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1. INTRODUCTION

Mayer expansions in Euclidean quantum field theory on the lattice lead to convergent expansions and to the
existence of the thermodynamical limit of the generating functional for connected amputated Greens functions
for sufficiently weak coupling. It is essential for convergence that the mass m in units of inverse latiice spacings
a~! is nonzero. The region of convergence for the coupling constant shrinks to zero if m or a goes to zero.
Moreover, terms of the expansion may become infrared or ultraviolet divergent. For handling these problems
methods of the renormalization group are necessary. We shall only regard massive models on the lattice in this
paper. However the results of this paper are useful for single renormalization group steps. The convergence
condition of Gruber and Kunz [4] furnishes a condition for the existence of the thermodynamical limit and for the
convergence of the Mayer expansion of the generating function for connected free-propagator-amputated Greens
functions if the external field ¢ is in 2 (coupling constant and ma-dependent) bounded complex neighborhood
of ¥ = 0. Moreover, the thermodynamical limit of the connected free-propagator-amputated Greens functions
exists. Using the tree estimate with extra factors n! of Battle [14] the proof of convergence will be easy for
simple Mayer expansions. We will show that this estimate is in fact an immediate corollary of the tree estimate
used and derived by M. Gépfert and G. Mack (8]. The extra factors n! permit to absorb the factors n! due
to the Cauchy formula for the n-th derivative of a holomorph function. It will be shown that the condition
of convergence is fulfilled for the Ag*~theory, the discrete Gaussian model and the nonlinear o—model in a
(coupling constant and ma—dependent) real neighborhood of ¢ = 0 for sufficiently small coupling constants.

The activity of 2 polymer equals the sum of all ”point connected” Feynman diagrams whose vertex positions
occupy all points of the polymer. A Feynman diagram with given positions of its vertices is called potnt connected
if it is connected or becomes connected after all vertices that are positioned at the same points of space are
identified. It will be shown how to express Mayer amplitudes by Feynman amplitudes. For A¢*—theory it will
be shown that the perturbation expansion of the activities is Borel summable in A {on the lattice).

For renormalization and Mayer expansion it will be useful to introduce counterterms which are dependent
on subsets of the lattice. The Mayer expansion for the Boltzmannian factor with X-dependent counterterms
will be done and it will be shown that the molecular activities are of order A*X! (|X| = number of points in X)
if some renormalization conditions are fulfilled.

After splitting the propagator into pieces of increasing range and decreasing strength one gets effective
actions in the sense of Wilson’s renormalization group approach [21|. We will derive a tree formula for activities
corresponding to the iterated Mayer expansion ([8], [10]}). The asymptotic expansion in A of this formula is the
Gallavotti Nicol tree formula of the effective action [11]. The effective action is nonlocal. Appendix B presents
a decoupling expansion for nonlocal interactions (corresponding to the tree graph formula for local interactions).
It is a modified wersion of the expansion derived by Brydges [22].

1.1. MAYER-AND FEYNMAN DIAGRAM EXPANSION

J.E. Mayer [1) introduced the method of Mayer expansions for statistical mechanics in the fourties. Mayer
congidered real gases and their condensation. The essential trick of Mayer in treating the partition function of
real gases is to introduce the factor

Flr) =ePolr) g | (1.1)

instead of the Boltzmannian factor e~#%("), where @ is inversely proportional to the temperature and v is the
pair potential of the molecules. n molecules form a cluster. The pariition function is a sum of products of
cluster integrals. The cluster integral is n-dimensional if n is the number of particles in the cluster. Particles
of a cluster are connected by bonds such that the resulting graph is connected and two vertices of this graph
are connected by only one line (Mayer graph). The integrand of the cluster integral consists of a sum over all
Mayer graphs.



Likewise in the fourties, Schwinger introduced the generating functional for Greens functions and their
perturbative treatment for quantum field theory. The generating functional for Greens functions in v-dimen-
sional Minkowski space is defined by

T[J] = .i?[[[ 1‘[ dé(z)] exp {iLERvd"z L(¢(a;))+fzemv &z J(z)¢(z)} (1.2)

zERY

where N is a normalization constant such that 7'[0] = 1. The Lagrange density £ consists of a free part Lrand
an interaction part {perturbative term) AL;

L=Lr+A,r. (1.3)

A labels the coupling constant of the model. According to R.P.Feynman (2] terms of the perturbation expansion
are represented by graphs. These graphs are called Feynman diagrams. The *interaction Boltzmannian®

e;xfdvz Li(#(x))

has to be developped for the perturbation expansion. If is essential for the representation in Feynman diagrams
that the free term £ of the interaction is quadratically in ¢, i.e.

[ @ Lro@) =5 [ @2 &3 sz Kz 9900, (14

K(z,y) is the integral kernel of an invertible positive operator K. The inverse operator v = K =1 ig called free
propagator of the model. The perturbation expansion is a formal power series in the coupling constant A. All
terms of the perturbation expansion of order A" are represented by Feynman diagrams with n vertices. The
line {zy) connecting the points x and y in the Feynman diagram corresponds to the propagator v(z,y).

The two above described expansions for statistical mechanics resp. for the quantum field theory were
independent methods that were succesfully applied to different problems. After Wick rotation (¢ — 1t) the
quantum field theory on Minkowski space will turn info the Euclidean quantum field theory. For Euclidean
quantum field theory it is possible to apply methods of statistical mechanics. In the mid-sixties K.Symanzik [3]
introduced the method of Mayer expansion for Euclidean quantum field theory (in the form of iterative solutions
of Kirkwood Salsburg equations). In this connexion the partition function in statistical mechanics corresponds
to the generating functional for Greens functions in Euclidean quantum field theory. The Mayer expansion in
statistical mechanics is an expansion in the number of particles and corresponds to an expansion in the number
of points in Euclidean quantum field theory. The generating functional for connected Greens functions In T'[J]
corresponds to the free energy In Z in statistical mechanics. Terms in the perturbation expansion for Greens
functions can be ultraviolet divergent. This ultraviolet divergence arises from non integrable singularities (not
well defined products of distributions) of the integrand in the Feynman integral. To circumvent $his problem
only quantum field theories on the lattice (aZZ)” will be considered here. In the following section we will
introduce some notations and definitions for the lattice.

1.2. LATTICE NOTATIONS AND DEFINITIONS

Consider a v-diménsional cubic lattice (aZZ)” with lattice spacing 4. Differentiation and integration on the
lattice are defined as follows .

Vuf(@)=a" f(z+e) - f@)], pe{-v.v} (1.5a)
=g ) e_p = ey 1.5b
Le(am)u ze(za;)” » . ( )

8



Here e, is a vector of length a in p-direction. The negative Laplacian operator is
v .
—A=Y V_ Y, (1.6)
a=1
Operating with the Laplacian on a function f : (aZZ)” — @ gives
Af =072 3 [f(y) - (o)) (1.7)
¥
¥ nn 2

where the sum is over all nearest neighbors of z € (aZZ)”. The scalar product of two functions f, ¢ on the lattice
is defined by _

o=/ feeEm (18)
zE(aZ}¥
Summation by parts
(Vafi9) = (£, V_u9) (1.9)
shows that ,
(£, =08 = Y (Vuf, Vuf) = Y _If(a) - fly)Fa™ (1.10)
#=1 (=v)

The sum Z(zy) is over all links {zy) on the lattice. Because of (1.10) the operator —A is positive. If we replace
differentiation and integration in the Lagrange density on the continuum by the above defined differentiation
and integration on the lattice we get the lattice approximation of the Lagrange density. The Dirac distribution
§(x — y) corresponds to a~” 8, on the lattice, where :

_J1 if x=y
Ozy = { 0, otherwise (L.11)
iz the Kronecker symbol. The functional derivative 6_1;(.5 becomes the ordinary derivative ¢ 9 on the

39 (z)

iattice. Dimensionsless variables are introduced by
T = ad¢($), Uzy = GQdU(x’y), J'z = a'y-dJ(x)s (1'12)

where d = L (v — 2).

The (normalized}) Gaussian measure du,(¢)} is defined by its Fourier transform which is given by the
following Gaussian integral

f dpy (8)¢"(7¢) = g4 (am9) (1.13)
for a positive semidefinite operator v. For positive definite operators we obtain
o (9) = det(2nv)~% [  de(z)e#®o7"0), (1.14)
zE{aZ)>

- The field ¢ with Gaussian measure dy,($) may be interpreted as Gaussian distributed random variable. In this
propability theoretic interpretation ¢ is called process of covariance v. The moments of the Gaussian distribution .
are simple to calculate using the defining relation (1.13).

Expectation values of observables O(¢) with respect to the Gaussian distribution are defined by

©) = [ dmi#)0(4) (1.15)
The support of an observable O(¢) is defined by
supp O = {z € (aZ£)”| O depends on ¢;}. ‘ (1.18)

9



Suppose that supp O is finite and the Fourier transform 6(:;5) defined by

O(¢) = f [ IT el B(g)e’ Lorernry 0942 (1.17)

zEsupp O

exists. Then 5(q)'depends only on gz, # € supp O, and the expectation value of O(¢) is an n-dimensional
integral {(n = {supp O|)

(0(45)) = f[H dqz]e—%Ea,yeaqxhyqyé(q]’ A = supp O. (1.18)

TEhA

This follows easily from the defining relation (1.13). With the characteristic function

_I1 ifxe A
Xa(2) = { 0 otherwise (119)

A C (aZZ)” and the abbreviation
Ya = XAUXA (1.20)

follows that
(0) = [ ditvnyy o ($1O(2). (1.21)

We see that the propagator can be restricted to the support of O.

