z

and defining the derivative of a column vector with respect to s as the deri-

vative of the corresponding components Ai but not of the unitvectors

A
T
d '=+.d_ +E... +E|.._
ds ALE T3 AL+e T Ac+e, T A,
A

Z



wve get from (6.13)

4.300) _ g0 . 30

¥

where we have set

0 {0
z

.Q<0) = Q(O) 0
— z

(0} (o)
_on RTG

and
y{®

| ;(0) - ?iO)

3o
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(6.15)
qlo)
X
-9§°) (6.163)
0
(6.16b)

The infinitesimal transfer matrix N(s + As, s) defined by

-

}'(0)(8 + As)

and given by

N(s + 4s, s)

N(s + &8s, s) _’5'(0)(8)

1+ As 2(0)(5) |

satisfies the following relationships

_b_J_T(S + As, s) ¢ N(s + 4s, s)

and
det {N(s + 4s, 8)} = 1,

{1 + As 2(0)}T {1 + As Q_(O)}

i

(In deriving this expression we have used the fact that _@(0) is an antisymme-

tric matrix (Q(G)T = —ﬁ(o))). These relations imply that N(s + As, s) is an

orthogonal matrix with determinant 1. The matrix N(s,, s,) has the same pro~

perties
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Ej(sz, s,) * N(s,, s;) =1 "(6.17a)
det {N(s,, s,)} = +1 (6.17b)

because a transfer matrix of finite length can be represented as a product of
many infinitesimal transfer matrices and because a product of orthogonal ma-
trices with determinant ) is orthogonal with the same value for the determi-

nant. .

Let us nowv consider the eigenvalue problem for the revolution matrix

- - - +
ﬂﬁso + L, So) with the elgenvalues au and eigenvectors ru(so).
: - >
ﬁKso + L, so) ru(so) =0 ru(so) (6.18a)

Because of (6.17a, b) we can urite

a, =1
a, = eH4™  (6.18b)
o, = e-iZﬂV
;=
(v = real)
and
rl(so) = no(so) (6.19a)
s
rz(so) =m (so) +i% (s) (6.19b)
> > .
rs(sb) = mo(sa) - i io(so) {6.19c)
FQ, ;o’ Io = real vectors .
If we require that
T, e %, =1 (6.20a)
+ +
T, "T,=T, T, =2 (6.20b)
(normalizing conditions)
ve find
> >
|no(so)| = |m°(so)| = |Io(so)| =1; (6.21a)

fls) LM (s)) L2 (s) - . (6.21b)
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This means that the vectors'ﬁo(so),'ﬁo(so) and 2:(30) form an orthogonal sys-
tem of unit vectors and choosing the direction of'ﬁo(so) such that

> -

no(so) = mo(so) X Io(so) (6.21c)
these vectors form a righthanded coordinate system,
In this way ve have found a coordinate frame for the position s = Sye
An orthogonal system of unit vectors at an arbitrary position s can be defined

by applying the transfer matrix N(s, So) to the vectors ﬁo(so), Eo(so) and

[CIE

ng(s) = N(s, s.) A (s} (6.22a)
m(s) = N(s, s ) m_(s_) (6.22b)
Eo(s) = N(s, So) Eo(so) . (6.22¢c)

Because of egs. (6.17a, b) the orthogonality relations remain: unchanged

Po(s) = (s) x T _(s)

m.(s) LT (s) | (6.23)

A ()] = |¥Eo(s)| z ]Ia(s)l =1,

The coordinate frame defined bylﬁo(s),'ﬁo(s) and'ﬁo(s) is not yet appropriate
for a description of the spin motion, because it does not transform into it-

self after one revolution of the particle:

ms, +L) +i% (s, +L) =Ns +L,s)[m(s)+if (s)]

- eiz“‘i[ao(so) +i% (s)]
£ ‘rﬁo(so)+ i Io(so)
(if v # integer).

But by introducing a phase functiony(s) and using another orthogonal matrix
D(s, s)
cos[ w(s) - w(s )] sinly(s) -y(s )]
D(s, s ) = (6.24)
~sinl w(s) - ¢(s)] cosf (s} -w(s )]
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with
_D_T(s, so) » D(s, so) =1 (6.25a)
det { B(s, so)} z 1 ' (6.25b)

" we can construct a periodic orthogonal system of unit vectors from Fo(s),
+

mo(s), Io(s). Namely, if we put

mis) @w)

: = _lz(s, SO) =

T(s) %@)

— (s) + 1 K(s) = e ) SR (o) L5 T ()] (6.263)
and

nis) = ﬁo<s) (6.26b)
ve find

-ﬁ(s) = 'r;(s) X -f(s) | {6.26c)

n(s) | U(s) | (6.26d)

n(s)| = |m(s)]| = [(s)| = 1 (6.26e)

because of eqs. (6.25a, b). And since
_r’ﬁ(so + 1) +1i i(so +L) = e"i[‘r(so + L) -"'(Scz):l X

mé%+L)+i%wo+Uh

bed

_ o ~ily(s_ + L) ~y(s )] i2mvp> .
e ) o’“e [mo(so) + i Eo(so)]
it follows, that the condition of periodicity can indeed be fulfilled for -I)';, E, b3

3 > >
(n, m, I)S=SO+L = (n, m, jﬁs:so (6.27)

if the phase function yp(s) satisfies the following relationship

¥(s, + L) -y(s ) = 2mv . (6.28)
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Taking the derivatives of m(s) and £(s) with respect to s, and taking into ac-
count egs. (6.26), (6.22) and (6.15) we get

L 7(s) = 919+ Ae) +y'(s) Uls) (6.29a)
2 s) = 21+ Ts) - y'(s) Fls) (6.29b)

and n{s) satisfies (see (6.22a))

d

£-s) = 219 R . (6.29¢)

Finally we would like to mention, that the vectors

?l(s) = ﬁo(s) 2 N(s, s) * ?l(so) (6.30a)
T,(s) =m () + i (s) = N(s, s,) * T,(s,) (6.30b)
?3(5) = Eo(s) - i Eo(s) = N(s, so) . ¥3(SD) (6.30c)

are eigenvectors of the revolution matrix N(s + L, s) with the same eigenvalues
as in (6.18b) =2

N(s + L, s) » ?u(s) = au ;u(s) .

Thus, the eigenvalues au and the quantity v defined by eq. (6.18b) are inde-

pendent of the chosen initial pesition Sy

7. The general equations of motion of the spin-orbit motion

Following A. Chao [17]we make the following "ansatz"

;’1(0)(5) =% his) (7.1a)

§0¢s) = 3. Tals) W(s) + 6(s) T(s)] (7.1b)

(laf? + |8]2 <)

to solve the equations of motion (6.13) and (6.14),
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Because of (6.29c) the expression (7.la) is a solution of (6.13) and putting

(7.1a, b) into eq. (6.14) we get

L 1
o (ﬂ'm" Lo 52,2) W, + 8y

Bl

- (mT, m, y mz) w -ay

Zz

'

vhere  we have taken into account (6.29a, b).

