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Abstract: The framework is weak interactions, interpreted as residual (hyper-
color) interactions among composite q,l,H: and Z. An effective Lagrangian Xzeff
for "low energies" (E £ G;vi) is derived from i) a specification of the global
chiral symmetry G of weak interactions (for a’aéolor-’c)’ ii) local
U(I)emxSUO)c gauge invariance and iii) vector boson dominance in the operator
form of current—field identities. The result is a massive Yang-Mills Lagrangian
with respect to the global group G.

gbeff for q,1,W,Z interactions, basing on G = SU(Z)WI of global weak isospin,
turns out to be identical (in its dimension & 4 operator part) to the Lagran—
gian of the standard (GSW) model in the unitary gauge without the physical
Higgs. 1Zeff predictions are argued to closely mimic the GSW predictions due

to the chiral nature of G and the smallness of the effective coupling

constant,

An extension of the scheme to larger symmetry groups as expected from preon
sler T 0 (e.g. G = SU(Z)WIxSU(A)Pati_salam

implies the existence of new colored (and uncolored) composite vector bosons

models for o, %, ) is proposed. This

and vector dominance in the gluon sector. aieff then determines the interactions
of these new bosons with quarks and leptons in terms of a few free parameters.
Interesting consequences for pp collider and HERA experiments as well as for

precision experiments at low energies emerge.
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1, INTRODUCTION

The Glashow-Salam-Weinberg (GSW) model D of electroweak interactions describes
charged and neutral current reactions with ease and predicted the W and Z vector
bosons with correct masses. Nevertheless, the confirmation of its "hardcore',
the renormalizable local gauge theory nature, is lacking up to now: the Higgs
scalar has not (yet) been found and its indirect influence through tree and loop
contributions is so far undetectably small for a Higgs mass ranging from a few

GeV up to order | TeV.

2)-6)

This fact leaves room for the conceptually quite different idea that quarks

and leptons as well as the W and Z vector bosons could be composite, This inter-
pretation, originally based on purely theoretical motivation, has received

7

. . s . 8 A
furtter stimulation from some recent experimental hints ) for possible

deviations from the GSW predictions at the CERN pp collider.

In a composite picture of this type one usually assumes, in analogy to QCD, an
underlying confining hypercolor gauge theory on the preon level with composite-

ness scale

i

A. ~ GF - 30C GeV. )

Weak interactions in the presently explored emergy range, E S L then

,
qualitatively parallel strong interactions for E £ mg : they appear as short-
range, "low-energy" residual hypercolor interactions among the hypercolor singlet,

composite quarks, leptoms, W and Z vector bosons. However, unlike strong inter—

9)

is required, in order to

10)

keep the quark and lepton masses small as compared to /\ and to reconcile a
11)

actions, a chiral protection mechanism d la 't Hooft

AL .
scale as low as GF 1% Gith (g-Z)H. measurements

Let us emphasize that in such a composite scenario the W and Z bosons are not
related to gauge bosons of a renormalizable local gauge theory. They just repre-
sent prominent composite vector bosons, analogous to the § mesons in strong
interactions. As a characteristic signature of compositeness one would expect a
(possibly rich) spectrum of further composite states, bosons and fermions,

somewhere between 100 Gev and 1 TeV.

The theoretical interest ultimately focusses of course on the underlying

renormalizable, local hypercolor gauge theory on the preon level. This is




reflected in the intensive activity in composite model building.

However, experiments are so far restricted to the deep infrared region (E i;mw'z)
of the (hypothetical) hypercolor theory. Thus, itis of considerable phenomeno-
logical interest to acquire some understanding of the effective "low-energy"
interactions among hypercolor singlet composites like q,1, W~ and Z, e.g. in
form of an effective Lagrangian description. Such an investigation serves a
two-fold purpose. First of all, one hopes to understand why the low-energy
interactions of composite q, 1, wt and Z should mimic so closely the well-
established GSW interactions., Secondly, one looks for predictions for further
composites (presumably heavier than the W and Z bosons) and their effective
interactions with quarks and leptons. Such predictions are badly needed in
order to distinguish the "composite picture' from the "elementary GSW picture'.
Differences could show up already for E £ mw'z in precision measurements or of
course directly and more dramatically for E > mW,Z by the appearance of new

states, These issues are addressed in this paper.

A promising route towards a description of the effective "low-energy' interactions
among "old" (q, 1, N: and Z) and possible new composites is, to transfer to the
regime of weak interactions well-known concepts which have successfully described
low-energy strong interactions among composite hadrons (well before the advent
of QCD).

Following such a strategy, principles like vector-boson-photon mixing (Bjorken 2);
Hung and Sakurai 13)), vector boson dominance (Kdgerler and Schildknecht 14))
and current algebra (Fritzsch, Kégerler and Schildknecht IS)) have been trans-—
ferred to weak interactions with considerable success. W-boson dominance has

led 14)

framework as well as to correctly predict (!) L in terms of GF and sin @w.
’

to explain the observed structure of the neutral current in the composite

SU(2)-current algebra naturally explains 15) the universality of the couplings

of composite W,Z bosons to quark and lepton pairs.

The aim of this paper is a systematic effective Lagrangian approach for weak
interactions in the "low-energy'" regime, E ¢ N\ ~ Gqulu 300 GeV . This
effective Lagrangian will imply the full wisdom which may be abstracted and
generalized from low energy strong interactions: current algebra in the

strongest realization as field algebra, Weinberg's sum rules and in particular

vector boson dominance in the operator formulation as current-field identities

conserved currents o< composite vector boson fields (2)

An important new aspect of this approach is a natural generalization of vector
boson dominance to the gluon sector, predicting among others also new colored com-

posite vector bosons and their effective interactions with quarks and leptons.

The main characteristic of the resulting effective Lagrangian is its massive

Yang-Mills structure with respect to the plobal symmetry group of weak interactions.

The paner is organized as follows. In Sect. 2 we formulate the three requirements
from which the effective Lagrangian (erff) is to be constructed: i) a specifica-
tion of the global chiral symmetry G for w, ¥oolor 0, ii) local U(l)emxSU(B)c
gauge invariance and iii) the powerful requirement of current-field identities
for the corresponding local symmetry currents, involving a multiplet of composite
vector bosons in the adjoint representation of G. We start in Sect. 3 by recapi-
tulating the classical construction of ;feff from the analogous input ingredients
for the prototype case of strong interactions, as presented by Lee and Zumino 16)
in 1967, Sect. 4 is devoted to the simplest application of our program to weak
interactions involving only the known particles, q, 1, w:, Z, and basing on G =
SU(E)wI of global weak isospin (for & —» 0). The result is an effective Lagran—
gian of the massive Yang-Mills type which is formally identical in its dimension

£ 4 operator part to the GSW Lagrangian in the unitary gauge without physical

Higps. The implications of this result are discussed in detail. In particular,
we argue that ;ieff predictions closely mimic GSW predictions due to the chiral
nature of the global symmetry and the smallness of the universal effective
coupling constant. In Sects. 5 and 6 we then extend the scheme to larger global
symmetries of the weak interactions, entailing the presence of new uncolored

and colored composite vector bosons.Sect. 6, in particular, is devoted to the
interesting case of a current-field identity for the color octet currents in-
volving an octet of new colored vector bosons. As an illustration we explicitely

construct }ieff corresponding to an enlarged global symmetry ( for & and

DLcolor

SuU(4 3 .
( )Patx—Salam
leptons are determined in terms of two mass and two coupling parameters.