1.3. EUCLIDEAN QUANTUM FIELD THEORY ON THE LATTICE AND STATISTICAL MECHANICS

After Wick rotation and with the lattice notations of section 1.2. the generating functional of Greens
functions on Minkowski space will be replaced by the generating function for Euclidean Greens functions on the
lattice

110] = - [ ds(@)F(@)09), | (1.22)

where N is fixed by the condition T'[0] == 1. The Gaussian measure depends on the free part and the function
F(#) depends on the interaction part of the Lagrange density. Definitions for Greens functions are given in the
following. Euclidean Greens functions are defined by

6!1
57(z1) ... 6d(2n)

G(zy,...,2n) = T[Jls=0- (1.23a)

The connected Euclidean Greens functions are defined by

- In T[J]]sm0- | (1.23b)

Ge(z1)--yZ0n) = §J(z1)...80(zn) .

The connected free-propagator-amputated Buclidean Greens functions are defined by

671
GolZyy- -1 Zn =f v iz, ) %0, Yn ——1n T[J]|s=0- - {1.28
( 1 : ) Yarenstin ( 1 yl) ( Y )5-1(3[1)-5-7(31';) [ ”J o { C)
It will be shown in appendix C that
_ 6" Z(¥)
Gl 1) = sy g ™ |70 o)) 4= - ()

10



where

26) = [ dm@) F4+9).  (1240)
Therefore the generating functional for the free-propagator-amputated Buclidean Greens functions is given by
In Z{¢)—1n Z{y =0).

The connected free-propagator-amputated Euclidean Greens functions are not necessarily 1-particle irreducible.

In the following we will consider local interactions. For local interactions the function F in the generating
function on the lattice has the following form

F(i¢)= J[ Ful2)- C {125)
x€{aZ)” .
- For finite A C (aZZ)” let
249) = [ aua(8) [ s o), (1.26)
ZEA

i.e. the interaction is switched off outside A. By (1.13) and the definition of the Fourier transform Fw(qa,) of
Fe(¢2)

Fo(pz) = f dgeFu(gz) €9-%= (1.27)
we obtain
Z(Aly) = f [T1 dga e deavests gfts¥= B g,)] [] emtemevss. (1.28)
=€A {zy)

The product is over all (unordered) pairs (zy) with = # y, z,y € A. The (non-normalized) generating function
for free-propagator-amputated Greens functions in the form (1.28) can be interpreted as a partition function
for a generalized gas with pair potential gzv.yqy, complex fugacity and continuous charge g (see section 2.1.).
The Mayer expansion of the partition function Z(A|¢) is based on the following polymer representation

zialpy= 3 JTaxiy). (1.20)
Azzx X
The sum is over all digjoint partitions of A. Finite non empty subsets of the lattice (aZZ)" are called polymers.

A(X][1) is called the activity of the polymer X. For {X| = 1 the activity A(X|¥) is called monomer acttmty
The activity A(X|¢) is uniquely determined by Z(Y|¢) for all ¥ ¢ X. This follows from

AXW =Y ¥ -] 2ww) (1.30)
n>1 x:_Z:‘:’.y‘. =1

(proof see app. A). (1.30) is the inverse formula of (1.29). Conversely, the partition function Z(X|¢) is obviously
uniquely determined by A(Y [¢) forallY C X.

The partition functions

zixlp) = Y [[Axv) (1.31)
x=3vr Y
are the iterative solutions of the Kirkwood Salsburg equations
Z(X|y) = Z AY[$)Z(X ~Yy) (1.32)
zEYgX

with arbitrary z € X and initial condition
Z(0W) = 1. (1.33)

11



The Kirkwood Salsburg equations in statistical mechanics correspond to the Schwinger Dyson equations in
quanfum field theory.

1.4. TREE GRAPH FORMULA, ESTIMATES FOR ACTIVITIES AND CONVERGENCE OF MAYER EXPANSION

The tree graph formula leads to estimates for activities A(X|¢), where |X| > 2 (see Theorem 2.5.1. or [5}]).
A tree graph with n vertices is defined by the following function

n: {2,...,n} — {1,...,n—1}, n{s) <i. (1.34)

Fig. 2.2 shows a graphical representation of a tree graph. The number of tree graphs with n vertices is (n-1)!
(proof see section 2.5., p.35). Labellings of polymers X are defined by bijective maps

z: {1,...,n} — X | (s) = z;. (1.35)
Given n — 1 real variables s; € [0,1], 1 € {1,...,n — 1} we will use the following abbreviation
F(nls) = [ [sa-250-3 - - - 8g(a))- (1.36)
a=32

The interpolating covariance v[s] is defined by

85811 -+ 851 Y22, fi<yg
V[8]zim; = { 858541 .- Sic1V2iz;, ifi> (1.37)
Vg z: if1=7.

We assume that F.(¢,) is C= for all z € X. Let z € X be an arbitrary point. Then the tree graph formula for
the activity A(X|¢) reads

Axw=% ¥ f oy - dsn-s S(n1s) [ din, 1 ¢){

. :(1)_.::Ex

] H Foy(¢ay + w,)}

Yz, nia
[a¢ ﬁ()a‘# wle) i

(1.38)

The derivative can be estimated by the Cauchy inequality. Let F be a holomorph function in {z €@ | {2} <
k}, & > 0. Then the n-th derivative of F Is bounded by
dﬂ

n!
—— < — ) .
R FEIS mglF(Z)l (1.39)

The faculties on the rhs of the Cauchy inequality can be dominated by using the following Lemma of Battle

(see [14] or Lemma 3.1.5.).
gr—1

Zf dsy...dsa_y f(n|s) [Jdi(m)t < = (1.40)
n v0 {=1

Here d;(n) labels the number of links in the tree graph n having their origin in the vertex {. For fixed labelling
# the number of derivatives of Fy, at ¢, in the tree graph formula (1.38) equals d;(n). The Lemma of Battle
is an immediate corollary of the following tree estimate ([6], {8]) )

n

5= [ dos..-dsnms £(als) [T ta(0)] < TTw(er0=) (141
n V0 =2
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with (i) > 0, { € {1,...,n} (see Lemma 3.1.4.). For the Ag*—theory one chooses x = O(A~%). The Cauchy
inequality leads then to a factor of order A% for every derivative. Since in the tree graph formula there are
2(n — 1) derivatives and (n — 1)! labellings with #(1) = z, n > 2, we obtain, using

1
Vny = 7= (1.42)
yE(aZZ)" (ma}
the bounds .

A(X]$)] < (n = 1)! O(A*F*) T

and L
A TE ,
> uxwi<o(n] ) (149"

X, |X|=n

TEXC(aZ)Y

for all real external fields . For general estimates of activities we suppose that Fz(¢.) is a holomorphic and

bounded function in the complex strip {¢. €€ | |Im ¢.| < &} with £ > 0 for all z € (aZZ)” (see Theorem 3.2.1.

and generalization to N-component theories see Theorem 3.2.2.). Notice that these estimates are independent
of real external fields ¢.

We can get better estimates for bounded external fields 4. Let us change the assumptions for F slightly.
For all z € (aZZ)? let F, € C® and ¢, ¢ be constants with

ew<ce<l (1.44)
and e-dependent constants C., A. such that
_%¢9 3“" ' d
is fulfilled. The Gaussian expectation values are estimated by
HG(6+ U] < [(eF Den )| sup [G(4+9) ¢ F Lven®| (1.46)
¢zERY
TEA

for finite A = supp G (suppose G(¢ + 1) = 0 or < 0 for all ¢, ). We obtain for the expectation value of the rhs
lef Zoenthy < (1 - (1.47)

(see proof of Theorem 3.4.1.). The estimates obtained by this method are represented in Theorem 3.4.1. for
1-component theories and in Theorem 3.4.2. for N-component theories. This method yields for A¢p*—theory

without counterterms . R
|A(X]9)] < O(A™(ma)=2(n+1))gronetme)” 2. o 19 (1.48)

for A € O({ma)*), |X| > 2 and complex external fields ¥ (see Corollary 3.4.5.).

Gruber and Kunz [4] have stated with the help of the Kirkwood Salsburg equations a sufficient convergence
condition for the existence of the thermodynamical limit A 7~ {(a¢ZZ)” (in the sense of van Hove} of the reduced

. correlation functions

pa(X|¥) = Z(A - X|¢)/2(X]¥). (1.49)

The convergence condition of Gruber and Kunz is fulfilled, if for some £ > 1

B¢y} <1, (1.50a)
where
1 2 a~vin—1) an }]
B&,) = [1HMUaHWIE ﬁeﬁ‘iﬁ)v{é e I e L



and

M(X|p) = -6, x| + A(X]|¥). {1.50c)
For theories defined by the partition function
2A9) = [ dua(8) [] Fulda + ) (151)
zCA

with holomorph and bounded functions Fy in the complex sirip
Sc={¢2 €C| |[Im¢;| <k}, x>0 (1.52)

we obtain the following estimate for the terms in the series of (1.50b)

v(n—1)
i f |M({z,23,-.., 2, }|#)| < const x (max)~2(»—1)g" (1.53a)
("‘ - 1)! Tzyeenn E(R )Y
with the abbreviation
brc = i z\Px) — .
2 e :ip |Fz(62) — ¢ (1.53b)
[Tméz]l=x

(see Theorem 3.2.1.). Especially for the A¢*—theory without counterterms
be < O(1) (1.54)

for & = O(A~%) (cf. Lemma 3.2.3.). (1.58a) and (1.54) implies

a—vin—1)

T oty M2 IS 00°5) (159

for n > 2. Therefore the series in definition {1.48b) will be estimated by a geometrical series, which is small for
small coupling constant. For theories, which fulfill

 Fa{$z+9¥e) 0 for g — 0 (1.56)
for all z € (aZZ)”, we get

|M{{z}|¥)| = {Faldz + ¥2) —1)| = 1 for |¢hs| — o0. (1.57)

Obviously, the convergence condition of Gruber and Kunz is not fulfilled for large external fields (in the renor-
malization group context: "large field problem”). For bounded external fields we get

|M{X|¥)] =0  for A —0. (1.58)

With (1.58) the convergence condition of Gruber and Kunz is fulfilled for small coupling constant and bounded
external field ¢.