Using. (6.4a, b) equ's. (6.3) can be rewritten in the form

W, >
F o
Y o

Eisxe) °
|

The matrix elements of E(3x6) = F are defined by

Flp = = 2H K [1+ay Tf%;] - ay, 3%%; K, H
Fi12 = - 8% 1:25 K,

Fiz = - 24 K [1+ ay TI?;] - ay, Tov, 2 H
F14 = aY l+y0 Kx

Fig =0

2

F H 'o ]
16 = M +a T )7

Yo v el .
Foy = = (1 + aYO) (N = H') ~ (ay +-1—+Y—)H * £ sing I &s - S\))
0 o v
o
F22 = aTb l+Yb ZH
Foe = + (1 + 8y )G Yo_ oy
23 = 7T Y/ M2 * Ay J.+YO
To .oV .
Fon = (ay, + m-—-) * £ sing I 8(s - 5,)

0 v] v

(7.2a)

(7.2b)

(7.3)
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F26

Fay

Fao

Fa3

Fsy

F3sg

F3g

In particular one obtains the following expressions for

0

_KZ

- (1 + aya)Gl

- (aya + Yo )

l+yb

e
* —mm

E

- 316

L]

0

- 35 ~

Yo
2H2
l+1b

sin® I &(s - Sv)
AY

YO
¥ eivr—
(1 + aya)(N + HY) - (ayb + 1+Y0)H

ks 2H
ayb l+yb
1]
K
X

a} Synchrotron magnet

Nz=HzH'=V =0

g #

Fi1

Fi2

F13

Fi4

Fos

F26

F3y

Fag

Fik

aYb 1+Yb Kx

(1 + aYb)Gz

- K
z

-1+ aYO)G1

K
X

C otherwvise

= sind £ &(s - sv)

(7.4)

(7.5a)
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b) Quadrupole

Faz = - (1 +axy)g
Fip = - (L +ay)g
‘; Fik =0 othervise (7.5b)

c) Skew quadrupole

G, =G, =H=H =K =K =0

N £ 0

F21 = - (1 + ayb)N

Fas = (1 + ayb)N

Foe =0 otherwvise ' (7.5¢)

d) Solenoid

1 2 % z
H£0
Y ]
F16:2H[1+a w
— 1
Foy = (1 + ayb)H
'YO
F22 = 3% Toy_
Yo .,
F23 = o Ty ZH
Yo .,
Fap == 8% Ty 2



- 37 -

- ]

F33 = (1 + ayb)H
F Yo_

34 % 2% Ty z
Fik =0 othervise . (7.5d)

e) Cavity
Gl.:GZ:N:H:Kx:Kz:U
V£O0
Yo . eV

F,, = (8y. + 5= )e = sind Z &(s8 = s_)

24 0 l+yb : EO v v

Fag = = Foy

Fip = 0 othervise (7.5e)

f) Perturbing electric field and magnetic dipole field

>
ABZ£O, N #£0
Fie =0 » (7.5F)

Taking into account (7.3) the spin equation (7.2} can be rewritten in the form

d > : > 6
=5=6,Y+D,3 (7.6)
with
o
§ = ( ) (7.7a)
B
L '3
T X z
Zo * -m -m —m ) E"(3x6) (7.75)
T X z

D = [ ° ¥ ) (7.7c)



- 38 .

The solution of (7.6} is given by

S -
$(s) = D(s, s,) F(s,) + § ds' D(s, s') G (s") ¥(s') (7.8)
s
0
5
where the matrix D(s, 50) is defined in (6.24) and the vector y'satisfies the
orbital equation (5.28). -
Combiﬁing the orbital part y and the spin part § into an eight-dimensional

vectqr -
Por
y

I

(7.9)

..C+. .

-

3

we can revrite the spin equation (7.6) and the orbital equation (5.28) in a

compact matrix notation as follows

-
S-U-Q+8m) U+ oo ~(7.10)
with

A 0

ﬁ = (7—113)
EC! ~0
$A g

8A = (7.11b)
0 0
8¢

*

¢ = 0 (7.11c)
0

(A, SA, 6¢ defined in (5.28))

Egs. (7.11) describe the spin-orbit motion in an electron-positron storage

ring. These equations are the starting point for further investigations.
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8. The unperturbed problem

In order to investigate the spin-orbit motiog it is reasonable to neglect in a
first approximation the small terms §A and 8¢ and to consider only the "unper-
turbed problem"

>
u

o.lc.
o
Iz=»

L] (8.1)

wvith the orbital part

<2 ¥
a4

=AY (8.2a)

n1o.
7))

and the spin part

a4 X2

3o

T=6,Y+D,% . | (8.2b)

- %
The radiative perturbations described by SA and &c will then be treated in a
second step with perturbation theory.

8.1 The unperturbed orbital motion

8.1.1 Symplectic structure of the transfer matrices

The unperturbed orbital motion is described by (8.2a). The solution of this
equation is given by

> >

§(s) = (s, s.) ) (8.3)

vith M(s, s ) being the transfer matrix belonging to (8.2a). The elements of
M(s, s ) have been calculated already in chapter 5.1.2: M(s, s ) is a subma~
trix of the enlarged transfer matrix M(s, s ) such that

Moy = My (i, k=1, 2.0...6) . (8.4)

It is important for our further considerations that the orbital equations can

be written in canonical form
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o/
o
o
w

v - 2 O
S TR ¥
1 X =g X
Z' = _s-;;'- ; pZ Z - s-;;
P, Z
Y \ b
Ol = == 5§ Pg;*=- ¥
- Dpo a

vith the Hamiltonian (EG =)

2 _ 2N%T + (B’x + HZ)? « (EZ - HX)?}

l1g2 &V, , 2 % kDS
-50 Eo k — C0SQ 5 (s - Sv) - (Kxx + Kzz)po.

The canonical structure of the equations of motion then implies that the
transfer matrices M(s, So) must be symplectic which means that the follovwing

relations are valid []1]

M(s, s) 5 »Ms,s)=5 (8.5a)
with
- == 0 -1 .
S = 6 s, 8 3 5,7 . (8,5b)
10
0 0 5,

8.1.2 The eigenvalue spectrum of the revolution matrix ﬂﬁso + L, so)

The characteristic features of the synchro-betatron oscillations show up in
the symplectic structure of the transfer matrices, in particular in the revo-
lution matrix Mﬂso + L, so).

The following statements are valid for the eigenvalue problem oflﬂ(so + L, so)
> +
- U -
ﬂ(so + L, SU) u(so) = Au Uu(so)
1) The eigenvectors can be divided into three groups

Qs Vo (s)) 5 k=1I,1I, 10



- 41 -

with the properties

- - > >
Mo =2 vy ;3 Mo, = Ay Uy s Me Age =1 (8.6a)
DIe) o5 eD(s)=-1(s)e 5o
v_ (s, S Yfls)) = -v.(s ) S U—k(So) £0 (8.6b)
T > .
Uu(so) S e UV(SO) =0 othervise

(k = I, 1I, III).