—> 0) as expected in a popular class of preon models : G = SU(Z)wa

The interactions of the new vector bosons with quarks and

Interesting consequences for pp—collider and HERA experiments as well as for
precision measurements of GF’ sind W ™y and m, emerge. Sect.7 contains a

summary and conclusions.
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2. SYMMETRIES AND CURRENT FIELD IDENTITY

In this Section we propose the systematic exploitation of two concepts in the

framework of effective interactions of composite quarks, leptons, W,Z bosons etc.:

i) the symmetry content as emerging for o, & = 0 and X, %, #0 and

ii) the powerful principle of current-field identities as abstracted from strong

interactions.
: s 1/2 5 .
(i) Symmetry content: At distances of order GF the color gauge coupling 1s
small 3 "
Sl b 7
(6 -1l = % ( GF )
x. (G = 0.1 3)

due to asymptotic freedom, which allows to consider the color gauge inter-
actions along with the electromagnetic gauge interactions as soft pertur—
bations of the effective weak interactions. In the limit o, Sy = 0, weak
interactions will have a certain unbroken global symmetry. The global
symmetry group G will have to contain

G > Su(2) the global SU(2) of weak isospin (4)

WI’

and
G > U(l)em X Sb(3)c; (5)

furthermore, for consistency G must be chiral, in order to implement

't Hooft's chiral protection mechanism ' on the composite level, i.e. to
keep the composite quarks and leptons massless (on the scale A~ GF—l/Z).
This property is an important difference to strong interactions. It will be

at the root of the surprising success of our prescription in weak interactions

(as compared to strong interactions).

The (unknown) global symmetry G is the most important link to the underlying
preon theory. In fact, on the low-energy composite level, the only manifesta-
tion of the preon theory is through its characteristic global symmetry G

and the classification of the ground state composite spectrum with respect

to G. Thus preon models, with 't Hooft's anomaly constraints incorporated,

will serve as a guide for the choice of a specific (unbroken) global group G.

Switching on the gauge couplings ot and ol breaks G explicitely and softly
down to the local gauge symmetry U(I)em x SU(3)C.

(ii) Current-field identities: First, a massive composite vector boson is

associated with each global symmetry current, i.e. the global symmetry G is
assumed to prescribe the spectrum of prominent vector bosons such that the

vector boson multiplet transforms as the adjoint representation of G.

The powerful dynamical requirement comes in for <<, & # 0: a current-field
identity for each local symmetry current, in our case the electromagnetic
current and the color octet currents, is required to hold. For the electro-
magnetic current this is the operator formulation of vector-boson dominance
as familiar from strong interactions, for the color octet currents it is a

generalization to a "vector-boson dominance for gluons''.

Following and generalizing the logics of the beautiful paper 15) by Lee and
Zumino, written in 1967 in the context of strong interactions, we shall cast
these two principles in the form of an effective, "low-energy' Lagrangian for

16),17) which may be ab—

weak interactions. This égeff will imply the full wisdom
stracted and generalized from low-energy strong interactions: current algebra
in the strongest realization as field algebra with respect to the global group G,
Weinberg's sum rules and vector—boson dominance with respect to the photons as

well as the gluoms, For illustration see Figs. la,b.

This analysis opens the door to relate the global chiral symmetry as abstracted
from preon models to the spectrum of "o1d" (N:, Z) and "new" (e.g. colored)
composite vector bosons and their low-energy interactions with composite quarks
and leptons. It predicts small deviationms from GSW even at energies % m, in
terms of a few parameters (masses and couplings) which may allow to soon pin
down the global symmetry content of weak interactions (in the limit o, a%—a-o).

This in turn would strongly constrain composite model building on the preon level.

3, A REMINDER: CURRENT-FIELD IDENTITY AND EFFECTIVE LAGRANGIAN IN STRONG

INTERACTIONS

As a reminder of the power of the principle of current field identity let us first
return to the familiar framework of strong interactions and briefly recapitulate
the Lee-Zumino derivation 59 of the effective Lagrangian for the simplest example.
Input is the global SU(2) isospin symmetry which is exact for xX— 0, a triplet
of composite §-vector meson fields E);, with mass m (for . — 0), local U(])em

gauge invariance for oc # 0 and the current-field identity for the I = 1 component




of the electromagnetic current

3

em b
x m &
s = th Q =T, +Y (6)
Ir [L-1 i e - ?

This means the conserved electromagnetic current is chosen as an interpolating
field for the (composite) uncharged § meson. At this input level, the proportio-

nality constant mzlg, or equivalently g, is simply an unknown constant.

An effective Lagrangian for &% = 0 a priori admits a large variety of couplings
in terms of the § -meson fields. The combination of three conditions 16) on

—

?F(X)' however, strongly riifricts these couplings. The first one comes from

the equation of motion for f»(x), the second one from the conservation of the
global SU(2) symmetry currents. The third one provides the most powerful restric-
tion: the immediate consequence of the conservation of the electromagnetic
current, the current-field identity (6) and global SU(2) symmetry in the limit

& — 0 is the field conservation equation

}’M—g;kﬂ = 0 7)

(corresponding to the spin | condition for a massive vector field). The striking

16)

result , for m # 0, is an effective Lagrangian for the strong interactions

(o = 0) of the massive Yang-Mills type

£ © Ly o+ IS ®)

which can be generalized to include any further hadron fields to

x:=0

z*ﬂ

L — =

Z\,_H (_g'w,‘ Q.eus"Q),, Qields ) « (3/ m grﬁik (9)

ﬁﬂy_M is the most general (non-renormalizable) Lagrangian exhibiting local SU(2)
isospin gauge invariance, where the triplet of ¢ vector meson fields plays the
rble of the gauge fields and the constant g, defined in eq. (6), the rdle of the
universal gauge coupling constant. One has to keep in mind, however, that the

? mesons are really composite hadrons and the coupling g is really an effective

coupling. The tensor '§;v and 2¥~ are the familiar non-abelian field-strength

tensor and covariant derivative, respectively. The only term breaking the local
SU(2) gauge invariance down to a global one is the ] ~meson mass term! The only
way how any further hadron fields, like e.g. the nucleon isodoublet field, can
couple to the 3 -meson field is through ;bA, involving the single coupling

iy
constant g (hence y universality), and through Y“V .

When switching on & # 0, the combined effect of the requirements of local

U(I)eln gauge invariance and of the current-field identity (6) results " in
: S % 28 L . <=0 g =
the following prescription. Jf<“ is obsglned from J:vw by replacing j*~

; ) AL )
in Iay_M, but not in the | —mass term, by §u defined as

A4 2 A
X’ . A 3 ) Sq-iA (10)
R L e
and by adding the appropriate kinetic term of the photon. Obviously, the massive
A
Yang-Mills structure is retained in the case X # O in terms of the fields EZA .

For further details and generalizations we refer to Ref. 16.