Suppose that the convergence condition of Gruber and Kungz is fulfilled and the support of the external field
v is finite. It will be shown (in section 2.2.) that with these assumptions the thermodynamical limit A * (aZZ)”
(in the sense of van Hove) exists for connected free-propagator-amputated Greens functions G.(z1,...,%s) and

the generating function .
In Z(Al¥) —1n Z(A|p = 0).

Moreover, the expansion

=3~ a(Q) IM(QJ¥) — M(Ql¢ = 0)] (1.59)

Z(Aly) ]
4

A/l(le%)" ko [Z(AWJ =0)

is convergent in a small complex neighborhood of 4 = 0. For notations and definitions of the combinatorial
coefficient a(Q) and cluster Q see section 2.2., p.21-22. '
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The ordinary perturbation expansion is not convergent in general. E.g. the perturbation expansion in
X of the partition function of the A¢®~theory on a lattice A = {z} that consists of a single point is only an
asymptotic expansion

iy —é o I + :
Z{{z}|¥) = (-:-13) f_ _ dge= M B o N g, (— A" (1.60)

n>0

The series Eu;-_o an{—A)" is not convergent for A 3 0, because the integral is divergent for A < 0 and therefore
the convergence radius of the series is zero. In the same way the following perturbation expansion

In [‘““Z—(é‘lﬂ-] =2 (—_‘i)i“”"”/x . EA[W(%; +8,); <3 V(o + Y0 )} = (V(Ba); -+ 3 V(d2,))]

Z{AlY =0) =5 n!
(1.61)
with
2419 = [ duo() [] V692 (162)
zEA ’
is divergent. {...;...) denotes the truncated expectation value (for definition see app. A). Instead of the

expansion (1.61) we use the convergent (for ¢ in a small complex neighborhood of § = 0 and small A) Mayer
expansion (1.59) in the following form

ZAlY) | _ s~ _ e B
. [Z(AW=0)]_,§ n! Ll,___,anA[M(z“""”“W M(zyy...;2n|¥ = 0]] (1.63)

with the definition of the augmented Mayer amplitude

M(zyemy = Y a@ JI n@t ] (=6 + AP (1.64)
Q dirtinct PEQ
supp Q={=},-12n} TE{E) e ®n}
The clusters Q consist of points zy,...,2,, where z appears in Q with multiplicity n(z). Therefore
n(z) = |{P Q| z€P}. (1.65)

From the polymer representation (1.29) we obtain the following expansion of the partition function in the
number of points

{4l
1
Z(Ajp) =1 S M1, 0 0) MUty s Yy |9 o
( |¢) +-§1 k; [Hfﬁl mj(n")!] Llﬂsmn"c: (yl ! lw) (y o ot I"b) (166)

n:=n
i=x

v M(ynl-l—...nk_]_; ] syﬂk|¢)’

where m;({n:}) = [{rir, = j}| and the Mayer amplitudes M are defined by

a—l’ﬂ-

M(z1,..-,2al) = (b1, + A({z1, . Tn} )] (1.67)

n!
for n different points 1, ..., %s € (aZ)”. The Feynman amplitude is defined in terms of Gaussian expectation
values by

n

Flun, - wnl) = —([[=AV(8y, + 945 1) (1.68)

7=1

The Feynman amplitude is the sum of all connected Feynman diagrams with n vertices positioned on n distinct
points of the lattice. Written as a truncated expectation value the Mayer amplitude reads

a—-l}ﬂ

M(21,...,Zald) = (e AV#autva) _q; e Y ($antden) ), (1.69)

n!
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The Mayer amplitudes may be expressed in terms of Feynman amplitudes (Theorem 2.4.4.,p.33). From this
representation we see that the Feynman diagrammatic expansion of the Mayer amplitude consists only of point
connected Feynman diagrams. The essential difference between ordinary perturbation expansion and Mayer
expansion is the maintainance of the stability condition (boundedness) for the snteraction Boltzmannian factor

[ e?ves+es
z€(aZ)¥
for A > 0 in the Mayer expansion. The ordinary perturbation expansion is cbtained by developping the e-
function in the Boltzmannian factor. The terms in this expansion are not uniformly bounded in ¢, and this
leads to a divergent perturbation series (see example for the lattice with a single point,p.15). Mayer expansions

leave the e-functions uneffected. The Mayer amplitudes (1.69) remain bounded for arbitrarily large external
fields 4 (stability). On the other hand the Feynman amplitudes are not bounded for large external fields .

The formal power series in A of the Mayer amplitude

MEXI) = 3 en(w)A?, (1.70)

nz|X|

where ¢, (%) = O(n!), is also divergent. One can write

o0
M(X|y) = %f B(t)e~t/Ade, (1.71)
o
using the integral representation of the faculty
. .
nl = f thetdt (1.72)
0 :
and the definition of the Borel transform
Bp=Y 51(—:31&. (1.73)
- ST I

If the series of the Borel transform is convergent the series in (1.70) is called Borel summable. We will show
that for small coupling constants A the perturbation expansion {1.70) for A¢*—theory without counterterms on
the lattice is Borel summable (see Theorem 4.1.4., p.60).

1.5. RENORMALIZATION AND MAYER EXPANSION; RENORMALIZATION GROUP
AND ITERATED MAYER EXPANSION

Estimates of the form (1.52) are useless for the continuum limit @ —+ 0. In particular, as in ordinary
perturbation theory the problem of ultraviclet divergence appears. As a remedy counterterms are introduced in
the action. In perturbation theory the counterterms are determined, sc that some renormalization conditions
are fulfilled and the resulting Feynman diagrams are finite for all orders in ) (renormalization). Theories, where
this renormalization procedure is possible with a finfte number of counterterms, are called renormalizable. The
degree of convergence C is defined by

: C=2I-vL, (1.74)

where [ is the number of internal lines and L is the number of loops in the Feynman diagram. The Feynman
integral of the Feynman diagram is convergent for C' > 0. The theory ie called super remnormalizable if the
minimal degree of convergence of the subdiagrams increases with the number of vertices. E.g. the A¢*—theory
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is super renormalizable for dimension v < 3, renormalizable for v = 4 and non renormalizable for » > 5. Two
counterterms are sufficient for the A¢*—theory in v = 3 dimensions and the partition function is of the following
form

Z(Aly) = f dpo(¢)e™V (FHII—EV (Y], (1.753)
where
V(4)= A #(z)* (1.75b)
z€(aZ)v
§V(¢) = — f (6m2¢(z)? + be]. (1.75¢)
zE{aZ}

The coefficient §m? describes the mass renormalization and the coefficient §e describes the vacuum energy
renormalization. Perturbation theory yields an expansion in A for ém? and fe. For small lattice spacings
(theory near to the continuum limit ¢ — 0) the coeficient §m? is positive. The mass counterterm must be
dominated by the quartic interaction for maintainance of stability. Because of §m? = O(A) and e = O[]}, we
get
242
~AgE 4 Emig2 + be < % +6e < O(). (1.76)

For interactions on a finite sublattice we obtain an upper bound for the renormalized action
f EA[—M&: + &m? P2 + be] < O(A) x |A] (1.77)
z

(JA| = number of points in A). To exploit maintainance of stability we apply the Mayer expansion instead of
ordinary perturbation expansion for the partition function with renormalized action (cf. discussion of stability
in section 1.4., p.16). For that purpose we introduce counterterms depending on finite subsets X C (aZ2)¥. So
we congider the partition functions

Z(X|y) = f dpo($)[ [ =2V (8= +9e)jeVxldo) (1.782)
eeX
with
Vx(9) =~ 3 [6m*(P) D 47 +be(P)] (1.78b)
ﬂ;ul:g.‘u: el

for all finite X C (aZZ)”. For the interaction Boltzmannian factor we obtain the following polymer representation

[He_xv(¢,+¢,)]e—wx(¢+¢)= z HB(pw,), (1.79)

nEX X=Z‘P P

The functions B(P|y) are called molecular activities. Counterterms and molecular activities B(P|¢) are fixed
by the renormalization conditions

In Z(X|¢)|gp=0 = 0 (1.80a)
32
357 In Z{X|¢)|p=0 = 0 : {1.80D)

for all finite X C (aZZ)?. In the renormalization condition {1.80b) the external field is supposed to be constant
on the lattice. The number of renormalization conditions equals the number of counterterms. Renormalization
-conditions {1.80a,b) may be replaced by the following ones

A Xlomo = {3 XX (1.812)
an ren
3yl (X[¥)lp=0 =0 (1.81b)
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with renormalized activities A™"(X|¢) defined by

(> JIB@wy= 3. JJae . (1.82)

x=pr F x=yy Y

This formulation of renormalization conditions is appropriate for theories, which are symmetrical under the
transformation ¢ — —4¢, i.e.

Z(Xip)=Z(X| - ¥) (1.83)

(proof see app. D). It will be shown that the molecular activities B(P([4) are uniquely determined by the
renormalization conditions (1.80a,b) or (1.81a,b} and are of order AF! (Theorem 5.1.1.). Therefore the order
of the following renormalized activity

Merxiwy = > ([I1BPIv); (1.84a)
X:ZP P

with
MM X|¢) = —6;,)x| + A" (X|¢) (1.84b)

is X1, In this way the existence of suitable counterterms, and the consistency of the renormalization procedure
with X-dependent counterterms is shown.