In the following we shall put

-i270K
= e

A =

~127Q Kk (8.72)
)\_k:e

(k = I, 1I, III)

Using (8.6a) we get

a_ = -9, _ (8.7b)

vhere the quantity Qk can be a real or complex number.

2) Egs. (B.6a) or (8.7) imply that the eigenvalues of the matrix ﬂﬁso + L, So)

always appear in reciprocal pairs

Mo Ay = 3/2) (k = I, II, III)

*
If A is an eigenvalue, A 1is also an eigenvalue because ﬂﬁso + L, so) is
a real matrix,
With these statements we find the folloving possibilities for the eigenvalue

spectrum of the revolution matrix Ms, + L, so) [1]:

a) All of the six eigenvalues are complex and lie on the unit circle in the

complex plane
A= Iag ] =1 (8.8)

(k = I, II, III)
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and we have

Q, = real _ (8.9a)
Ay = N (8.9b)
= (8.9¢)

b) Uﬂe, two or three reciprocal pairs are real and the remaining eigenvalues

lie on the unit circle.

c) One eigenvalue, for example AI, is complex but does not lie on the unit

circle

. *
P N

Then the following condition must hold

A-I = l/AI

and (with an appropriate choice of the eigenvalues)

A. *

il = A1
A11 = /A%

or

L3
AII.z l/AI

;\*

Al 7 M

The third; remaining pair must lie on the unit circle or on the real axis.

It will turn out, that the particle motion is only stable in case a).

3) If we define

3p(s) = M(s, So) %u(so) (8.10)
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then tﬁﬁs) is an eigenvector of the revolution matrix M(s + L, s) belonging
to the same eigenvalue Au [1]:

ﬂs+hs)%@):%%ﬁ@ (8.11)

Thus, the eigenvalue itself is independent of s:

Au(s) = lu(so) . (8.12)

4) Defining

> z -i2nQ 2
Up(s) = Uu(s)e Wt
> R +12'Nu“f' (8.13a)
UU(S) O
we find
re x
UHCS + L) = Uu(s) (8.13b)

wvhich can be verified easily by putting (8.13a) inte (8.11).

Eq. (8.13) is called the Floquet-theorem. It states that the vectors GM(S)’
wvhich are special solutions of the equatiqgs of motion (8.2a) can be writ-
ten as the product of a periodic Functionf%ﬁs) and a (generally aperiodic)
harmonic function

) s
e“lZﬂQu T .

5) The general solution of the equation of motion (8.2a) is a linear combina-
tion of- the special solutions (8.13a). Therefore it can be written in the form

2z % -i2nQ e+ o % ~izmQ ¢ 2
y(s) = z {A v (s) e kL wa, v, (s)e =k L3, (8.14)
keI,I1 K K kK
I
III

This equation implies that the amplitudes of the synchro-betatron oscillations
remain bounded (stable motion) only if the quantities Qk are real numbers,
vhich also means, that the eigenvalues must lie on the unit circle, as men-

tioned already:

|>\k| = |7*-;<l =1 (k = I, II, III) (8.15)

(criterion of orbital stability),
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If at least one of the exponents Qk is complex, Qk’ or Q I has a positive ima-
1 -
ginary part. In this case the components of ¥(s) grow exponentially and the

particle motion becomes unstable.

6} For the following discussions we shall always assume that the criterion of
stability (8.15) is satisfied.
Then, it follows from (8.9c)

¥
[N (k = I, 11, 1II)

: 3
and eq. (8.6b) reduces to (7 = ¢t )T)

,+-+- - >4 e

Y (s,) + 5y ls)=- v (s ) = 80 (s)) 0 (8.16a)

> - .

-Uu(so) «+ S Uv(so) =0 otherwvise. (8.16b)
The terms

P >
v, {s,) §‘Uu(so)

appearing in (B.16a) are purely imaginary:

Tr(sg) » 83, (s17 = Trls,) » 87T, (s0) = = [T(sy) + 8T, ()]
(since §f =-5)

so that the following normalizing conditions can be used for the vectors
-

-
Uk(so) and.u_k(so) (k = I, II, III)
>4 > > -+ .
Uk(so) . §_Uk(so) = - U~k(80) §_U_k(so) = i (8.17)

(k = I, 11, I1I).

The validity of the symplectic cendition (8.5a) then implies that the eigen-
vectors 3k(s) and 5_k(s) (k = I, II, II1I) at the position s satisfy the same
conditions (8.16) and (8.17)

1]

5;(8) §$k(s> - %jk(s) g%_k(s) =i
(8.18)

0 othervise .

Uils) 80, (s)
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8.2 The transfer matrix of the unperturbed spin-orbit motion

Taking into account (8.3) and (7.8) the solution of the spin equation (7.6)

can be written in the form

5 >
3(s) = D(s, 5) §ls,) + [ st Ds, o) Gylst) Ma', s)) F(s)  (8.19)
o

and the spin-orbit vector u (see (8.1)) is given by

4(s) = Mgy (sy 5) Ts)) (8.20)
uen Mis, s;) B (6x2)
E(BXB)(S’ So) = ' (8.21)
6(s, s ) D(s, s_)

G(s, so) has been defined in (8.19)

s
G(s, s ) = f ds' D(s, s") G (s") M(s', s ) (8.22)

s
0

and M(BXB)(S’ So) is the transfer matrix of the unperturbed spin-orbit mo-
tion.

In particular, one finds the following expression for the revolution matrix

Mgxg){So + b» 850

ﬂ(so * L So) 2(6)(2)
ﬂ(sxs)(so + I-’ SCI) = (8.23)
_(_3_(30 + L, So) R(Sa + L, SD)
with
cos Zn v sin 2mv
_Q(so + L, So) = (8.24)
-sin 27V cos 2mv
(see eq's. (6.24) and (6.28)).
- + . a
The eigenvectors qu(so) of the matrix ﬂ(BxB)(so + L, so) defined by
- bl
ﬂ(axs)(so + L, so) . qu(so) = Au qu(so) (8.25)
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satisfy the following relationships

3 (s.)
ORI A F (8.263)
wk(so)
a () = [Ek(so)]* for k = I, II, III (8.26b)
and Fér k = IV
+
> 05
fqlv(so) = > H (8.273)
ury(sy)
*
q_py(s)) = [ap(s)] (8.27b)

The two-dimensional vectors @k (k = I, II, III) and $IU in (8,26a) and (8.27a)
fulfill the following conditions [3]

-> _ » . -1 > '
w (s ) = - [Qﬁso + Ly 80 =) 117" G(s_ + 1, s,) U, (s.) (8.28a)
1 ~ip(s_)
Upyls) = == ( e Y% (8.28b)
vZ \-i

and .