To summarize, even though initially only global SU(2) symmetry of strong inter-
actions (& = 0) was required, local U(l)em gauge invariance (Q = T3 + Y) and

the current-field identity (6) for the symmetry current corresponding to the

T3 generator, enforce the massive Yang-Mills structure of the strong interaction
Lagrangian, Of course J;t\% is non-renormalizable and its region of applicability

is limited to sufficiently low energies (E ﬁ,O(m))).

In strong interactions the effective Lagrangian satisfying the current-field
identity has essentially only been of esthetical value. First of all, the rele-
vant effective coupling constant is very large, g = g3 ~ 505, 1.8s

g2 MW ~2.4 > 1. an

y

Furthermore, related to this, the approximation by single ¢ -meson exchange barely
makes sense, since it violates the unitarity bound at energies closely above the
g -meson mass. As is well known, in strong interactions the unitarity bound is

¥

Correspondingly it is not surprising that vector meson dominance and an evaluation

taken care of by excitations of new hadronic states close to m ("reggeization'").

of current algebra in terms of a single § meson are typically violated on the

10-207 level in strong interactions.

In weak interactions we shall find a much more favorable situation for the

sttt o et s s



practical applicability of RiQ‘Q due to two properties

14),15)

i) the effective coupling constant is known to be small:

g2 /47 ~ 0.03 <1, (12)

ii) the chiral symmetry is (approximately) unbroken, keeping the leptons and

quarks approximately massless.

This will be discussed at the end of Sect. 4.

%
4, AN EFFECTIVE LAGRANGIAN FOR COMPOSITE QUARKS, LEPTONS AND W~, Z BOSONS

As pointed out already in the introduction, two important steps towards an
understanding of the effective "low-energy' interactions among composite q, 1,
wt and Z had been taken in Refs. 14,15, In Ref. 14 the idea of W-dominance was
explored in the neutral current sector, whereas in Ref. 15 universality of the
WEf couplings emerged as a consequence of SU(Z)WI-current algebra and W-pole
dominance. The effective Lagrangian obtained below will automatically imply the
results of both, Ref. 14 and Ref, 15, make them more transparent and will lead

beyond them.

In this Section we specialize to the simplest application of the general program
outlined in Sect. 2. We just concentrate on the SU(Z)WI-weak isospin part of the
global symmetry G and a corresponding triplet of composite vector boson fields
;;_ with mass m (for &x — 0). These fields are to represent the well-known
vector bosons of weak interactions. For the time being, we disregard any (presu-
mably heavier) vector bosons associated with the U(I)Y or SU(Z)R x U(I)B_L sub-
groups or with the enlarged global symmetry for o and ~1C — 0, This idealiza-
tion is consistently possible, if for &, = — 0 the global symmetry group G
is non-simple, i.e. of the form

G = SU@)y x ¢ . (13)

The results of this Section then refer to the limit, where the masses of the
Al

composite vector bosons associated with the G symmetry tend to infinity. We

shall return to the more realistic and notably more interesting case of

finite masses for these bosons in the following two Sections.

The composite fermion fields f (gemerically for quarks and leptons) are known

to transform with respect to the global SL‘(Z)WI as follows: the left-handed ones
(fL) as doublets, the right—handed ones (fR) as singlets. This chiral fermion
classification properly implements parity violation in weak interactions and

at the same time suppresses quark and lepton mass terms, just as required in

the composite framework! The fermions f, moreover, have to realize a global
U(l)Y symmetry with standard hypercharge assignments yL,R' The corresponding

conserved current is denoted by ju?‘
Now, with the (composite) fields'ﬁ: and f (=q,1) specified, we are ready to
construct the effective Lagrangian from the requirements of
2 1 i =
=) global s”(‘)w1 X U(l)Y invariance for X =0
A) 1local U(l)em gauge invariance for ® # 0 and

y) the current-field identity for the weak isovector part of the electromagnetic

current
em Ts Y
Jp SR S P (14)
Ts lhl;q 3
5 “ = — W (15)
] :AW /*

The construction of X:QQ runs parallel to our discussion of the iirgyg inter-
action example in Sect. 3, basing on Ref. 16, Again, for & =0, 5&;,{ has

the form of a massive SU(2)WI—Yang-Mills Lagrangian, with ;;; playing the rdle

of the '"quasi-gauge" fields and g the role of the universal "quasi-gaug%::%?upling.

L% £0
Again, i‘“”’ for ® # 0 is obtained i) by replacing everywhere in 'iiﬂ, N

- —
except in the vector boson mass term, w,, by W, , with

AL v e 3 3

\\'w N V'u \\'M - W?\ - i A ) (]6)
) / 3W /‘~

ii) by introducing a standard gauge invariant coupling of the photon to the hyper-

charge in the covariant derivative such that altogether

X U —
) -
4 S 0.+t v, W T
F s dw an
.\,{9() ) T =
— = ig W T e AY
/ J .
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and finally iii) by adding the appropriately normalized kinetic term for the By mspecnon one realizes that the essential part of the effective Lagrangian,

photon field A, ., In Eq. (17), T, Y and Q = T, + Y are the generators of name_}y Y \4 » Eq. (19), exhibits a local SU(2)  x U(1)y gauge invariance,
! . iy,

SU(Z)NI’ U(l)Y and U(l)em, respectively. They have to be taken in the matrix if w"w (instead of w’“ ) and

representation appropriate for the field {, is acting on.

r B A \ A (c/) @n
The resulting effective Lagrangian in terms of the input fields 'w’» , £ and A,
reads (cf. Egs.(8,9)) ! ) are considered as independent gauge fields, i.e.
L ARC
*¥U XU A L — — g 1 2 € (22)
Roe = F ¢ LalT we 3
et y-H L My W W (18)
for infinitesimal lccal gauge transformations
with —
sx %0 — — v X Y A ( — o
v sy = {-Vf/‘k,‘l-(.\g'_))-—::wvwfw g% :L(a’(‘\T * >(‘)Y\{' (23)
-M Y M W + .
- (19 Y o — "
- Sy - . W, h - - — dy ¢y = x(x) N
4+ /] = . e, X UX X X X A (24)
L{.‘_KPO(, .t.L_ + L#&}S“g{) ;P\ » ‘S\\ /g i
— A -/, )
’ — . A i ' et wAY . o N Jw )
¥ ’Z,Il mr4 ( \\,"Y 5 e |u<'m fu ) k’k k\-{"\.) 'g \S,w - A.» \l b ((/LJW, 3 e frlx) &
A ¢ ¢
Here
, . Let us again emphasize that the local gauge nature is not an input, but the
.}-“V = ojl’“ AV = C}Q A,,. consequence of conditions &)= H)' l.l(l)em is readily identified as the subgroup
— N T \ T T - of the local SU(Z)NI x U(I)Y generated by
\\' vy = Cu \r\' T oy \\.4. - *\"‘Vx \’\'V (20)
3 v W 5
. —— ix) = (c}c,[;(,)) (26)
oA}ch‘- (()f‘+ “ﬂvwf"t/l’ r 'vv‘\ (:L
) e ) in Eqs. (23,24), corresponding to =T, +Y,
’DP{R: [G,A + & A’A\Gk ‘FR‘ q ’ ’ P g Q 3
W; is given in terms of ;'; and A, by Eq.(16). Summation over the fermions f The local SU(2),, x U(1)y symmetry is only broken by the " mass term, such
1% ‘iwplied. The Factor (1} = (e/gw)Z) attdched to =1/4 F,.v F*Y guarantees that the full effective Lagrangian il“ exhibits the requxred local U(l)en'
the proper normalization of the photon kinetic term, since there is a further gauge invariance., This is easiliy verified: the U(l)em transformations (23)-(26)
contribution, -1/4 (e,gw) - Fl‘“) coming from the =-1/4 ﬁ;v‘ﬁl‘“’ texm, induce the following change of the fields w,, appearing in the mass term
' e 3
.,d my4 10 Eq. (19) contains the non-renormalizable contnbutmns to XY N S \Tv; = 5 \,\,/,~ - (g0, =— §A,. = R) & W, , 27)