To obtain estimates for activities we use the basic ineguality

(F(¢)) < sup |F(¢)]- (1.85)

Suppose that the maximum of |F(¢)| is at ¢ = 0. The Gaussian measure with mean value ¢¢ may be used if
the maximum is at ¢g # 0. (1.83) yields

(F($)) < F(O). (1.86)
The Gaussian measure with covariance v = @ is the Dirac measure
dus=o(#) = [ [ dé(2)é(4(z)). (1.87)

So we see that the estimate (1.85) is suitable for small propagators v. For small (ma) the propagator (—A+m?) 1

is large and the estimate will become poor. In particular, estimates based on inequality {1.85) are not suffi-
cient to handle the continuum limit and/or massless theories. The same problem exists for the convergence
of the Mayer expansion for Yukawa gases at low temperatures in statistical mechanics. The propagator corre-
gponds in statistical mechanics to the product of # and a pair potential. Since A is inverse proportional to the
temperature, this product will be large for low temperatures and estimates of the form (1.85) are unsatisfac-
tory. A procedure for handling this problem in statistical mechanics is (for a large region of applications) the
method of tterated Mayer ezpansion (see [8],[9],[10]). The corresponding method for euclidean quantum field
theory is renormalization group approach [21]. For this method the propagator v will be split in N propagators
v,i=1,...,N

v=v'+ . oV, (1.88)

For the propagators v* the range decreases and the strength increases if the index f increases. By the convolution
formula of Gaussian measures (see Lemma 3.1.2. for N=2)

[ @F@) = [ dus (). dpn VP + . 6Y) (1.89)

the expectation value {F(¢)) may be computed or estimated successively. For this the Gaussian measure
dp,~(¢Y) will be computed resp. estimated first, then du,~n-2(¢" !} etc. . Every integration over the
(Gaussian measure in this procedure will be called a renormalization group step. So we obtain for the partition
function

Z(Al) = [ duu @)Y+ (1.90)
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after k renormalization group steps
Z(Ajy) = ‘[dﬂul+...uN—h(¢l 4o gNEY YT T ) (1.91)
with the effective action :

Pk e}y orti g ot (1.92)

We see that after k remormalization group steps the propagator is v' + ...v¥—* and the action is V¥—%, For
Pauli- Villars regularized propagators

ve=(—A)" — (A + M) (1.93)
with Pauli- Villars cuteff M and the partition
v=ovl4 oV, V= (—A+ml - (—A+mi )T, ‘ (1.94)

“where m; =0< mg < - - <my_y Smy <myy1 =M, we obtain after ¥ renormalization group steps the
propagator
v VRS (AT - (A A mE )T (1.95)

Thus the Pauli-Villars cutoff M is decreased to my_g41 after k renormalization group steps. A perturbative
representation for the effective action is the Gallavotti Nicol6 tree formula {11] {see Corollary 5.3.3.). Therein
the effective action is the sum of tree graphs of depth k. The trees stand for truncated expectation values and
the order in A equals the number of maximal vertices (= degree of the tree). We obtain a tree formula for
the activities (Corollary 5.3.4.) with the help of a partition formula for truncated expectation values {Lemma
5.3.1.). The trees of this formula correspond to partitions of partitions.... of partitions of polymers. The k-fold
iterated partitions will be called k-cluster (cf. [8]). They correspond to the polymers in the simple Mayer
expansion. '

2. SIMPLE MAYER EXPANSION AND THEIR RELATION
WITH PERTURBATION THEORY

We will consider here quantum field theories without derivative couplings on the v—dimensional lattice
A C Agop = (aZZ)”. The generating function for free-propagator-amputated Greens functions is

70019) = [ dn($) [] Fali+02) | 2.1)

€A
(see app. C,p.94). F is a function or distribution. Examples for theories described by Z(Al|y) are
a) Ag*—theory with counterterms:

¢ is a real scalar field,
Fol¢s) = e AV82), V(¢s) = 7 — §m24Z +

v(z,y) = kernel of (—A + m?)~1, A = Aga¥* dimensionsless coupling constant.
b) discrete Gaussian model:

¢ is a real scalar field,
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: Fz(¢m) = Enez 6(¢z — 2mn)

Yy = ﬂUCb: Uoh = kernel of (—A)—l.
c¢) nonlinear o—model:

¢ is an N-component real field,

Fz(‘i{’m) = E(d’i - 1)

Y= -E}vcb, vey = kernel of (—A)™?!

2.1. QUANTUM FIELD THEORY AND POLYMER SYSTEMS

We obtain from the Gaussian integral (1.13) and the definition of the Fourier transform Fi(gs) of Fy(de)

F($a) = [ dac Fulas)eis: (2.2)
the following relation
Z(Alp) = f [H dg, (qz)]e %ZL wea Ix0avl (2.3)
TE A
where . } .
Flg,) = Fx(‘h)e’q’wz- . (2.4)

The representation (2.3) of the generating function Z{A|¢) is called gas picture (cf. [11]). The generating
function Z(A|#) may be interpreted as a partition function of a generalized gas, whose particles sit on laltice
sites € A and carry (nof necessarily discrete) charge g, # 0. Lattice sites are not occupied by particles if
gz = 0. The pair potential of the lattice gas is given by the propagator v. Per definitionem different particles
sit on different sites. The charge dependent fugacity is F, «(@z). The notions generating function and partition
function are synonym in this context. With this interpretation of a quantum field theoretic model as a model of
statistical mechanics the methods of statistical mechanics may be applied to problems in quantum field theory.
A model on the lattice A described by the partition function Z(A|#¥) may be considered as a polymer system,
where the activities are derived by simple Mayer expansion (without use of the renormalization group).

Theorem 2.1.1. The polymer representation of the partition function Z(Al|y) in

zAlp) = > [laxw) (2.5)
A=ZX x .
with
A(X|y) = Z f[H dqu (¢=) :qz'ﬁ:e i‘qxuuqe] H [e9=v2us — 1], (2.6)
GeLx rEX (zy)ec

F.(qg.) is the Fourier tranform of F,(¢;) (see Eq. (2.2)). The sum }_ A=Y x is over all partitions of A into

disjoint non empty subsets. §x is the set of all connected grapbs {Mayer graphs) with vertices in A and fwo
vertices are linked by only one line.

Remark: The functions A(X]t) may be interpreted as (not necessarily positive) activities of a polymer system.
The polymers are non empty subsets of the lattice A. The activity for monomers (=polymers with only one
constituent) {z}

A({:B}WJ) =quz Fz(?z)eiqzw:e—%qzv“qz (2.7)
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is called monomer activity.

PROOF: Splitting the representation (2.4} for the partition function Z(A|¢) in point and line dependent factors
gives

2419) [([] Paall T[ e oeoese) (2:5)

xZEA {zy}eA~

where Dg, = dgyFy(gs)etd=¥=¢=$9:7222= and A* is the set of all unordered pairs (zy), %,y € A. By the definition

g~ IzVaydy — 1 + fzy(g] (2,9)
we obtain
Z(Alg) = Z (II 2¢z] I Feula)- (2.10)
aéar T€F {zy)eB

B is a disjoint union of Mayer graphs G; € Gx,, ».; Xi = A. The g-integrations factorizes and we obtain

z@aly) = Yy Jlaxw) | (2.11)
A= ):x X
with
AXW) = DI 2aal I favl®. (2.12)
GeEGx z€X (z=p)eG

The partition functions for subsets ¥ C A are defived by

Z(Y1]y) /duu(¢) 1 Falda + 92) (2.13)
zE€Y
and the polymer representation is
zZ(vly)= Y. JlA(Xl¥) forallY, @#Y CA. (2.14)
y=3x X

Empty products are 1. This yields Z(A|¢) = 1 for the empty set @. The activities A(X|y) are uniquely
determined by Z(Yiy), @ #Y C X (see section 1.3., p.11).

2.2. EXPANSION OF THE FREE ENERGY ln Z{A|¢) AND THE GRUBER KUNZ CONVERGENCE CONDITION

The free energy In Z(A|y) may be represented by a sum of products of activities A(X{¢), 0 # X C A. For
that we will define a cluster Q of polymers P C A (cf. {13]). @ = (P/,...,P*) is a collection of polymers
P; with multiplicities n;. In the following we adjoin a graph (@) for each cluster Q. The vertices of ~4(Q) are

the polymers P,..., Pi. P; is n; times represented in 4(Q) for 2all ¢ € {1,...,k}. Polymers P; and P; are not
admssaible if P; N P # 0. P; is not admissible with itself. Not admissible polymers are connected by a line in
¥(Q). Reduced acttmtses are defined by

A(Ply) = A(X19)/ [] A=}9). (2.15)

zEP
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For a cluster @ = (P1*,..., Py*) we use the notation

AQly) = HA x| )™ (2.16)
The expansion for In Z(A|y) i3
mZ(Al) =Y mA({zHd) + D o(QAQIY), (2.172)
TECA Q
with |p; 122

where
if 4(Q) is not connected

(@) = {ZCC'}'(Q)( 1)) /H,=1 7! if ¥(Q) is connected.