> - *

w_k(so) = [wk(su)] (k = I, I, III, IV) (8.29)
(Gk(so) being defined in (8.6)).
The corresponding eigenvalues are

~ "‘-izTer

A=A =e (k = I, 11, III) (8.30a)
and
' - ~i2nQ

- Iv ; _
AIV = e with QIU T V. (8.30b)

The following expressions can be obtained for the eigenvectors au(s) belonging

to the transfer matrix M(s + L, s ) (initial position s)

Eu(s) = M{SXB)(S’ so) Eu(so). (8.31)
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In particular one gets

8,
-> -> > *
CIIV(S) = N H q-IU(S) - £QIU(S)] (8.328)
Upyls)
with
l .-.
-\;Iv(s) : _:!_-_ ( ) . 1‘{’(5);
V2 | -i
(8.32b)
u_py(s) = gy (9)1” .
The eigenvalues remain unchanged [31:
Au(S) = xu(so) . (8.33)

The following orthogonality relations for $Iv(s) are important for our later

investigations:
) s > - .
wIU(s) . EZWIU(S) z= - w_.w(s) *S, w_IV(s) =i
(8.34)
=y > > >
U_ry(s) » S,up(s) = wpls) » S,w_(s) =0.
These are the same relations as for 3k(s) (see (8.16)) .
Defining
s
+ -i2nQ  +
'au(s) = qu(s) e Ml
ve find
* %
qu(s + L) = qp(S) ' (8.35)

Eq. (8.35) is the extension of the Floquet-theorem to the spin-orbit motion

and it will play an important role in our further investigations.
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9, The perturbed problem: Spin-orbit motion under the influence of the syn-

chrotron radiation

9,1 “Ansatz" for solving the perturbed problem; Bogoliubov's averaging method

The general solution of the unperturbed equation of motion (8.1) can be writ-

ten in the form (see (8.31))

Uy = I A Q) + A ()]
k=I,II,
I111,1V
vith A, A_ being constants of integration (k = I, II, III, IV).

In order to solve the perturbed problem (7.10) we make the following "ansatz"
(variation of constants):

> > e

u = z {Ak(s) qk(s) + Awk(s) q_k(s)}. (9.1)

k=I,II
11I,1V

Inserting (9.1) into (7.10) one obtains
. - >
z {A&(S)ak + Alk(s)a_k} =SA I {Ak(s)ak + A_k(s)a_k} + 8¢
k=I,1I, keI,II,
11,1V | 171,V

or dividing this equation into its orbital part and spin part one finds

I {AL(SID, + AL} = SR I {A(S) + A ()0} + 8T (9.2a)

k=I,II, k=I,II,
111 111
AiV(S)ﬁlv + A:IV(S)$—IV = - z {A&(S)$k + Alkcs)m_k} . (9f2b)
k=I,1I,
I11

Using the normalizing conditions (8.18), (8.34) and Floquet's theorem (8.35)

one gets o
2 > i2m(Q, -Q, o+
Al(s) = I A (s)(=i)0(s) S SA U (s) e O
k ge1.11. ¥ k'S4 2 0L Yy
-9 ]
111
x > i2m(Q, +Q,)e =
+ % A (8)(~i)Ul(s) S SAD (s) e KL L i 0Ms) S scls)s
Py k'S 2 °= Vg K\S/ 2 %
2=1,11,
111

AL (e) = [AUS)T 5 (k=1,1I, III),
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Taking into account (4.,5) and (8.5b} and using Bogoliubov's averaging techni-
que [5] these equations reduce to

'AL(s) - i Ak(s)- %? GQk + i U:s(s) » Sce(s) (9.3a)

w

A () = (AT (9.3b)

with the solution

-121[% 50, (s-s_)

Ak(S) e 0%, {Ak(so) +
. 2T .
L i ? ds ! el—l:' GQR(S -SO). -6;5(81) QC(S')}; (9.&-3)
%o
'.A_k(s) = A (s) (9.4b)

vhere we have introduced the following abbreviation

s _+L
o
5 = 5 J oo V() S sAs)» Y (s). (9.5)
o

In our previous report [3] we have shoun, that SQk is just the (complex)
Q-shift of the k-th oscillation mode caused by the perturbation §A.
One further derives from (9.2b) with the use of (9.3)

i S
, 2 o e o 2 i2m(Qp-Q)
My = = A R0 Gy 5, 6 e )
=l,l1,
III
* 2 * i2m(Q., 40, ) &
"A_k(S) 'ZI_-TT(SQk \U;V §_2\u_k e IV k" Ly
5 v T . P x
i k—IEII {L}ks o WIV'§* Uk " Yks &e WIV-gz v b (9.6a)
s ?
I11

At (S) = [Aiv(s)']* . (9.6b)
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Neglecting the oscillating terms in (9.6a) uhich are proportional to sQ we fi-

nally obtain after integration

s
AIV(S) = AIU(SO) - z J ds' {Uzs(s') Se(s!') X
ksI,1I, s
IT1

X (1) 8, T (81 -y (e") Bolet) Upy(st) S,V (sD} (9.70)

Ap(8) = DAy ()1 (9.7b)

Eq.'s (9.4) and (9.7) are the general solutions of the perturbed problem (7.10).
Together vith eq. (9.1), which contains the orbital part

7 = k=1?11, {Ak(s) Uk(s) + A_k(s) U_k(s)} (9.8a)
I1I

and the spin part

>° k:I?II’ {Ak(s) wk(s) + A_k(S) W_k(s)} +
I11
+ Agy(s) Wpy(s) + A_py(e) U_p(e) _—

these equations describe the spin-orbit motion under the influence of the syn-
chrotron radiation and they allow to calculate the finite beam dimensions, the
damping constants and the depolarization time caused by the quantum fluctua-~

tions,

9.2 Influence of the synchrotron radiation on the orbital motion of the particle

Since the general equations of motion (7.10) contain stochastic terms 63, the

components of

<y

-
u = >

M

are also stochastic quantities. Therefore, the quantities of interest are cor-

relation functions of the form

< FU(s)) + g(U(s")) >4
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vhere the average <eradge has to be taken with respect to the statistical pro-

perties of the quantum fluctuations (Gaussian white noise process [5]).