i.e. all possible operators of dimension > 4 composed of WM ¥ L’ {k L fR

and Q) f in a Lorentz-invariant, locally SU(Z)“,1 gauge invariant and locally with Q(x) as in Eq. (26). This transformation law, appropriate for a

lJ(l)em gauge invariant way. massive SL‘(Z)LYI triplet, of course leaves the mass term invariant, since the

,ﬂk:’(x) terms have cancelled.

Let us next discuss the precise symmetry content of the various contributions .

= ¥0 x %0

to er_ , then demonstrate that & q@ indeed implies the current-field The current-field identity is obtained from JJ&H by means of the field equa-
3 s PR 2% i 3

identity (14,15) and finally confront K,o»( with the GSW Lagrangian, tions for the original fields A, and w

/4.
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& ) s
Lot S &Ly,
Sae . SLyy o goed mhesa @28)
SA $A d
= P
and kb ¢
- '“
6 i’i\(— . S 'Z'Y'H 3 . s
— . e + mw W2 for A, fixed (29)
§ Wi S Wi

where the variational derivative is defined as usual

5 :C /é’ 2) ¢ I), -

S {iald 0 beud Y 9(d, feld) (30)
L x¥C
Next, we remember that apart from the kinetic term, A, enters in L v-M only
through
W, L, A
S P an
Ju
and
(3 + e A .
R F (32)
r 4 ) fy

in the covariant derivative. Thus
o0 ., XEC

Sy . 8%y
I W

for A, fixed (33)

and
= ¥0

Si»\(-" ) Si\{_“ _e_ + JV:FV’“ (,“ L-i—w)t) - e AYJ"

< A/“ S w: (34)

for "?., fixed
with ‘ ()z‘xzv Qi:xg*éu i |
Y’ > ev . 4) (]
I 190" ¢,) Wb 5@ Brte (35)
- gLKr\E{L?L t ‘R)S“Ligtg +

being the conserved hypercharge current.

"

Upon combining Eqs. (28,29,33,34), we obtain the following form' of the

* The formalism of Lee and Zumino 16) refers to leading order in e/g, as appro-
priate for strong interactions where e/g & 1, Our effective Lagrangian (18-20)
and current-field identity (36) represent the straightforward generalization
to include all orders in e/g.

- 13 -
current-field identity (14,15)
e X b s =R My ")
= e =
AT s AT T (26)
" a
For consistency we need
©
— ¢ A4 37
IW

which is conform with our input notion that electromagnetic gauge interactions
break the global SU(Z)wI of weak interactions softly.

~ 30
After the discussion of the symmetry properties of 'feH_ the main result of
S X4

this Section does not come as 2 surprise: A ¢(f is formally identical on

the level of the dimension & & operators to the GSW Lagrangian in the unitary

gauge without the physical Higps field, provided we identify

@ -~
== 2 Sn Y ve. = ~ 0 @38}
3 W) w = Jesw et
iw
and
. . (39)
'/‘\r- - B/u/w-\ \*3\\,
(see also Eq. (21)). In terms of the fields GL and B}& the effective Lagrangian
,5“2‘:: , Eqs. (18-20),takes the familiar CSW form (without Higgs)
x el —_ —3
\ } N _ L 3 J/h\’ - L Wad'd
f.-eH’, - " B/n«' B o r\, \I\/
i -‘.i 4\4 v o2 | l(w§ {'[\L(GO)
+ = ) \ I~ — V.o e R
T My L W e (W) ] v my (W - 4488,
= — 5
L . S
t k%LY l.}“k \“Ww»‘i‘ L mg-\‘)’.‘ L‘L-)e\—
= “’w 5 /
L xy \ e -
""'(r(‘\\s (DL«* L o= RPL\R)QR + i‘dnm"‘l
[N v .
The "current-mixing term" v
1w | T 3 v LI T )
_ = 3y L,.'\} ¥ /‘V W + W}“’ + 1)

in the basis w?. " A)" or equivalently the "mass-mixing term"

2 . A TY < 51 -
e LW, BT e R o
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in the basis N3

M-

to the diagonalized basis

. %P can be removed by the (familiar) linear field transformation

& ck%
A, = A/‘”ug — 3%&» B, = @8y, AL 7o snd, T

(43a) ' 3 ;hw (43b)
w : %/,,/ccs@w \,J# = smby, A/“3+ ("“’W:Z/w

which implies the finite mass renormalization due to electromagnetic mixing
m, = m_,/(x6 (44)
2z w/ w

From Eq. (43a) we see that the massless field Ai&ag

is related to the massless
input field AP— by a canonical transformation. It is, however, clear that the
important dynamical issue, the current-field identity (36), is transparent only
if expressed in terms of A, and not of Adiag.

P P~
For completeness let us quote the current-field identity (36) in terms of the

fields Z, and B

Pt B ) |
. _ e « Y
P B,,r_ : e ( “]T ?'F . — m ) (45)

What can one conclude from our result that the effective massive Yang-Mills
Lagrangian onthe leading (dimension < 4) operator level is identical to the

GSW Lagrangian in the unitary gauge without physical Higgs?

In comparison with a massive Yang-Mills Theory the hardcore of the GSW theory
lies in the presence of the Higgs scalar which turns it into a remormalizable

local gauge theory. However, the Higgs particle has not (yet) been found and

(so far) Higgs contributions to experimentally accessible observables are unde-

8)

tectably smalll on the tree and one-loop level and also on the two-loop level

as far as calculated.

+
Of course one could imagine that besides the composite q, 1, W~ and Z there is
a composite scalar with all the properties of the Higgs scalar, thus turning
Eﬁﬁ;*o into a renormalizable Lagrangian of the GSW type. This situation has been
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envisaged and discussed in Ref, 19,

* We learnt about this work in preparation, when presenting the results of this
paper at the "Workshop on Quark and Lepton Structure" in Erice/Sicily, April
1984

[ e e T S S

On the other hand, there is just one known example of effective interactions
among composites resulting from an underlying,confining gauge theory: the
strong interactions among hadrons. They suggest the following alternative which
we tentatively have adopted., The effective Lagrangian (of the massive Yang-Mills
type) for composite q, 1, W: and Z is indeed non-renormalizable and correspon-
dingly has a limited range of validity. The tree diagrams calculated from it
will eventually come into conflict with the unitarity bound (which goes hand in
hand with non-renormalizability 20)). This conflict is resolved by reggeization,

i.e. by the appearance of a rich spectrum of excited composites.