The sum in {2.17b) is over all connected subgraphs C of (@) with the same set of vertices as ¥(Q). i(C)
is the number of lines in C. A theory described by the partition function Z(Ajy) is translation invariant if
v(z,y) = v(z — y) and the functions F, are not x-dependent. For translation invariant theories the expansion
for the density of the free energy on the lattice Asor = (aZZ)¥ is (if the limit exists)

(2.17b)

.1 _ Vx

ABEOIWIDZ(AW) = ; 5 (2.18)
TEXGALot
with
Ve = n A({z}|¢) if|X|=1, X ={z} (2.19)
XTI X, (@A(QlY)  otherwise. :
limy »a,,, denotes the thermodynamical limit (in the sense of van Hove).
Let Fy(¢z) (for all z € (aZZ)”) be holomorph functions in the complex strip

Sc={¢-€C| |Im ¢,| < &}, k>0 (2.20)

(i.e. it exists an open neighborhood U of Sy, such that F, is holomorph in U). Furthermore, let F, be bounded
in 8. It follows from the convergence of the integral [ du,(¢) [I cx Fe(d<) for finite X C (aZZ)”, ¢, € Sk,
that Z(X|4¢) is holomorph in S.. Assume that

dE>1: B(é,¥) < Ke <1, (2.21a)
where
B(¢,¢) = [1 + sup > |Z(X[¢)|fix|]. (2.21b)

2EX CAgor (X122

Gruber and Kunz [4] have shown that (2.21a,b) is a sufficient condition for the existence of the thermodynamical
limit {in the sense of van Hove} X 7 Ayo for the reduced correlation functions

px (YY) = Z(X -~ Y|9)/Z(X|¥), (2.22)
which fulfill the bounds
lox (Y |¥)] < 1 — Kej~* T A{=}9). (2.23)
Y

Furthermore, the thermodynamical limit in (2.18) exists and the expansion (2.17) is convergent for finite A
(this assertion is non trivial, because there are infinite summands in {2.17)). The following Theorem shows
the existence of the thermodynamical limit and the holomorphy of the generating function for free-propagator-
amputated Greens functions if the convergence condition of Gruber and Kung (2.21a,b) is fulfilled.
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Theorem 2.2.1. Let F,{.) be holomorph functions for all z € (aZZ)” in the complex strip
Sk = {¢2 €C | [Imés| < £} {2.20)

and let ¥ be an external field with finite support supp . Furthermore let the condition (2.21a,b) be fulfilled.
Then the thermodynamical limit (in the sense of van Hove) A 7 Ase exists for the function

Fa(¥) = In[Z(A]¢)/Z(Al = 0)] (2.24)
and limy s, Fa(t) = F(4) is holomorph in a neighborhood of ¢ = 0.

PROOF: From (2.21a,b) follows the existence of the thermodynamical limit & * A¢oe for the reduced correlation
functions ps(X[¥) (cf.[4]) and the estimates (2.23) are valid. Therefore pa(X|¥) is uniformly bounded in S,.
Since pa(X|%) is holomorph in S. for finite A, it follows from Vitali’s Theorem that limg ~a,.. 24 (X)) is
holomorph in S. Let X be a finite subset of Ago, such that

X 2 supp ¢. (2.25)

By this assumption follows 7
Z(A—X|¢)=Z(A— X|$ =10} (2.26)

and with the definition of the reduced correlation function (2.22) follows
pa(X|9)Z(AlY) = pa(XlY = 0)Z(Al¢ = 0). (2.27)
The function pa(X|¥ = 0)/pa(X|¥) is # 0 in a suitable neighborhood of ¢ = 0 and we have
In[Z(A|9)/Z(Al% = 0)] = In[pa(X[¥ = 0)/pa(Xi¥)]. (2.28)

The thermodynamical limit exists for the rhs of (2.28) and the function limg 4, oa{ Xl =0)/pa(X]¢)isina
suitable neighborhood of ¢ = 0 holomorph and # 0. Therefore limy »4,,. In[pa (X|¢ = 0}/ p4(X|%)] is holomorph
in a neighborhood of ¥ = 0 and the assertion follows from (2.28)../

From Theorem 2.2.1. follows immediately

Corollary 2.2.2. Let Fo($;), = € (aZZ)”, be holomorph functions in S, and let the convergence condition of
Gruber and Kunz (2.21a,b) be fulfilled. Then the thermodynamical limit A /7 Aot (in the sense of van Hove)
exists for the free-propagator-amputated Greens functions

_ §n Z(AlY)
Gel2r,--+120) = 55y 5o Z(A = 0)

ly=0 (2.29)

for all n € IN* and #1,...,%n € A.

Corollary 2.2.8. Let the convergence condition of Gruber and Kunz (2.21a,b) be fulfilled. Let ¢ be an external
field with finite support supp ¢. The following expansion for the generating function for the free-propagator-
amputated Greens functions is convergent for translation invariant systems and in a small neighborhood of

$=0:

R (C.) — Az} = (QUAQI) — A(QlY =
R R ey EEWZM[mA({z}M A({z}¥ 0}1+§Qj (QAQ) - AQly =0).  (230)

PROOF: Because of Theorem 2.2.1. the thermodynamical limit exists. It follows from the convergence condition
of Gruber and Kunz (2.21a,b) that the reduced correlation functions p, (X)) are analytic in AY),|¥|22,YCA
for finite A (cf. [4]). For a finite subset X D supp ¢ we have

n[Z(A%)/Z(Al¢ = 0)] = In{pa (X} = 0)/pa(X|¥]]- (2-28)
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If ¢ is in a sufficient small neighborhood of % =0, then

Z(AlY) _
an(Algsz)" > [mA({z}g) — Al{=}¥ = 0)]+Z QAQY) - A(Ql¢ = 0)] (2.31)

xCoupp ¥

and the series in the rhs is convergent. For translation invariant polymer systems exist a positive monotone
decreasing function €(}), such that

Im 2y =0 (2.32)
and
104(X) - pao (X)| < €¥le(dist (X, 8A)) (2.33)
with dist(X,dA) = inf{jlz — y|l|z € X,y € 9A} , 9A = boundary of A. Therefore we obtain
Z(Mal¥) _ Z(AlY)
B el =0~ Z(alg = 0) + E®) (254
with

P4(X[¥=0) _ :
|+ Pr X[ —maxg) | = O (2.35)
PATXTE)

lim R(A)= lim In
A A ANy

[1 4 Py (X[$=0)~ps (X[p=0)

The assertion follows from (2.31), (2.34) and (2.35)../

2.3. EXPANSION IN THE NUMBER OF LATTICE POINTS

The polymer representation (2.5) for Z (Al¢) may be reformulated as an expansion in the number of lattice
points:

Lemma 2.3.1. Let A C A,,; be finite. Then
14|

Z(Aly) =1+ E f N 3 [T0x1 M(x1v)} (2.363)
dirtinee fy, . wyal=3ox X
with om
M(XN) = =[5, + A(XIP)], |X] = n. (2.36b)

M(X %) is called Mayer amplitude for the polymer X,

PROOF: By, the polymer representation (2.5) we obtain

zawy= 3, [Taxw=3 S (]I A({x}|¢][HA(X|¢
A—Zx X YCA "‘E" TEA-Y
1X|<2

=1+ > 3 JIl-6ux + AXI9)] =

P£YCA Yzz x X

. a
=1+Z n! Juiwnea Z H [=61,1x| + A(X]|9)] =
n=1 dunnct {&’.l.l Un} Ex x
4]

=g il X THOXN MWL 30

datinet {y, ga)= x X
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In the proof of Lemama 2.3.1. we have shown

ZA =1+ > > [[MExI#) (2.38)

PEYCAY=T x X

with

M(X|p) = =81, 1x| + A(X|9). (2.39)
The expansion (2.38) may be interpreted as a polymer representation of a new polymer system. The latfice
sites of the original lattice are split into two sites. Polymers, which contain more than one site, consist only of

double sites. Monomers consist of only one of the doubled sites. The monomer activities are set to one. The
activity of a polymer P? is M(P) if P’ emerge from P by the doubling procedure. We obtain

zAlg)= > JIM(xie). (2.40)

K=§:x X

The sum is over disjoint partitions of the doubled lattice A in polymers X of the new polymer system. The
sufficient condition for convergence for the new polymer system is

¢>1: %l:l+s:§ E |M(X1¢)|62|x|] <1 (2.41)

2EXCTA

The expansion of the free energy ln Z(A|¢) for the new polymer system is

In Z(Al$) =) «(@)M(Q|¥). (2-42)
Q

The series is convergent for finite A if (2.41) is fulfilled. In the follwing we reformulate (2.42) as an expansion
in the number of {(not necessarily distinct) lattice points. Let supp @ be the digjoint union of polymers in the
cluster Q. The point.z in supp @ has the multiplicity n{z). n(z} equals the number of polymers P € @ with
z € P. Let X be a set of points with multiplicities. The expansion (2.42) is reordered by

ln Z(Aly) = y_ M(X]¥) (2.43)
Y
with —
Mixlg)= 3. a@ I] M(Pl¥). (2.44)
-uprQ=x Peq
By. Eq. {2.43) we obtain .
mz@g) =3 [l Me....z.l9) (2.45)

ﬂ-Zl x:_,...,SCnEA
with the definition of the augmented Mayer amplitude

Wiz, zalw) = WL T w0t @) (2.46)

distinet
2EX

for X = {#1,...,%Zs}. If the condition of convergence (2.41) is fulfilled, the series

Z0y) _ .
A EA[Y =0) EQ: o(Q)IM(Ql¥) — M(QlY = 0)] (2.47)

is convergent for finite supp ¥ in a small neighborhood of ¥ = 0 {cf. Corollary 2.2.3.}). For translation invariant
gystems the augmented:Mayer amplitude is transtation invariant and with the notation

M(Z1, .., Talth) = " M(Z1 = Znt1s+ -1 Tn — Tng1,0]¥) (2.48)
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we obtain for the density of the free energy in the whole lattice Ay = (aZZ)”

Jim o ln Z(AlY) =1+ Zf H(zy,. oy Tn ). (2.49)

“lAl n>1Y 1 wEnEDor

This series is convergent, if (2.41} is fulfilled.

2.4. CONNECTION OF PERTURBATION AND MAYER EXPANSION

In this section we will carry the perturbation expansion in the form (2.40) by formal resummation and
we will show how Mayer amplitudes (rsp. activities) are represented by Feynman diagrams. The perturbation
expansion of the Mayer amplitude is not convergent, but it is an asymptotic expansion (cf. chapter 4. }. We
suppose that the functions F; in the definition of the partition function (2.1) are of the following form

Folds) = e2V9s), (2.50)

A is a dimensionsless coupling constant. Per substraction of a constant in the propagator the distributions Fj of
examples b) and c) (p. 19-20) are transformed in the form (2.50) (cf. chapter 3. ). We consider the expansion
in A of the partition function

Z(A1%) = [ duo(8) [] V0490, (2.51)
TEA
In the following we abbreviate V(z) for V(¢ + 9). Formal expansion in power series yields
A
28wy =1+ L E e [ (@) V), (2.52)
n>1 TpyennEnEA

This perturbation series is generally not convergent. For example the radius of convergence for the A¢*—~theory
on the lattice with single site is zero, since the integral [ du, (¢)e=*(#=+¥+)" is divergent for A < 0. With partially
formal resummation of the perturbation expansion we can get convergent expansions for non vanishing coupling
constants A. With the help of the relation (Wick-theorem)

(TT V(4e + 9a)) = 2503 [T Vibe + $a)lgons (2.53)

zeX z€X
the partition function Z{A[t) is represented by (not necessarily connected) Feynman diagrams.