We first consider the orbital motion, which is independent of the spin motion

(see eq's (9.4) and (9.8a)) and we determine the following expressions (beam
emittance matrix)}

< ?m(s) ?n(s) >5c

LI L TORSIC I I

k,% =I,II,
111
- A(k,“g)(sj VU Vg ¥
A, Vg Vet
+ A(-k,-!?,)(s) Uyem Vgnt } (9.9)
(my n = 1, 2,..6)
with
Al 2)(8) = < A(s) Als) 5 = [A(_k’_ﬁ)(s)]* (9.10a)
Atk =g)(8) = <A (8} A (s)>5 = [A(nkgg)(s)]* . (9.10b)

Since we are mainly interested in the stationary (or equilibrium) values of

the beam dimensions at an arbitrary position s in the storage ring we shall

calculate
stat
A = 1i A s+ N «L), (9.11)
(eyzg) () = (M Agagyls + N = L)

Using the following definitions

i
(SQk = 5Qk - ﬁak (9.12)
sq, = R, (3G}
(Z)Lk = = 2% Im {GQk}
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and taking into account (4.6) we get from (9.4)

A(k,—k)(s + N o« L) <|Ak(s + N« L)]|? >se

-20Lk + N

<|Ak(5)lz >6C‘e

1 - ol N sl 20, & (s - 8)
+ . s dse Kt
2
e -1 S

X

X

w (8) Ju, &) (9.13a)

A(k,if,)(s +N L) = <Ak(s + N «L) Aiﬂ,(s + N » L)><Sc

~iznfely + 6Q 7 N

<Ak(s) . Aﬂ'(s) >sc * €

(o, +a,) * N
x e k 2

otherwvise . (9.13h)
Eg.'s (9.13a, b) imply, that the particle motion is only stable under the in-
fluence of the synchrotron radiation if

a, > 0 (k = I, II, III).
If this condition is satisfied, which is always assumed in the following, the

first terms on the right hand side of (9.13a, b) are damped out after several

revolutions because of the factors

-2a), N -(ak-+ug)- N

e oT e .

Thus we find as equilibrium (stationary) values (qu:» 1)

stat - 2 stat
Ak, k) () = <IAL >4
L 1 5
1 S+ . 20 (s - 8) . .
= 5 [ d5e k L w(8) |y (B)]* 5 (9.148)

stat

A(k,ii)(s) =0 otherwvise . (9.14b)
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Using (9.9) and’(9.10)the beam emittance matrix can be written as

~ . staﬁ; 2 staE *
<Y (8) ¥ (s) > =2 k-IEII <|A ()] > *Refy, (s)y, (s)}. (9.15)
=1,11,
I11

Generally we have

ak~« 1

and instead of (9.l4a), we can write approximately

, stat 1 s+L L. .
<|Ak(s)| >sc = Ea; i ds w(s) [Uks(s)l2 . (9.16)
. stat

In this case the integrand is periodic and <]Ak(s)|2 >0

is independent of the
initial position
' stat
<|Ak(s)[2 >so = const (9.17)

(independent of s) .

Using the general expressions (9.13) it was also shown in [3] that one can wri-
te approximately

s+l
<fA s + L)% > - <|A ()] >5 = -20 <|A (s)]*> + ,Sr ds w(t‘a’)lukt_'(E)l2 (9.18)

It can be seen directly from this equation that the stochastic exitations of
the synchro-betatron oscillations which are caused by the quantum fluctuations
of the radiation field (function ®(s) in (9.16)), and the damping of the os-
cillations (ak) caused by the continuous emission of synchrotron light can
lead to the equilibrium state of <[Ak(s)|2 >se 9iven by (9.14a) or (9.16). The
role of o, as damping constant becomes obvicus if we neglect the second term

k
on the right hand side of (9.18) and if we write approximately

<|A (s+L)] 2> - <|A (s)|% > 20
d , K 8¢ K e _ k. \
3 <ASN® >0 = T = = <A 7 >

vith (see eq.'s (9.53), (9.12))

N So+L en R Tow . .
o =5 S & TUB)[SAB) + A (E) 51T, (5) . (9.19)
s

0
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Putting (4.4) and (8.5b) into (9.19) one gets

;osgtL AT * * ( % * ]
W =5 sf ds {8 92 (ukl Uk2 - Ukl Ukz) + Uk3 Uk4 - Uks qu) +
0
A * »*
+ 8Agy (Yt v - Y Ukl) +
* »*
+ A, (uk A Ukz) +
4+ 63 Uk Uk3 - Uks Uks +
A * E.3
+ 6 " (Uks * Vi, T Vio Ukl.> +
* *
+ 6A66 (uk5 "V T Vi Uks)} (9.20)

(with the matrix elements SAik from (4.4)).

Finally we want to mention that the damping constants e satisfy the following
relation discovered by K.W. Robinson [13]

U
-2 == (9.21)

@p * %11 T 111 E
vhere U0 is the mean energy supplied by the cavities or the mean radiation
loss per revolution. If one knows for example two damping constants the third
constant is then automatically fixed by this relation. A simple proof of this

(Robinson-) theorem can be found in [3].

9.3 Spin depolarization

Using eq's (9.15) and (9.20) one can calculate the interesting quantities of
the orbital motion of a particle under the influence of radiation effects, na-
mely, the damping constants of the coupled synchro-betatron oscillations and
the beam dimensions (mean fluctuations of the synchro-betatron oscillations

about the six-dimensional closed erbit).
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In order to investigate the spin motion under the influence of the synchrotron
radiation we need, in addition teo (9.13a, b) i.e.

Alk,e2)(8) B < AL(8) Ap(s) >0

the expressions including A*IU

Ay, vy (8) = < Apyls) = Ay(s) >4
(v = £I, £II, +III, £1V)

or explicitly (k = I, II, III)

A(,-1v)(8) = < Apy(e) Apyls) >50 = A_py 1yy(s)
*
Ay, vy (8) = <Apy(s) Apyle) >5 = [A 1y _1yy(s)]

< AIV(S)Afk(;) >eo = [A

*
A1y, -k) () (-Iv,k)(s)]

A1y, k) () <Aps) Ale) >0 = [Ay ()] -

Using (8.5b) and (8.32b) we get from (9.7)

*
Ay, -1v)(8) = < Apy(e) Apyle) >4

L3

+*
< AIV(SO) AI\!(SO) >6c *

S
+2 f d€w(E) « {{Im . = (U: wk)]2 +
s ' k=I,II 5 %
0 I11
+[Im = (u: v )11, (9.22)
k=I,II, > 2
111

And if one neglects all integrals with oscillating functions in the expres-

sions for the remaining terms A and A one finds [3]:

(IV,1V) (IV,%k)

<AIU(80 + NeL) 'AIV(So + NeL) >se = <AIU(So)'AiV(So) >sc) (9.23)

=N o I-iZ'rrSQk- N
<AIV(S° + N-L)'Aik(s0 + NeL) >e0 T € e

(k = I, II, ILI).

s<hp(s,) Ry (5 )7 5 (9.24)
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Thus one gets for the average spin components < o > and < B >

»* ¥*
z {<Ak(8) >Gc-wk1(5) + <Ak(8) >6c'wk1(8)} {9.25a)
k=I,II,
I11,1V

< gfs) >sc

< B(s) > B LR g (8) <R () g u ()} (9.25b)