On the basis of such an analogy to strong interactions, the Higgs scalar may be
considered as a clean signal for the GSW theory and the appearance of new (compo-

site) states as a signal for compositeness.

As long as neither the Higgs nor new composites show us the way, it is important
to ask to which extent the massive Yang-Mills Lagrangian can mimic the GSW pre-

dictions which agree so well with the data.

First of all (to the extent that contributions from ¥' in Eq. (19) may be neglected)
we expect

*C . (46)

!
-
tree level results from ‘\{ & tree level results from z;GSW B

+ 14),15)

This general statement implies known results concerning the tree-level

L. +4+
predictions for the neutral current, for My and for m, = my / cosOw and for

the universality of the Wff couplings., It of course implies many more, e.g.
i) triple and quartic W,Z couplings = corresponding GSW couplings

5 ; " * + 444
ii) the gyromagnetic ratio g of the W~ : g(v) =~ 2 (= GSW value)

In Ref. 14), precisely speaking, W-dominance combined with the abelian global
symmetry U(l)T3 X U(l)Y was exploited.

** The corresponding relation for strong interactions, m = m,z / cos & with
sin 6§ = e/gy, gy ~ 5.5 is compatible with experiment:m ,o = 766.7 X 2.8 Mev,
myr / cos @ = 7g8. Y 2.8 MeV to be compared with m gv = 769.7 X .86 Mev.
Unfortunately the errors are too large to make this a meaningful statement.

+ . i . .

The gyromagnetic ratic of the y meson is still not measured. In the context
of compesite W and Z if would be interesting to see whether the Lee-Zumino
prediction !6) , ¢ (g’) ~ 2, holds true also for the ? meson.




{ii) tree level partial width for processes like 0f course one has no quantitative control over contributions from ¥' (in Eq.(9))

R R . and/or from excited composites (even if one were to introduce a cut-off of the

W,z —» qq, 11, qqqq, 1111, qqll, ... ¥ * G B T rey : ; ;
order of m" ,say, which is justifiable in the composite framework). However, it

corresponding GSW partial widths, would not come as a surprise, if the one-loop contributions, calculated for
etc. me —0 from the dimension < 4 operator part of kzeff’ were to account for the

. ; X . . . X . major contribution beyond the tree level.
The quality of the approximation (46) increases with increasing distance between

* . n .
mw 7 and the threshold m for the excited composite spectrum (W', spin two bosom,...
4 A suggestive example is the weak interaction contribution to the anomalous magnetic
Thxs threshold will in turn roughly coincide with the energy where the tree diagrams m
¢ tnfi. GENELTEE WEEH, uEisaniey oveds moment of the [ A (g- 2%”“ . This quantity is tightly bounded from
get into ¢ i u B A .
above by experiment and QED calculations. It tends to represent a hurdle for

Tn this respect, the situation is much more favorable than in strong interactions. the composite interpretationof weak interactions. Naive dimensional counting 10)'
We recall 203,21 that in a massive Yang-Mills theory with unbroken chiral symmetry, in the presence of chiral symmetry, leads to

i.e, withm /mw —0, all 2—>2 tree amplitudes, except those involving three or m

four longitudinally polarized vector bosoms, satisfy the tree unitarity constraints A Ll})‘l)/‘, - O(\) ( 7\t> (47)

on the power level for E—o (ignoring log E effects). All tree unitarity vio-

lations are pushed to high energies due to the smallness of the effective coupling gy where 0(1) reflects one's ignorance about the "one-loop coefficient". The expe-
and to powers of m /mw &1 in amplitudes involving fermions. Thus the smallness of rimental bound implies 2 A % 700 GeV which is only marginally consistent with
By combined with chiral symmetry leads one to expect a large gap between Tz and the compositeness interpretation pursued in this paper.

m* | typically m* between a few 100 GeV and | TeV (see also Ref.22 in this context).

Further support comes from duality arguments 14), 23)_ Thus,altogether, for energies On the other hand, the GSW one-loop prediction 26) is

{

<
E < m® relation (46) should be a good approximation. ) 4 LIPN ( m
-2 = - A Y Si (j + = —
Agew 19 )f» WA( ) e " Ow t3) mw) (48)

This has to be contrasted with strong interactions, where the effective coupling

constant is large (g q ~ 0n(10) gw) and chiral symmetry is spontaneously broken X ( 4+ ( ¢) )}

(mN 2 m? )s leading in fact to Lo mg' T¢-meson S mS' =o€ ﬁ* ReEy: ploss tou?. It is finite (after renormalization) in the unitary gauge without the nggs scalar,
In this context, let us point out that Visnjié has recently suggested 24) 4 causal the Higgs contribution itself being negligibly small, of order (Qp/mw)

relation between the size of the effective coupling g and the realization of fact the original calculation by Jackiw and Weinberg was performed in the

chiral symmetry, by associating the chiral low-energy weak four fermion inter- unitary gauge. Largely due to the small size of g, gy 2/47 ~ .03, this contribution
action with a Nambu-Jona-Lasinio type interaction. As a result 24) gma11 couplings to A(g- 22#/ is an order of magnitude below the present experimental semsitivity.

g < B, are argued to be necessary for unbroken chiral sywmetry, as appropriate The one-loop contribution to A (g-ZZP, from the dimension < 4 operator part

for the composite weak interaction scenario, whereas for g > g, ; Spontaneous of ¥ off in the limit m. — 0 will be approximately equal to the GSW contribu-
breakdown occurs, consistent with the situation in strong interactions. tion; thus there is still room of an order of magnitude for further contributions

over which we have no quantitative control.

The massive Yang-Mills Lagrangian being non-renormalizable, one cannot make any
25)

predictions on the one-loop level. However, it is instructive to recall that, Possibly, the message from this exercise is that in a weak-coupling effective
. 3 2 4

again in the chiral limit, m /mw —» 0, the dlmen51on < 4 operator part of the interaction, where g /4T is not of order | but very small as compared to |,

massive Yang-Mills Lagrangian is in fact almost  one-loop remormalizable. one should replace the estimate (47) by

+ . . sy . . . .
in the sense that one-loop renormalizability is only violated by a logarithmic
divergence associated with the four W vertex.
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< PR
A(%—l)lv ~ o) Ll% (L;o\‘i-) (49)

leading to /A % 120 GeV. This in turn is perfectly consistent with a composite-

ness interpretation of the weak interactions.

+
In conclusion, the effective "low-energy' interactions among composite q, 1, W~

and Z, resulting from our massive Yang-Mills Lagrangian, closely mimic the GSW

interactions. The excited composite spectrum is only expected well above e
’

Of course one expects new ground state composites with masses possibly even close
to mw'z. They all have to be appropriately included in éeeff' This applies in
particular to the new composite (uncolored and colored) vector bosons to be dis-—
cussed in the next two Sections. It also applies, e.g. to the composite isoscalar
spin O boson 27) (m ~ 50 GeV) or the composite massive lepton 28] (m ~ 80 GeV)
which have been proposed in the context of the radiative 2 — ete” { events

observed at the CERN Sp collider 7)’8).

Their couplings are severely constraint by the following requirements
i) chiral symmetry, keeping me small,

ii) the massive Yang-Mills structure of Xzeff §

iii) their contribution to A (g-2 b* has to respect the experimental bound.