PROOF OF (2.53): Let the Fourier transform V(g,) for V(¢,) be defined by
V(de) =quz$(qx)6"‘"¢’- (2.54)
With the help of the Gaussian integral (1.13) we obtain
(H V(de + ¥2)) f H [dge V(ge (gz)e9=¥=]e Harg) —
z€EX zEX
= [ T] ldas Viga)eiastejed Gom s gacte) o =

xex
= ¢t dy) H V(2 + ¥a)lg. =0 v

zcX
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We get
Z{Alg) =1+ z (Feynman diagrams with n vertices). : (2.55a)
n>1

For example a) the A¢*—theory without counterterms and external field ¥ =0

@
Z(AM:HL@\ @ +j;hh-€*[@ + @ +@ | (2.55b)

The Feynman diagrams are related to algebraic expressions by familiar rules. If the connected Feynman
diagrams F} #) appear my times in the Feynman diagram, we obtain a combinatorial factor 1/ [], my!. The number
of vertices in the Feynman diagram equals the order in A. The perturbation series {2.52) will be reordered, such
that the integration is over distinct points .

I :
zaw =1+ ¥ e [ e V) (2.56)

n>l  sewlal
{eupp b|mn

dyetinet

We have used the function
b {A~+]N= {0,1,2,...}

y— by

the nofations
suppb={z €Al by£0}, [bl= D b (2.57)

zEsupp b

and the abbreviation by, = b;. b € IN* is called occupation function with point set A. For the A¢t-—-theory we
have

Z(Aw-—.-0)=1+fm[ @w”(@@{%} 3 %H... ] + S

+L;;:zf;*[ @+ + doi ] 4 (2.58)
©

The Feynman diagrams will be put on the lattice A x IN*, IN* = IN — {0}. The Feynman diagram F with
occupation function b, i.e. the vertices occupy the point set supp b and the point y is covered by vertices of the
Feynman diagram F, will be put on the lattice

I= Y {9x{L2....5}. (2.59)

yEsupp b

The lattice A x IN* is called indes lattice with base A and I C A x IN* defined above is called sndez set for the
occupation fanction b, Conversely, it exists for every index set I with |In{z} x N*| < oo for all z € A an
occupation function b. We can rewrite the expansion (2.54)

ZAlW)= 3,  (Feynman diagrams F € 7). (2.60)

FoAXNY
I indsz wot

% is the set of all Feynman diagrams with the set of vertices = 1. The canonoical projection p is defined by

(2.61)

. {AXN*—+A
")y
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The Feynman diagrams F' € 7; on the index latiice A x IN* are related to graphs p(F) with vertices on A by
the canonical projection p. The set of vertices for the graph p(F') is p(I) and vertices z,y € p{I) are connected
by a line if v,y I8 in the algebraic expression for #. Two vertices in p(F)} are connected by at most one line.
The graph p(#'} emerge from F by omitting self lines and replacing lines which connect the same vertex by
only one line. The Feynman diagram F € # is called poinf connected, if the projected graph p(F) is connected.
Therefore

F e 71 point connected <= p(F) € §x with X = p(I). (2.62)

Gx is the set of all Mayer graphs with vertices in X and all points of X are vertices. Fig. 2.1 shows examples
for point connected vacuum Feynman diagrams for the A¢*—theory.

P
|

-

=S TR0

" ]

[ - » . e S ] . L

(a) {(b)

Fig. 2.1 Example of & point connected Feynman diagram (8} and not point connected Peynman diagram {b) and their related
Mayer graphs for the )l¢4~theory.

The Mayer graphs G € §x stand for the following algebraic expressions. Every vertex z € A of the Mayer

graph G € Gx stands for . ]
Fz(qz)elqmz e~ $9aYaata

Lines in the Mayer graph @, which connect z and y, stand for the *super propagator®

¢TI0y ],

There is no combinatorial factor. After integration over g., £ € X we get the algebraic expression I{G) for the
Mayer graph G € §x. Because of Theorem 2.1.1., Eq. (2.6}, we obtain

AX|p)= ) IG). (2.63)
GEGx
Splitting the expansion {2.60) for Z(Al¢) in point connected Feynman diagrams we obtain

zaw =Y. 3 I ¥ u#) (2.64)

YCAy=Ex X Fezi®

k- (7<) is the set of all point connected Feynman diagrams with veriex set X. I{F) is the correspondmg algebraic
expression for the Feynman diagram F. As in the proof for (2.38) we have -

24 = Y [Tbuxi+ 3 25 (2.65)

A=) x X C FeFe
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If the coupling constant A is replaced by the point dependent coupling constant (¥ C A)
_{A fyeY
Ay (z) = { Q otherwise
(the interaction is switched off outside Y), then the partition function Z(A|¢) equals Z(Y |t} and the repre-
sentation (2.64) is also correct, if A is replaced by Y. From (2.63), (2.65) and the uniqueness of the polymer
representation, follows

(2.66)

AX|9) =6+ » KF) - (2.67)
PeF?
and for Mayer amplitudes
a=v1%l
M(th)‘—“_IX“ 3 I (2.68)
FeFir)

The representation (2.36) for the partition function is equivalent fo

i
Z A = Z E E St yoors¥ng
(o) =1+ a2lk>1 _ () HJ'=1 mi({m})! ﬂi:-'.‘i?’:fz“ Mo tos)

ny=n
=1

M{yn,+11.- 45 Ynadna) -+ M(Fnyboodnpos s ooy va) (2.69)

where m;({n}) = |{rln, = 7}| is the number of n, = § in the pastition {n;} 2nd M(Y[¢) = M{y1,...,yn|¥)for
{%1, .- Yn} = Y. The Mayer amplitude may be represented as a formal power series. This (divergent} expansion
is Borel summable in ) (sse ch. 4. ). We obtzin the following Theorem.

Theorem 2.4.1. The Mayer amplitudes M are represented by Feynman diagrams

a—1x!
M) = =z D 1(F). | (2.70)

5‘3{{” } is the set of point connected Feynman diagrams with vertex set X. The representation by Mayer graphs
is

w(x]y) = S [ 1+ S dae Pulga)etieneemitosme it X = {2}
T X | Zoegx S Maex %= Fo(ga)ette¥sem et ute] [[ o peglem®md -1 if [X] 2 2.
(2.71)

From the expansion of the e-function in the representation(2.6) for A(X|s) we obtain an explicit expression
for the expansion of the activity A(X|#) in the number of lines

oo k
n =y o 2 8y .
A= Y (D) > T Sy el peeawal )
n=|X}-1 WenX", v supp & cODDected (sv)eX* Y z€X 5

JelHlel=n, Pny=x loiso if 1x1=2

X* denotes the set of all lines in X C A, supp k = {{zy) € X*| kzy # 0O}, P(k) = {z € A| b€ supp k
z is point of b}, kzy labels the number of lines in the Feynman diagram, which connect z and ¥ , 2. iabels the

number of self lines in z. ky = 3 cx Kys i8 the number of lines, which emanate from z and connect a point

different from z. The pumber of lines, which connect different points is {k| = 32 (zyyex~ Fay and the number of

gelf lines is |8} = }, cx 9= F,‘*’(fp,) denotes the k-th derivative at . The possible numbers of lines, which
emanate from z, are fixed by the derivatives of F; at ), = 0. For example for the A¢p*—theory 4n lines, n € IN*,
can emanate from a point.

PROOF FOR. (2.72): Expansion of the e-function in {2.6) gives

A(X|¢) = | Z [ H [@wﬁz(?a)&iq"ﬁ’ Z: (-1 _(ﬂ?f_q‘:_./z)::}

Gegx "’ zex 40 8z

oo beg
I (3 ipitetl?) o)

(2¥)EG kay=1
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and from distributivity

o0 kay_
AXlg)= Y (1" > LI 35
n=|X|-1 e X", JenX (=p)ex> %Y

supp k connssted thltlelmn, Pik)=x

IT =2 [ dggaeetn Bgaee]. (214

X
After inverse Fourier transformation we obtain (2.72). /

The perturbation expansion for In Z{A|¢) is a sum of truncated expectation values

In Z(A|#) = Z( a—vn L (Vi Ve (2.75)

nx1 -

(proof see app. A). The Feynman amplitude

Pz, ml¥) = S0 (V) V) (2.76)

is 2 sum of connected Feynman diagrams. If same arguments occur in the Feynman amplitude we will write

f(y?l! ,!Jk"lfl’) f( Yiseoos¥1 youny Yhyooon U hb) (2'77)
_, el N’
7y arguments i, arguments

After partial formal resummation we obtain for the perturbation expansion (2.75)

~ )8l
Afd)) Z Z % /;:.)u-yneA (‘v(yl)bl; ey V(yn)bn) =

n>l  eNA distingt -
Jeupp 8|mn

=2 2 f cnen Tl i) (2.78)

n>1 bENA di rtmct
|eupp ble=n

with || def > zea bz and definition(2.57) for supp b. Reformulation of the integration over distinct points in a
summation over subsets of the lattice A gives .

mZ(Alg) = Y I1X|ta’*l 3 Fzh, . aby) (2.79)

X X
BAEXCA bEN

with X = {z,...,%,} and IN* = {1, 2,3, ...}. We have shown that
Z(Al$)= 3 Vx (2.80)
l;u’gg.m

with the definition (2.19) for Vx (2.79) and (2.80) are also fulfilled for arbitrary ¥, 0 # ¥ C A, instead of A.
By the following Lemma 2.4.2. we obtain

Vi = |X] 2% 3 ?(z_i",---.mf."lw)- (2.81)

bem’.x
Lemma 2.4.2. (Mdbius inversion formula). Let Q(Y), 6 # Y C A, be defined by

QW)= 3 LX) (2.82)

X
XY
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Then we have
LX) = ) (-)*-igey) . (283)

. |¢¥gx
and the representation (2.83) is the unique solution of Eq. (2.82).