11,1V

2 2 _ 5, .
< a¥(s)+B (S)>6c" 2 z {Re[A(k’R)(s)(yklw21 + wkzwgz) +
g,k=I,II,
111,1V

+ A(k,_i)(s)-(wklwzl + \ukzwzz)]} . (9.26)

Furthermore, we adopt the following initial values at s = s

0
<Als) > =0 for k = I, II, III, 1V - (9.27a)
—_— < a(so) >so = < B(so) >s5c = 0 (9.27b)
and
< a*(s ) +B8%(s ) >; =03 (9.28)
A(IV’IU)(SO) =0. (9.29)

Eq.'s (9.27) and (9.28) imply that the beam is polarized along the n-axis at
the position s = s with a (given) polarization degree (expectation value of

the spin)

P(SD) :}TO (9.30)

(see eq. (7.1)),
Taking into account (4.6a), (9.4), (9.7} and (9.23) we find after N particle

revolutions

1
[am]
o g

< a(so + N L) >6c =

<A (s +NL)>, =0
k™™o Sc } S (9.31)
for Kk = I, 11, III, IV

1
[an)

< B(so + N L) >se

< AIU(SO + N L)-AIU(SD + N L) >s0 ° 0. (9.32)
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In the case that the orbital motion has reached its stationary value, i.e.

Nea >»1

k

and by taking into account (8.32b), (8.36), (9.13a, b), (9.24) and (9.32) ve
obtain

A(k,l)(so +‘N'L) =03

)(so + NeL) = O for kK 2 & 3

Ak, =2

stat
<|A (s )% > (k # 1V).

A(k’_k)(so + NeL)

With these expressions < o + B% >so Teduces to (see (9.26))

L4 . 2 . } , _stat
> < Q (so + NeL) + B (so + NeL) >s0 = z <|Ak(so)| >s0 X
k=1,1I,
I1I )
2 2 Yz
X [lwkl(so)l + lwkzgso)l 1+ <1AIV(SO + Net) } >s¢ ¢ (9.33)

Since we have used a perturbation theory for

a?(s) + B%*(s) <« 1

we have to require that N does not become too big so that the following ine-
quality still holds

2 . [ ] 2 L ] ‘
< a (s0 + NeL) + B (So + NeL) >50 € 1. (9.34)

Because of (9.31) the spin components < o >and < B > disappear at the posi-
tion s = s, + N L and thus the average polarization is again directed along
the h-axis but with a reduced polarization degree, This relative reduction of

polarization after N revolutions of the particle, namely

P(So) - P(s0 + NeL)
P(so)

is given by the right hand side of (9.33) so that we can write (see Fig. 13

r§| is a constant of motion, as can be seen from eq. (4.71)):



1- 3 1a?+f2) <

Fig. 1

TF’(SO) - P(SO + 'N'L) - stat
TEM) = )3 <|Ak(so)[ >s0 X
o k=1,1I,
II1

P (]wkl(so}]2 + Iwkz(so)lz) + <[Ap (s, + NeLY|® >0 o

The depolarization time Ty defined by

clo. A g &
D -7 P t ~ 7 P ds

can be calculated according to

c P(s0 + (N+1)eL) - P(s0 + NeL)
T *~ Pls_ + N-L) ) L

=t ﬁt%;y { P(s_ + NeL) = P(s + (N+1)+L)}  (see (9.34))

H

£ iy ([P(sg) = Plog + (L] = [P(s,) - Plsy + N LD

E - 2 - . 2
F { <|AIV(80 + (N+1)= )] >s ¢ <|AIU(S0 + Nob)| >§c}

and taking into account (9.22)we finally obtain

SO+L

wleco % r df w(@) {[Im > (u: v 1%
' Sg k=I,II, s 0t
ITI
+ [Im 5 (v v, )]%)
k=I, 11, <5 X2

111

(9.35)

(9.36)
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This result derived already by A. Chao[17] in a different manner describes the
depolarizing influence of the synchrotron radiation on an initially polarized

particle beam.

10, Introduction of the dispersion

10.1 Orbital motion

In this section we wish to show how the dispersion, a quantity that is often
used in the theory of accelerators and storage rings, can be incorporated into

the matrix formalism described in the previous chapters.

For that purpose we first consider the transverse part of the orbital motion
(see eq. (5.28))

~a [
X X
B, P,
-
coR N IR N D B A (10.1a)
z ‘ z
52 6;
wvith
Bik = Aik
for i, k =1, 2, 3, 4 ; (10.1b)
‘SBik = SAik
>T
K = (0, Kx, 0, KZ)'
+
Then the dispersion vector D is defined by
d > -> -+
H—D: (B+6)D+K; (10.28)
s - - ‘
- -
D(so+L) = D(s)) ;3 (10.2b)

->
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Making the separation

X
EX > ~w =
y =Yg+ T D (10,3)

-
N

and using (10.2a) eq. (10.la) can be written in the form

d -+ > - ~

-
‘-a-S*yB:EB+6EyB—D «n . (10.4)

*)'~ Lol
The term (~DT') can be considered as a small perturbation since n is a slowly

varying quantity compared with ?B.

The longitudinal components G and 7 can be put into the form (see (4.4) and
(10.3))

d ~ . (8) (8) |
ST = - [K Dy + Ky D00 - Kyt =K,y (10.5a)
d ~ . 2_‘1 ._ng_ - o
=N = F k i~ cosd &8s - Sv) g +
) v
y ) = 4
+ ufl 6A6u Yy ot ﬂ_[5A66 + uil 6A6u DU] + dc . (10.5b)

Then, the egquation of motion for the new orbit vector
B
/0

®

<l¢
~
w

= (8) (10.6)

takes the form >

=
&V:=4 +c+ | o (10.7)
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with

0 1 H 0 0 0 \
-(G1 + H?*) © N H 0 0

-H 0 0 1 0 0

(10.8)

N -H ~{(G, + H?) 0 1 0

0 0 0 q . 0 -[KXDI+KZDg]
\ 5 0 0 0 eV | Zmcos? v g1s-s.) o }

E L ‘ v
o v
and
6A = ((8A;,))

(SAik = SAik - Di . Ghék for i, k = 1, 2, 3y 4 ;

5 ..p &, 2

GAis = =D Eo k T cos¢ 5 8(s - Sv)

6Ai6 = - Di [6A66 + L 6A6u Du]

u=1

GABI = - KX $

- 4

6A66 = 6A66 + Z 6A61.I Du H

u=1

éiik = SA, othervise . (10.9)

The transfer matrix Eks, so) of the unperturbed problem
d = - =z
TV = Ay (10.10)

fulfills the symplectic condition [8]

T

M'sMm =5 (18.11)
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and has the following structure

u(®)

- ~{4x4) g-(ﬁxZ)
ag
8 2x4) M2xz2)

In this approximation there is no coupling between synchrotron oscillations

and betatron oscillations.
+> —
The e%genvectors‘Etk(so)belonging to the revolution matrix ﬂjso + L, so) SQm=
tisfy the following relations
‘ > - -
Hls, + Ly 85) Vy(s,) = Ay Tyy(s)
k=1, II, III ; (10.13)

DN OREFTCREREONCE

+(8)
> h
Y = _ for k=1, II ; (10.14a)
- .
02
+
+> O,
Bk = for k = III ; (10.14b)
+(o)
V111
-+ -+
— * .
vy = I ; (10.14c)
- -i21Q
Ak = e k ;
(10.15)
- 5%
X“k = (Tk) .