5, NEW UNCOLORED COMPOSITE VECTOR BOSONS

The effective Lagrangian involving only the known particles, q, 1, Wr and Z as
composites has been shown to successfully mimic GSW predictions and thus also the
data, This gives us confidence for the next step, the inclusion of new (massive)
composite vector bosons, associated with the global symmetry of weak interactions
larger than SU(Z)WI . This will lead to interesting deviations from the GSW

predictions even at energies lower than the new boson masses.

In this Section we address the issue of one or more additional vector bosons rela-—
ted to the global U(l)Y symmetry of weak interactions (cf. also Ref. 14). There

is an ambiguity as to which is the correct full global symmetry for o« —=0.

Possibilities are SU(2)., x T with

_]9_

-~
global group G Y generator associated composite
vector boson fields
il
(I)Y Y er
L R B L R
U(l)Y x U(])Y Y = YL + YR Yﬂ ’ &~
(50)
_m3 ., B-L R
SU)pxU(1) g Y=Tp +3 —Glu ’ “,»
L R _ .3, BL B-L -k L R
SU(2) pxU(1) g, xU(1) g o Y =To+ (5 + (g o Y

where the chiral U(l) symmetries seem in fact more appropriate for the case of

(approximately) massless quarks and leptons.

Clearly each simple factor in the global group introduces a vector boson multi-
plet in the adjoint representation and two new free parameters, a mass m and a
"quasi-gauge" coupling g. Depending on the composition of the charge generator
Q= TWI + Y in terms of the available generators (see Eq.(50)) the current-

field identity will contain contributions from a different set of massive vector

bosons
. em & m?
d*‘ = X vvrf B Y
p bw 9 9P s1)
2 R 2 2 R 2
dﬁm A R m, L o =i, N
I ) Wy oot - 4 'Y '5
W ) j %'& = % 5 i

The recipe for constructing the effective Lagrangians implementing the respective
current-field identities and local U(l)em gauge invariance is the same as applied
for SU(Z)WI’ The simplest case of implementing the U(l)Y has been treated in
Ref 14, The effective Lagrangian in terms of the fields 7;* i Vi s %“, and f,
exhibiting local U(l)em gauge invariance, the full global symmetry SU(Z)WI x U(D)y
for ¥ — 0 and satisfying the current-field identity (51) has the following

form
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290 LT () ALY

l;l’_’)" +LmL . 52
f‘im P‘W T Y\%r&% (52)

-

+ LE\.K}‘DM RL L (?R Xul\'l‘ ()R 1_‘%;(:( \T\I’I“’»Y/‘J ' g\'u(‘b:f‘-,gﬂ,g:-{&)

m>Y

= —¥ . v s
Wi and W/H, are defined as in Egs. (16) and (20), respectively; analogously we
have

Np = dp - £ A%

iy 53)
e I

Y pv = d)&\(v - dJY(,»

Furthermore

d = O + (g e o 9y A o

—
where the generators T of SU(2)WI and Y of U(l)Y are to be taken in the respective
representations of the field fL R they are acting on. Again, all the "current-—

o 3 v 3wy By
mixing" terms ~-1/4 e/gw ("/qu’“ + F,.uv"’ ‘MY and -1/4 e/gY (y}w e 1, yw)
can be removed by an appropriate linear field transformation from the basis

3 . dia; dia . . :
A'L, w/‘," and Y to the basis A, g, Z,‘_ and Y €, This basis change, again
a canonical one with respect to the photon field, implies a finite mass renor—

malization, worked out in detail in Ref. 14, We quote it here for later reference

m (2) (I [ eZmE &y my (55)
L Mmoo+ Cym
m"(\{““&) ¥ oa-s, Sy Y T WY -

ba

i\jtc;m\, Qi}m&)ﬂ— (LSWstWmY)’*l
W\W\ . = E‘

’ gw'sw‘;?»°w=“‘s’7«'cx=J"sv-

The same mass-mixing is obtained for U(l)lY‘ x U(l)s y if /1 is associated
with U(l); and mz —»00. (The only changes occur in the current—field identity
and in the definition of @/‘, ).

_21_

6. CURRENT-FIELD IDENTITY FOR GLUONS AND NEW COLORED COMPOSITE VECTOR BOSONS

In Sects. 4,5 we restricted ourselves to the framework defined by the global
symmetry of weak interactions in the limit ~—0, local U(l)em gauge invariance
for & # O and current-field identity for the conserved electromagnetic current.
Next we extend the framework to the enlarged (unknown) unbroken global symmetry
G of weak interactions in the limit &, o, — 0, local U(l)emxSU(3)c gauge in-
variance for &, & # 0 and current-field identities for the conserved electro-

magnetic and color octet currents.

Following the strategy outlined in Sect.2 we propose the existence of a cogosite

vector boson multiplet transforming like the adjoint representation of G. Since

necessarily G 2 SU(3)C, there will be a color octet of composite vector bosons,
vP_a, a=1,...,8, among them. Next we use the (covariantly) conserved color
octet currents as interpolating fields for these color octet vector bosoms, i.e.

we require the current-field identities (in analogy to Eq. (36))

%

ab b a
@(v_ G : L vy t .- (56)
( .c,\c,r) V/‘« 4_(_%;:;)1. %v M

[ ""8 )

v ab b .
where (‘zcolor) G”“L o4_ the covariantly conserved color octet currents

; Ly AV
(s:.umatxon over b being implied). o colo%
G

Vi the gluon field strength tensor and 8 = gc(_/\) the running coupling
)
constant at the hypercolor scale A~ GF/L~3OO GeV. This is the straight-

is the covariant SU(B)C derivative,

. . 3 -
forward generalization of vector-boson dominance to the case of gluons ’

as depicted in Fig. Ib. my is the mass of the color octet vector bosonms in the

limit %, ¢ —* 0, 8y their effective weak interaction coupling constant.
The whole picture is only consistent for

g /30 <4 Lges 3(6D) e

which is analogous to condition (37). This inequality implies that the color

When presenting the results of this paper at the "Workshop on Quark and Lepton
Structure" in Erice/Sicilg, April 1984, we learnt about related work in prepa-
ration by W. Buchmiiller29) and also b; U, Baur and K.H. Streng 30) and by D.
Diisedau, D. Liist and D. Zeppenfeld 310, w. Buchmiiller has independently explored
colored vector bosons associated with a global symmetry similar to the one
considered in this paper.
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gauge interactions have to be weaker than the effective residual weak interactions,

It specifies the notion that color gauge interactions are considered to break

the global symmetry G softly.

The next step is the construction 4 la Lee and Zumino 16) of the effective "low-
energy" Lagrangian. It involves a generalization from the abelian local gauge
symmetry (U(l)em) to a non-abelian one (SU(B)C) which turns out to go through

without complication.

Let us present the construction for a representative example. The generalization
to any other global group G is then quite obvious. The example is abstracted
from a whole class of what we phrase "Abbott-Farhi type' preon models, Refs.
4,6,32,

Let us briefly recapitulate the essentials of this class of preon models. The
underlying confining hypercolor gauge symmet¥y on the preon level is SU(2)

The preon content consists of a doublet scalar Q , giving rise to the global
SU(2) (for &« —0) and four left-handed, massless fermions F (for one family),
giving rise to a global, chiral SU(lo)L symmetry (for Ky, —> 0).