ProoOF (CF. [13], .{lé]): Uniqueness of representation (2.83): By definition (2.82) we have L{{z}) = @({z}).
Let L{Z) be uniquely determined by @ if |Z[ < n. By Eq. (2.82) we get for X with |X|=rn and = ¢é¢X

LX+{z})=QX+{z)- D L2 (2.84)
$2£ZCX

So we see that L(X + {z}) is uniquely determined by @. The uniqueness of representation (2.83) follows by
induction.

Proof of (2.88) We have to show
)= Y Y (-nF¥igux). (2:85)

X r
PEXCY PpXICX

(2.85) is fulfilled if

ix-x 1 X' =Y
Ex: (-1) { o otherwise, (2.86)
X'CXGY

Let n = |X|, 8 = | X|, ¢ = |¥| be the number of elements in X, X', Y. X is fixed by the choice of rn — s elements

from the £ — g elements of ¥ — X'. This can be done in (57°) ways. Therefore by the binominjal Theorem
follows
t |x7| t— 3 =2 t—s
_1y¥l= x’ = -1y - = —1¥*1 - =
I > (20 > 0("%°)
RICXCY rEn<t -

- Y o 1 ift=3s
=@1-19= {0 otherwise. - +/

From (2.80) and the M&bius inversion formula follows

Vx= 32 (DX z(vie). (2:87)

Y
arY CX

Because of (2.81) and
a*® F(z1,..., 209} = ' > I(F) (2.88)

connected Feynman diagrams »
with vertices «y,...,2s

we have
Vi = X! Y HF). (2.89)
Fe?“(:c)

?,(f) labels the set of all connected Feynman diagrams, whose vertices occupy the set X C A. The activities
A(X|}4) in the polymer representation for Z(A|$) may be represented by point connected Feynman diagrams
(see Theorem 2.4.1.} and the functions Vx are represented by connected Feynman diagrams. Since all connected
Feynman diagrams are point connected, there are less Feynman diagrams required for Vx than for A(X]v).

We have only to consider polymers P with |P| < n for n-th order perturbation theory. Because of M{X|y) =
O]}, 'we obtain
zAlp) = > [IMx)+ o). (2.90)

A= x X
IX[€n '
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Let we remark that the first term on the rhs of (2.90) contains terms of all orders in A.

The Mayer amplitude M is a truncated expectation value of the following form

bt 2 ]

M(z1,...,2Za|¥) = (e_’w(”‘) —1;..5e2VE) ) (2.91)

(proof see app. A}. The following Lemma express partial truncated expectation values by complete truncated
expectation values. For that we will need the following definition:

Definstion: Every matrix can be brought to block form by permutatxons of rows and/or columns. A matrix is
called trreducsble if it consists of only one block and no row or column is identically zero.

Lemma 2.4.3. Let Fi(éy.), + =1,...,n, be functions and n; € IN* = {1,2, ...} positive integers. Then we

have
n n
g I, ns! [0
TIFers =3 2 o TTTT s ). (2.92)
=1 i1 A0] ( =1 HJ =1 tJ )I =1 =1 '
AR
The sum is over all irreducible n x I—matrices k") = (k‘(;)) o with k(” € IN and EE Icf-;) = n4.

PROOF: For positive integers n; € IN*, © = 1,...,n, let us define the following index set

I=Z{y.—}><{1,2,...,n.-}C{yl, ...yn}X]N*. (2'93)
=1
With the notation
F(z) = F(¢y,) Horplz) =u (2.94)
{p = projection map, see p. 27 ) we obtain from the definition of the truncated expectation value (cf. app. A)
Fr(g)™ . Falya)™y = Y TITTFG; D (2.95)

I.__E_; J zeJ

or equivalently

m i
(F1(y1)”‘ Falga)) =D D H H[F(m), (2.96)

=1 ., Z‘. 2Ed;
with m = |I| = §.;_, ni. For every partition I = s ey Ij of the index set I we define an n X l—-matrix
( 57 )!:i it by I
) =z L | pla) = w)l (2:07)
With this notation it follows from (2.96)
m i n

(Fg)™ o Falwa) =Y 3 TLTTIFw@: 159). (2.98)

=1 ;.5 =1 i=1
I= Ej:l'r-’

For different partitions ) I; we can get the same matrix kg-}. We have
H n,'/[(]] H ki) 1] (2.99)
cfml =1

partitions > I; with matrix (kg-)), defined by (2.97). Since permutations of the index j do not lead to new
partitions, we get a factor 1/{! and we obtain from (2.98)

m e i n
', ngl
(Fy(31)™ ... Fa(yn)™) Z > e IT; =1 !km! 10 HF,(y,), : (2.100)
=1 E‘ (‘)UJ i=1 J""l L %) _1=1 =1
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The matrix (kf;)) can be brought o block form by permutations of rows or columns. Every block form of (kg))

defines a partition ¥ = {1,...,n}, where N is a set of indices for rows of a block in (km) So we obtain
from (2.100)

n fin ' : 2 n’
TIRRARSEE S | {1 SRR > e e
ST} N TR 10 irreducible (Tliew Tlyms kg4
za(n) HA)

HN)

[T I ]”5'5‘N)}}. (2.101)

J=1 iEN

From the definition of the truncated expectation value we get

IDFG)™ =2> > Lz, nd 0 H(H[ Ww); 1)/ (2.102)

i=1 >1 k(‘t)\'rrsd(ueibls (Hs—l HJ 1 :J ')z F=1 i=1
1)
,'=1kl‘j

=ng

Expansion of the e-functions in Eq. (2.91) for the Mayer amplitudé gives

— N AE‘*‘J-
Mz, alt) = R V@)™ i Vo)™, (2.109)
{nitiz1,0n i=1 T

With the help of Lemma 2.4.3. it follows from (2.103)

2

nxi matriz

M(zl,...,$n|¢) =

(5= II f')!)nHH NE (H[V(zz )

[ETR G
irroducvbls
(2.104)
With the definition of the Feynman amplitude F (see (2.76)) we obtain the following Theorem 2.4.4. for

representation of the Mayer amplitudes by Feynman amplitudes.

Theorem 2.4.4. The formal power series in A for the Mayer amplitude is

:,-—1 (S, k(‘) ; z):
rrefrrll |} PR kg)f I3 H 7 cer2n) (2.105)

The sum is over all irreducible matrices k") whose entries are non negative integers.

M(El, . .'.,I“N?) =

Remark : Feynman amplitudes F are represented by connected Feynman diagrams. The condition of irre-
ducibility for the matrices k() in (2.105) corresponds to the fact that Mayer amplitudes are represented by point
connected Feynman diagrams. Eq. (2.105) is an explicit expression for the representation:of Mayer amplitudes
by connected Feynman diagrams.

2.5. THE TREE GRAPH FORMULA

To obtain estimates for the absolute value of activities A(X|¢) the tree graph formula is:more useful than
the representation (2.6) by Mayer graphs in conjugated space. The activities can be expressed by iree graphs,
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i.e. Mayer graphs without loops. We will need some notations and definitions to formulate the tree graph
formula. An n-free is defined by the following function

n:{2..,n}—{...,n—-1} with 9(s) <4 (2.106)

1,...,n are called the vertices of fhe n-free 5. Vertex 1 is called the root of the n-tree 5. The links of n are the
pairs (n(s},1), =2, ...n. For the n — 1 real parameters 3y,...,8,.; we define

finls) = H 3a—280-3 - - - 8y(a)- (2.107)
a=2

Empty products are 1 as usual. For example f(n|s} = 1 if » = 2. Fig. 2.2 shows an example for an n-tree,
‘n=28,

Fig. 2.2 np-tree deflned by 5:{3,....8}={1,...,7}, n(2)=n(8)=1, n(4)=4(5)=2, 9(6)=3, n(7)=n(8)=5. 1 is the root of the n-tree
n. The vertices 4,6,7,8 are called maximal vertices of ». For f(n|a) we obtain f(n|s)=as03030,634,.

A tree T with point set X, |X| = n, is an n-tree 5 together with a bijective map (labelling}

Z {{1"""‘}‘““' (2.108)

=T .

For integration over the parameters s;,...,8,_; € [0, 1] we abbreviate

1 1
fda,._l =f dsn_1 f ds,. (2.100)
‘ 0 0

We will define a propagator v(s| modified by the parameters s,,...,s,

Si8441 -0 851 Vg, fi<j
Vz.z; [8] = § 858541 ... 8i1Vas; ifi>jg {(2.110)
Vi if § = .

The number of links in an n-iree 5, which emerge from vertex ! is denoted by d,(I). With the definitions and
nolations given above we have the following

Theorem 2.5.1. (Tree graph formmula). Let A(X|y} be the activities in the polymer representation for
Z(Al¢) and let z € X be an arbitrary point. Then we have

A(X]y) = Z”: ; fdo'u-1f(ﬂ18)/ dpay (o} (¢} 1:[2 [3¢5(a) Y5(a)E(n(a)) m] H Fy5)(ds06) + Y3(5))

= b=1
F(1)=z€X

(2.111a)
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and equivalently

n adiin) |
At =3 3 LIT va [ donsstols) f ampa(@) |11 fé—fﬁﬂ;(%wm)] (21110)
F(1)=nEX = '

with n = |X| > 2. The sum is over all n-frees y and labellings #: {1,...,n} — X, % bijeciive with #1) ==z

PROOF: see app. B.