+
If we keep the same normalizing conditions for Ti(so) as in (8.16):

> >

Yi(s) SYls) =i (10.16)



- 63 -

ve get from (8.17)

;I(S) S Vp(s) = = -Gfk(s) S U_i(s) = i

(10.17)

-+ >
U;(s) §~Uv(8) o otherwise,

Making the "ansatz"

-+ > -+
()= I {Bs) Tls) + By (s) U_ils)
k=I,1I
111

and using Bogoliubov's averaging technique the equations for the perturbed or-
bital motion (10.7) reduce to

—' —

A(s) = - 1 Ry(s) BLGT, - 3 ff - 8¢ (10.18)
with

- 1 Satl e -

Qe = 5= S d§ UE(S) S SA(S) ui(s) ' (10-19)

SO :

and . 5

* T4

fle =V S » 0

W™ 0, - Wi 0, + 8 b, - ) b,

= for k

1, 11

(a) * ‘
- (UIII,l) for k = III . (10.20)

n

Eq. (10.18) has the same structure as the corresponding eq. (9.3) in chap-
ter 9. Therefore we can make the same manipulations as in this chapter for
calculating the damping constants and the beam dimensions. The final result

can be obtained immediately by making the following replacements

A ——— &R

> f; (see (10.20)) .
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Thus, one finds for the damping constants

- - . Sotl 24 — -1 =
oK = - 21 Im(SQy) =% I 05 UR(B)[S SA(S) + 8A (8)S]+ Uy (8) (10.21)
So

wvhere Sﬁ|< is the complex Q-shift caused by the perturbation SE. The beam

emittance matrix nowv takes the form

D— —_ _*
<Ym(s) Yals)> =2« £ < |Bl? >§Eat X Re[Uum(s) Vinls)} (10,22a)

k=I,I1
III
with
- 1 sg+L
< [Bel? >3t = = s dS w(®) ) [* . (10.22b)
2o s,

Taking into account (4.4), (10.9) and (10.14) eq. (10.21) can be reduced to

- u Sg+l *
0‘k="12‘E9""'I“‘{ J'dS[—U)L((E:) ¢+ D,
o So
(8%, o (8 (8)* 3 (8)
+ Uk, ¢ Dy = Uks ¢ Dy +Uky * Dalx I 8AG vyl (10.23a)
Azl
for k = I, II
and
_ Ug 1 so+L . 4 - .
Sg =
for k = III
with
sg+l -
Ug = f d5 eV sing I &s - sy) (2 mean energy supplied by the
So \
cavities per particle revolution)
S8q+L
= Eq Of ds C,[K2(8) + K;2(8) (2 mean radiation loss per
Sa

revolution) . (10.24)

For H = 0 these equations have been derived already by leleux and Piwinski

(111, [1z].
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Performing the éum .

Qy + O] + O[T

wve obtain from (10.23)

aI"'aII*aIII:z'ﬁ_""E I SAgy f d§ x
0 Azl Sp
+
x {= Dy + z [- 1(U(B)+ * Sy * D)Uég) +
k=I,II
> *
i s, B o (10.24)
wvith
S2 (1)
E“ - -
g 52
> ‘ .
Expanding the vector D in terms of the eigenvectors
HE) ang B @@Ly (k = I, II)
namely
Dz {o ot 4oy 3590 (10.25)
k=I,II

vith the expansion coefficients ¢ and c_j given by (see (10.14a) and (8.18))
+
o = - 1 (g *S, D)
C_k = C (10.26)

we find that the second expression on the right hand side of (10.24) disap-

pears and thus one gets the Robinson theorem

- - - U
O] + QJ] + G111 = 2 E—z— (10.27)
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10.2 Spin Motion

Now, in order to calculate the depolarization time Tp we also introduce the
dispersion into the spin equation (7.6). Inserting (10.3) into (7.6) one ab-
tains [18]

+
d > = = >
$3:T7+00% (10.28)
with
Bo = (G0 ;
w={0 0
Gﬁv) = Gﬁv) for v =1, 2, 3, 4, 5 3
4
=(0} _ (o) (o)
GUG = Gus + z GUA . D}\. . (10.29)
A=l
The eight-dimensioqil transfer matrix EkaB) of the spin-orbit vector
z y
U = > ] (10.30)
3
can be calculated by making the following replacements in eq. (8.21)
Ho—— 1
¢ —
with
a—— S Y b e vy Y iind
G(s, sg) = f ds D(s, §) G,o(8) M(s, sg) (10.31)
So

Thus, M (gxg)(s, sg) takes the form

E(S! Sg) O(ex2)
M(exg)(ss o) = i (10.32)

G(s, sp) D(s, sg)

The eigenvectors of the revolution matrix Ekgxg)(s+L, s). satisfy the following

relations
> LadBS
M(gxg)(s+L, 8) Qipls) = & Qepls) k= I, II, III, IV ;
-
>, VK
K = NEE k = I, II, III (10.33a)

Wi
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with
- e >
Wg = - [D(s+L, 8) = X 117" Tis+L, ) Tpls) ; (10.33b)
Tk = 'i'k = e-iZﬁQk
and >
z Os
qiy = - s k= 1V (10.34)
wIy
and
i Z ox
q.k = [q] (k = I, II, III, IV). (10.35)

The following ecalculations are now the same as in chapter 9 and one
finally gets

c sg+L . % _
o= C*2 J ds W) {[Im I (Feopd? +
) Sg k=I,1I
I1I
+ [Im z (Fe we, )12} (10.36)
k=I,1II,
I1T

*
vith f), being defined in {(10.20).