L
VIS SU(3). x Uu)LB_L (58)

is a left-handed Pati-Salam SU(4) and of course

R-L . T ;
L ) : \(\_ ) q‘—‘ TWI * Yeo &2
|

In the left-handed sector the global symmetry is altogether

_ )3 (60)
GL SU(Z)WI x SU(4)
with
F = (1,4) where 4 = 34 + 1 _« with respect to (58)
e P
Q L (61)

¢ = <2,

where Q denotes the color triplet and L the color singlet preons in the multiplet
P

The left-handed quarks and leptons are bound states of the type

_23_

q:f.{’_l w2 ‘I‘—: q)r\—{‘_ ; el_: q"'TL_ (62)

They transform like (2,4) with respect to GL' Eq. (60), and are kept massless

»

consistent with 't Hooft's anomaly conditions.

Tn this class of models the familiar SU(2)WI triplet of composite W bosons is

associated with the SU(Z)wI currents on the preon level
v ~tMe
SU(2),, ¢ — ¢T“—>0 h i=1,2
wrt Mﬁw ? v 2 A +he , i=1,2, 3[ (63)

where .LUPC is the covariant derivative of the underlying hypercolor SU(Z)
and 'tl the SU(Z)WI matrices, Correspondingly, we associate with the global
su(L  currents a 15-plet of new composite vector bosons
5 A =
SU(4)T : & 2 2 T, A= 1,...,15  (64)

where -}A/Z are the SU(&)L matrices. Summation over hypercolor indices is

implied in Eqs. (63,64). The SU(3)ExU(I)§_L decomposition of Yhf is as follows

5 = By 3+ 3pv i (65)
toor ot
v v v =y

where we label the vector bosons by their color content and realize that v, is

identical to y (more precisely to yL), introduced in Sect.5. We then have
Mg €7

o, /= Ly (66)

3

A=

4y = \NT
T

where A%/2 for a = l,...,8 are identified with the SU(3); matrices.

As concerns the right-handed quarks and leptons, they are either pointlike 4),32)
or composite 6) with residual hypercolor interactions mediated by vector bosons
much heavier than those of the left—handed sector. In any case, to first appro-

ximation justice is done to all variants, if all composite vector bosons
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associated with the right-handed sector are considered to be infinitely massive.
The right-handed fermions then only experience SU(3)ch(l)em gauge interactions.
All what remains of relevance for our purposes is that the global symmetry GR

of the right-handed fermions

6, > sUFxvmF  wien Qt =¥t

R ) (67)

with L R
SU(3)c = diagonal subgroup of SU(3)c x SU(3)C

(68)
= i L R
U(l)em diagonal subgroup of U(l)em x U(l)em

such that color and electromagnetic gauge interactions become vectorlike.

Next, we forget about the details of the underlying preon models and construct

the effective Lagrangian from the following requirements

i) global G = GLxGR-syumetry for «, o%-——ro, where

G = Suldlyp x SuY) (69)

L L
5 SU@), x Vitlem
> [%uas)c x \’(ntm-l g
. R R
G © Suld)e » Ull)ey,

(70)
and G is to be realized by the following set of composite fields
left-handed fermions fL = (q,l)L = { (2:4) of GL‘
singlets of GP
(71)

right-handed fermions fR = (q,l)R N singlets of GL
and transforming as usual under SU(J)CxU(I)em, and

composite vector bosons in the adjoint of GL' singlets of GR’ i.e.

—

w” = (2,1) of mass o ( for x—0), (72)
T;,: = (1,15) of mass my ( for o, X — 0) (73)
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—r
v,

— » . N : -
W, are associated with the SL(Z)WI currents as in Sect.4, the I5-plet Ve

of new vector bosons with the SU(lc)L currents;

ii) 1local SU(3)ch(l)em gauge invariance for &, o # Owith A, and G 2

A
denoting the photon and gluon gauge fields, respectively;
iii) the current-field identities (cf. Eqs. (36,51,56) )
X AS R
¥YF, - & m 3 my [T X
V/.L- Ao (L V_oz(e \' W,.L T T ULt (74)
™ R
e v -8 . al I
Y] . e %C 0 {
K'\ = ot t color a=4..8% %
Fecler (T"’“) A= \L) %V i (\F.' J ! (’ ’g
Qv
In Eq. (74), v 15 corresponds to the y vector boson associated with the hyper—

charge U(I)§ C SU(&)L (= %PP in Eq. (50)). SU(4) symmetry gives for the hyper-

charge matrix 'T‘_‘ )\45
AN E (76)
4os N3

2

%Y:\E‘— v -

and accordingly

an

Moreover, in Eq. (75), v,: denote the components of the composite coler octet
(cf. Eq. (65)).

—
./

M

vector boson Vg contained in the 15-plet

The effective Lagrangian satisfying i)-iii) is of the massive Yang-Mills type
with respect to the global input symmetry G, Eq. (69). It contains altogether

only four free parameters, a vector boson mass and a quasi-gauge coupling for

. . L
each simple factor in GL' T By for SU(Z)wI and mys By for SU(4)" .

By straightforward generalization of Eqs. (18,19) and Eq. (52) one finds the
following result

o % #0

y " £ or £,
HC 3\»{ i N-H * L My \A/,‘ w r (78)
i L A AR
+ —m LY 5 V4
with % v r
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‘ 5 1 ’ eV L) o LR Y a8y
DC\(-H = H_-‘an;T/A (1'(‘%)) SLjv)) ‘rC"\‘( f (‘ (a—)J

VL R Rl
% W W T Vpw v

<

R AR P A oo

) . A A
+% Wy Vv by Q&IJL; {.g,«(’u(—&)

where summation over i =1,2,3, a=1,...,8, A=1,,..,15 and the fermions
is implied. W}: and W}Alv are as defined in Eqs. (16) and (20), respectively. In

addition, we now have for o, . # O the substitutions

(Y "3 —}_'
\ = \}f,_ t a \J'g Ar

\/fA ) \TP N %‘7 (7)‘ ! a = 11"'t§ (80)
\/‘\,.-.,"'* L4 Ay
» B

V)kAv denote the usual SU(4)-Yang-Mills field-strength tensors, involving the

SU(4) effective coupling gy and structure constants CABC
A m R ) A ~ARC 8

C
\]/‘.V = ")/u- Vy- Yv# - \’jV C v,“« VV . (81

The covariant derivatives read

/ ! ‘:"l:‘: s A lA )
Q}*’QL = (‘J}L*"%wwp _2,_ t \'6\/\//“ T)("—

‘ x ~ @ 1% g (82)
;b/kgk—- (9, ’”ég("r}\?, " ‘Q'Ar%r\)(i&-

Again, the K—w3 and  y-y "current-mixing" terms can be removed by the same

linear field transformation as in Sect 5 (given in Ref.14). The gluon-vg

"current-mixing" terms
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¢ e a4 G, WY . @ a, py

contained in Eq. (79), are removed by a linear transformation analogous to
Eq. (43a)

.G ‘CL‘LlI-\'L ql.ﬂ(u\s
B i I,
@ u, iy (84)
Cu - Y qa/taee
e C
wieh anb = 4= < q, (85)

S &
v
In this diagonal basis one then finds from Eqs. (79,82,84) the following couplings

of gluons and color octet vector bosons to quarks

V(I.Q - 7
) . S b T PR = )
Tq ° - 4G Y %‘Iw e 8 49k
(«.&til - Q (86)
— Rt | T . A
%L = C{% LLle T +,‘1(’f—(1?\7$ P
.
The gluons couple in the correct, vectorlike manner. The coupling of the color-
diag

octet bosons vg is reminiscent of the coupling of the Z boson (with e, @

W

replaced by g, @)c).