This expression can be used to derive general spin transparency conditions and
spin matching condition [18].
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1) In deriving eq. (10.30) we have assumed that the vectors ﬁ, E, and'm vhich

appear in the matrix Gy (see eq. (10.29)) have been calculated with the help

of the six-dimensional closed orbit ;5. ;0 can be expressed approximately in

terms of the
The starting

0 < “
o -
§ | ]

0
-
i

dispersion as we shall now show.

point is the equation determining ;6 (see (5.2a)

= (A + GA); + go + 31

= (Y15 Y25 Y35 Yus Y55 Y&) ;
= (0,
= (0,

o, 0, 0, O, Cis) 3

Cizy O, C14, O, Cos)o

(10.37)

+
Following the considerations of chapter 10 we separate y into its transverse

part and longitudinal part according to

Y1
d Y2 -
ds - (§-+ ﬁE)
Y3 '
Yu
d
T Vs =-Kyi-K vysi
d eG Vail .
95 Ve = E;k-—L-CUS@gG(S-S\)) ¥g +
.
Cgg + C15 + = OA_ * Yy
k=l oK K
Making the "ansatz"
Y1
- -
Y2 = yB+Y$.D
Y3
Yy

- .
vith D defined by eq. (10.2) one finds:

- >
- ye D+ (B + 3B) Yg +

+ OAge Ve

0

Ci2
0

Cay

)

Ciy

(10.38)

{10.39a)

(10.39b)

(10.40)

(10.41a)
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d - 3 - B
F5 s =~ (K, Dy + K, D3) *ys + 8A5 Y§ ) 4 S Ay Yg ) : (10.41b)
d eG 21
IS Ve = 5, k « <= cos? i s ~ sv) Ys + Cgg +
T B e
+ 016 - 2 GAGk yk 3 6A66 Ve (10.410)
k=1 '

The matrix elements Sﬁik are given by (10.9) .

—— ->-
Neglecting the quantities GAik, GBik (vhich are small) and the term yg D in
eq. (10.41a) '(?G = Op/p is a slowly varying quantity compared with yéﬂ)),

eq's (10.4la, b, ¢) can be reuritten as

> -

d YB — yB > -

s Ys = A Ys + Cq + Cy (10.42)
Ye Ys

vith A defined by eq. (10.8).
In particular we are interested in the periodic solution of (10.42):

oy [

% y$? =R y$% + Tp + Oy (10.43a)
y$o - y{o)

wvith
% o\
y$) = | 8 i (10.43b)
(o) (o)
yso §=8q yGO s=sqn+L

Using eqs. (10.40) and (10.43) the closed orbit is given by

(o o) + x
) (o) :
Pxo

> -
Yo = ng) = %o
Pzo

0
yio) i

o)

R L | 3 g e e IR UL s b 1 L L e e emgie s e e RS YR L Ry e
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Thus we have expressed the closed orbit distortions caused by 30 (radiation
losses are compensated in the cavity sections and not in the arcs where these
losses occur) and 31 (perturbing external fields or field errors) in terms of

the dispersion.

2) If one transforms the rotation matrix p_(s+L, s)
cos2TYV sinZmv

D(s:n-L, s) =
-sinZmwv cosZTmv

into principal axes:

U'pu=3 ; D=yau

s o2
- Y2 l1i -1 ’
i*2mVv 0
J= 0 gois2my
-3

the vector wy in eq. (10,33b) can be put into the form

>

Wy = -

5>

Umt-1e el "2k 1-1 *G(s+l, s) Ui(s)

[ |

v

[

-

= - U313 2171700 G(sel, 8) Ty(s)

i im(@y-v) 1 0
2 sin m(Qp+v i
= U Ic+v) _ UTLeG(s+L,8)U(s)
0 i Am(Qey) 1
2 sin m(Q-v)
(10.44)
+

Eq. (10.44) shows that the components of w, (and thus, also ‘ral) become infinite-
ly large for

-@k Y —e— integer .

Therefore at these well known "intrinsic resonances" no polarization can be expec-
ted.
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AEEendix

Calculation of the spin transfer matrix N(s, s3)

The equations determining the matrix N(s, s;) read (see (6.14)):

d

S NGs, s) = 2 9(s) ¢ Ns, s (1a)

ﬂ(sp Sl) ]- . (1'3)

—

11

In order to solve this equation we consider two special cases:
a) pointlike fields ;

b) fields of finite length .

a) Pointlike fields .

For pointlike fields the matrixlﬁ(o)(s) éppearing in (la) is given by

20s) =P v is - s)) (2a)
with
0 -P, P,
E = P3 0 "Pl L} (Zb)
-p, P, 0

Examples:

@) end fields of a solenoid (see eq. (6.7a))
B) cavity fields (see eq. (6.8a)) ;

v) pointlike electric and magnetic fields (see eq. (6.9a)) .

The transfer matrix N(s; + 0, sy - 0) is given by [17]:

k
N(s, +0, s, -0 =el= 2 P
k=0 )
or
P{(l-cosP)+cosP P;P,(1-cosP)-P;sinP PiPs{1-cosP)+PsinP
N(s1+0,81-0) =}PPi{l-cosP)+Pz3sinP P3(1l-cos P)+cos?P P,P3(1-cos P)~PysinP

P;P1(l-cos P)=P,sinP P3Py(l-cosP)+PsinP P%(l-cosP)+cosP
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with

- %.p (v=1, 2, 3); (4a)

P=v/FT ¥ P + P . (4b)

b) Fields of finite length

For fields of finite length the solution of eq. (1) can be written in the form
of a power series, namely:

N(s, ,) = I %T(s -5
k=0

k d
=T Ny 9 (5)

Our task is to calculate the derivatives

. rd
Nfsy) = {'CEG N(s, Sl”s:sl (6)

vhich determine (up to a factor 1/k!) the coefficients of the Taylor expansion
(5).
Eq. (1b) implies that

No(sy) 2 N(syy 5) =1 . (7)

Inserting (7) into (la} one gets N,(s,), namely

Nifen) = L NG, a3 = a6 (8)

Thus, we have calculated the first terms N, and N, in the expansion. The

higher order terms
Nine1) (812 (n=z1, 2...)
are found by taking the n-th derivative of eq. (la):

N1y (e) = (g My 33, -

§]

n n
(0 oggin=A) :
hio (lk){ A (S)}S'Sl {E;TE:XT'H(S’ Sl)}S=31 (9)
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Writing the matrix'Q(O)(s) in the form (see eq. (6.2))

6 :
2% - 3 .@(\f’) You(s) (10)
v=

vith yqy, being the components of the vector ;b(s) (six dimensional closed orbit) s

Yoi1 ¥ %o
Yoz 2 Pxo
Yos ¥ Zg
You T Pzg
Yos £ Oo
Yoes = No
one gets
@@y Lpa@dl )y (11)
dsh — s=8, v Y E;X Yov S=S,
with
do -
{_d-s_o. yOV(s)}stl = youls1) (12a)
(as a given initial condition)
and
di+l - _ dH -
{dSLH'l YD(S)}S=81 = A {E‘;‘ﬁ YQ(S)}5=81 . (12b)

Taking into account egs. (11) and (12), eq. (9) defines a recursion relation
to calculate the coefficients N,,which are needed to evaluate the power series

(5).

The Taylor series is an exact solution if (s - s,) is smaller than the corres-
ponding convergence radius. By truncating this series after the k-th term

one gets an approximate transfer matrix N(s, s,).

Remark: The same scheme can be applied to calculate the matrix G (see (8,22)).

Tl LT L ot o T N L T T L E T L L L ey N
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