In terms of the four parameters M By and Myy By (and the two known couplings
‘_",/*

— . . . .
and Vi - The lightest vector bosons of a given multiplet are those which have no

e, gc) a well-defined mass hierarchy emerges within each of the multiplets

mixiﬁg with photons or gluons, i.e. in the SU(Z)WI sector the charged W's
-
nGr) = m (87)
and in the SU(A)L sector the color triplets
m(va) = my (88)

The color octet bosons Vas after diagonalization, have a higher mass due to mixing
with gluons (cf. Eq., (84))

m(vilag). my /e > mly,). (89)
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Since the SU(A)L and SU(Z)WI sectors are linked through the electromagnetic
charge operator, the mass formula Eor the Z and yd 8% bosons is more complicated;

it is given in Eq. (55) with gy = gy-

It may be instructive to consider the (plausible) special case

4- (B
Lo MW 4 6.b3,

\3) e
q‘( }\"k%}

The square root in Eq. (55) may then be approximated such that

(90)

EN il
&G

2\t 4/:. f
_(E_ 1 m(é ) A=
e = K 4&* )e -‘-> " o, m(\:)); -
M ‘( k \ W 3 i

9n
In this case the ydlag and Vq vector bosons are almost mass degenerate while the

color octet bosons are substantially heavier.

Complete information about the four parameters m.,, g, and my, By can, in principle,
come from precision measurements of G , sin f9w, m, and m,. In order to identify
G and sin (:v as functions of the parameters mg, By and Mys Sy» the low—-energy

%0
four—fermlon 11m1t of 55 Fk has to be taken. Let us only indicate the procedure

qualitatively here,The detalls will be presented elsewhere.

Along the lines of Ref. 14 onme finds after an appropriate Fierz transformation

weak 1 | exp .
- 5 -3 3
y&eff 3 GF ( charged current int. + neutral current

AN«KELmM
& w'l int.(sin2 e;xp)) + scalar currents (92)

This gives the desired relations of GFexp and sinze ;xp in terms of my,g, and
Mys 8ye Measurements of oy and m, together with Eq. (55) complete the system of

equations,

Given the good agreement of the GSW model with the data so far available, one
expects the masses of the new composite vector bosons to lie at least in the few

hundred GeV range. See also Ref. 29 and the footnote on page 21 in this context.

The dominant decay modes of the new vector bosons are

)L
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clag s 70
4y — qq , &
. -
Y3 7 qe (93)
oo — qq , ofuows
with couplings to be inferred from deeff' Eqs. (78,79,86). The bosons ydlag
and vglag are easily produced in Ep collisions. For the production of the bosons

vy a high energy ep machine (HERA?) is more suited. The most exotic decay
modes are those of the lightest vector bosons Vo into a jet and a lepton which
could be a neutrino. In the latter case the signature is a monojet event with

high missing energy.

7. SUMMARY AND CONCLUSIONS

The present work is based on the idea that - unlike the standard GSW model - guarks,
leptons and the W,Z vector bosons are all composite. Their weak interactions are
viewed, in analogy to strong interactions among composite hadrons, as residual
interactions (of range ik—~'GF1/2) caused by an underlying confining hypercolor

gauge theory for preons.

The aim of the present investigation was to set up a systematic effective Lagrangian

approach for the weak interactions in the "low-energy" regime, E < A ~ GF_”2
~ 300 GeV, where the composites can be described in terms of local fields.

Unfortunately, a direct link between the underlying hypercolor gauge theory and

the corresponding X:eff cannot be established at present.

Our guidelines for constructing aﬂeff came from two sources

i) XZ off is to incorporate a maximum of information which at present may be

extracted from specific preon gauge models.

ii) We generalized a "low-energy" concept which has already once led to success-

fully determine x:eff in the prototype case of low-energy strong interactions.

This led us to the following input requirements from which all our results were

derived.

(i) We abstracted from preon models the specification of the global chiral

symmetry G of weak interactions for « and & — O and the classi-

color
fication of the massless composite ground state fermions (quarks and leptons)

with respect to G. Furthermore we required the (plausible) existence of
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massive composite vector bosons in the adjoint rep. of G, all of which can
be related to hypercolor singlet composite operators in terms of preon fields.
This establishes the maximal link to preon models incorporating 't Hooft's

anomaly constraints. For )& # 0, we required local gauge invariance

color
with respect to the U(l)em X SU(B)c subgroup of G.

(ii) The powerful requirement of current-field identities for the exact local

symmetry currents. This implies the conventional vector boson dominance in
the photon sector as well as generalization to the gluon sector involving
the proportionality of color octet currents and color octet vecter boson

fields.

As a result of (i) and (ii) the effective Lagrangian is fixed in terms of a few

parameters. It is ¢f the massive Yang-Mills type with respect to the global group

G and involves two parameters, a mass and a '"gquasi-gauge" coupling, for each simple

factor in G.

Two applications were studied in more detail. A restriction to G = SU(2)WI and

+
the known particles g, 1, W, 2 led to an afeff which closely mimics GSW pre-
dictions in the absence of a physical Higgs scalar. Instrumental for this strong
conclusion were two properties i) that G is a chiral symmetry, keeping the quarks
and leptons massless on the scale mo and ii) that the effective SU(2)WI-"quasi—

gauge" coupling is small.

The second application specialized to the symmetry G = SU(2)WI X SU(4)L as abstracted
from a popular class of Abbott-Farhi type models. It involves the familiar
SU(Z)WI-triplet of (composite) w bosons and a new SU(4)L-1§'plet of composite

vector bosons with the color decomposition 15 = B + g}+_§ +1 (=v, + vy vyt y).

8
Vector boson dominance, relating the electromagnetic current to the w’ and y fields
and the color octet currents to the Vg fields, was implemented. The resulting Eﬁéff

_1/2) as free

involves besides the small, known gauge couplings o and Qh(GF
parameters two masses and two "quasi-gauge" couplings M Ty, and Tye Iy- A hierarchy
of mass-splitting among the two vector boson multiplets, arising an account of
U(l]em X SU(3)c gauge interactions, was derived. The couplings of the new vector
bosons to quarks and leptons were determined. Implications for high precision
experiments for E £ mw’z as well as pp collider and ep (HERA) experiments were

briefly discussed.
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FIGURE CAPTIONS

Fig. la: Mixing of the composite vector boson w3 with the photon as resulting

from the current-field identity for the weak isovector part of the w3
electromagnetic current, Y
a) M + . e
Fig, Ib: Mixing of composite, color octet vector bosons Vg with gluons as —e—
resulting from the current-field identity for the color octet current. gW
gluon Vg
b) LRI RI AR 2R RRE] | + -
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