An n-tree n with labelling £ is related to an algebraic expression I(n,£) by the following rules. For all
vertices o we set Fy, (@z, + ¥z, ) and for all links (s7) in n we set %vmq Eg—' The differential operators acts
[ x3

on the product of the F-terms. After integration by [ don—1£(n|s) [ dus(s)(¢) we obtain H{n,%). The activity
A(X|Y) is
AXl9) =3 3 In%). (2.112)
] 3
#(l)=zEX

Remark: There exists (n — 1)! n-trees n {(n > 2).

PROOF (BY INDUCTION)}: For n = 2 there exists one tree with link (12). Let the assertion be true for n.
A new vertex (n + 1) can be connected to an n-tree  in n ways. We obtain an (n-+1)-tree. The number of
(n-+1)-trees 7 is therefore n(n — 1) = [(rn+1) =1L/ '

3. ESTIMATES FOR SIMPLE MAYER EXPANSIONS

In this chapter we consider estimates for the absolute value of the activity
M(X|9) = ~81,1x) + AXIY) = { ][ (Falda +¥2) - 1; ] (3.1)
xEX

where X is a polymer with |X| > 2. From (3.1) we see that estimates for the activity are at the same time
estimates for truncated expectation values and Mayer amplitudes.

3.1. SUBTRACTION TRICK AND TREE ESTIMATE

We need an assumption to obtain estimates with the help of the Cauchy inequality for the functions
Fo($z), =€ (aZZ)”, in the definition (2.1) of the partition function. ‘

Assumption: Let Fz($5) be holomorph and bounded in
8, = {¢a: e l ]Im ¢'1:| < N} (2.20)
for all z € (aZZ)".

F,, z € (aZZL)”, is a distribution for the discrete Gaussian model and the nonlinear c—model (see examples b)
and c) in ch. 2., p.19-20 ). Nevertheless the above assumption can be fulfilled in this examples, if the propagator
v is positive definite. For that we have the following Lemma
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Lemma 3.1.1. (subtraction trick). Let ¢ be an N-dimensional field with propagator v. If
v—60>0 (3.2)

for a positive constant § > 0 we have -

f dpe (¢) [] Folds + ¢) = f dpe—sn(2) ]|

zEA zEA

{ (2n5)~% f dé e Brlba—t—v) (Ez)} (3.3)

PROOF: From the convolution formula (Lemma 3.1.2.) we obtain

[ (@) T Pt + 02) = [ dbesa(®)duisn(e) [T Ful®e + 6o + v2) (3.4)

€L zEA
(3.3) follows from (3.4} and the definition of the Gaussian measure with covariance § 1.,/

Remark: Fy(¢s + ¥) is replaced by (2n8)~F [ dépe3(¢e—4=¥)"F (£,), if v is replaced by v — 51 The
integral [ d¢.e~ $(Ea—damva)’ (€2) is holomorph for Fy(€:) = 3=, 6(£z — 27n) (discrete Gaussian model)
and for Fy(&,) = 5(&2 - 1) (nonhnea.r o-model). Lemma 3.1.3. shows an explicit expression for the constant
§ for propagator v = (—A + m?)~!,

The convolution formula wsed in the proof of Lemma 3.1.1. is

Lemma 3.1.2. {convolution formula).

fdﬂv1+v,(¢ + 1/) H Fz(¢z + 'pz) = f dﬂv;(‘ﬂ / dﬂnn[¢) H F; (¢:|: + V”z} (3-5)

2EA xEA
PROOF¥: Let the Fourier transform f‘x(qz) of Fz(¢z) be defined by

Fu(da) = f dgu Fu(gs)etebe. (2.2)

From the Gaussian integral
fd#u(¢) H giabe . o~ A(0v0)s

TEA

with (g,v@)a = 37 o4 €z¥zyy Tollows

fdﬂul+u, ¢+ T,b) H F ?57, +1,l)z) f II dq_,,; q: ]6 Ha(vitra)gla

2EMN E17

f 1] [dazF(ge)] f dity, (4) f dptay (9) [ €92+ =

zEA TCh

= [ 450,(®) [ dpes ) T] oo+ $)- v (39

xEA

Lemma 3.1.8. Let v=(—A + M?)"'a"2. A is the Laplacian operator on the v—dimensional lattice (aZZ)”
Then we have
v—-8§0>0 (3.2)

for &§ = (4 + (aM)?)~! and

— = [(aM)? (aM}? ..,
5 [ oy P~ = a0+ #7)
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PRrROOF: From the definition of v5y follows
a2 (A + M?) Ly, = &yy. (3.8)
The Fourier transform #(k) of v,y is defined by

al)

— A $k(z—y)
il (27)> v/i'c,,e[_z. z 4"k G(k)e (3.9)

. From &?(~A)f(z) = E, v [7(=) — f(y)] {the sum is over all nearest neighbors y of z} we obtain

v
a®(—0 + M)e* =) = [23 (1 ~ cos kua) + (Ma)?[e*=9), (3.10)
p=1
From {3.10} azd
a¥ .
e &'k &5=-v) = §_ 3.11
(2x)” /3;;6[-—‘- z i ( )
follows ] }

(k) = (3.12)

25 (1 —cos Fpa) + (M)
Insertion of (3.12) in (3.9) gives

S f &k A 3.13
" Seenn I (L~ conkga) + GMP (313)
Because of 1 1
> 3.14
23 neq (L —coskya) + (aM)? T 4v + (aM})? (3.14)
and Eq. (3.13) we obtain
Ugy — 802y 20 for § = [dv + (aM)?]71. {3.15)
Since 8.y is the kernel of the operator I, we have
v— 613 0. (3.2)

From ¥ ¢ (az)v Yoy = 9(0) = Ta_nlﬁ" and (3.15) we get (3.7). /

_ The sum over the trees in the tree graph formula can be estimated by the following tree estimate ([8], [6]):

Lemma 3.1.4. (tree estimate). We have the following inequality for the sum over all n-trees ) with veriices
l€{1,2,...,n} and non negative u(Ij > 0

1 n n
= [ dens £nls) TTwORr@) < TLmtes-21 (3.16)
n Y@ 1) 1=3
" PROOF {[8]): We have to find an upper bound for
1 n
S(un) =) j; dsy...dsn_1 [J#(Ds1-201—s ... 3qys{n(}))]. (3.17)
n =2
The summation over n-trees n can be replaced by summation over k = (i) from 1 to { — 1, Therefore
1 n -1
${p,n) = fo dsy ...d8n_ H[E B(Da_2815 ... axu(k)]. (3.18)
i=2 k=1
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Because of f01 dsue®® < % we obtain
8'(p,n) < p(n)e* "V 8" (u,n - 1)

with
n i—1

5’(ﬂ: f dsy ...dsg H[Zy DNsj_z.. 3kﬂ(k)]ezlr=x g pik)

i=3 k=1
From (3.19) follows

$'(p,n) < H[#(l)e"("l)]s (1,1) = H[F‘ (Nesli=1)]

1=3
and the assertion (3.16) follows from §(u,n) < §'(4,n). v

The following generalization of the Lemma of Battle [14] is a corollary of Lemma 3.1.4. .

Lemma 3.1.5. We have for allnye NU{~1}, i=1,...,n

% [ donattrs I +nis G220 T HIZ"'”(M + Dl

The sum is over all n-trees n and di(n) = number of links in n, which emerge from vertex .

PROOF: From Lemma 3.1.4. follows {u(i) = #)

H n n—1
> [ donasale) [T 6 < [T (tsae®)
n "0 =1 =1

Multiplication of inequality (3.28) with #"++ [/, tf*e~%]et yields

1 n—1 ) n
E f o1 f(n] s)tf‘(".”“‘“e'z‘l H(tfl(ﬂ)"'"le--?ta)tﬁn(ﬂ)-i-une—tn < Ht?.ﬁe—e:_
w0

i=2 =1
Because of o o !
n—t __ ¢ n -2t __ -
A‘ dtt"e”" =nl, fo dt t"e _—2,“_1.

we obtain from integrating (3.24) over {y,...,1, from 0 to oo

! d 1)! (d
S [ don-ssnley H[z,;,((?,iififl () + midt < TTme+ 101
,, _

I=1

From the relation
n-1

> di() =2(n—1) - 1

=1

follows )

=2 =1

Zf don_1 F(n]s){da(n) + 1 +1) 'H di(m) + m]t < H [2%+3(n + D)Y{n. + 1)1
P 0

The assertion (3.22) follows from (3.28), since d;(n) > 1./

The following special cases of Lemma 3.1.5. will be used

1 n . "—
S [ docs snie) [Tt < S
7 0 i=1
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(3.24)
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(3.28)

(3.29)



and

1 n
3 [ donssale) [Tidim - 1< 4  (330)
] =1

3.2. ESTIMATES WITH THE HELP OF THE CAUCHY INEQUALITY

For the following Theorem 3.2.1. we will define the distance L(z;, %2, .., Zy) of n points z;,%3,...,2n €
(aZZY. L(21;...,%n) is the length of the shortest polygon, which connects =1, 23;. .., %n. Thus

L(X) = L(z1,---,%n) = n}}n(%’r e = zill, X = {Z1,..., 2} (3.31)
i

lI.]] is the euclidean norm on the lattice. T denotes trees with n vertices ®y,...,%p.

Theorem 3.2.1. (Estimates for truncated expectation values). Let F;(¢.) be holomorph and bounded
fanctions in the complex strip |[Imé,| < & for z € X = {21,...,2.} C (422)”,n 2 2. The constants beand bX
are defined by

be B min  sup sup  |Fae(de) — ¢l (3.32a)
cER ze(aZ) 4.eC

Em ¢:|ex

and

det .
bF = min sup o Fe(ga) =l (3.32b)

Im dzl=x

For the truncated expectation value

M(X19) = { ][] 1Falda + ¥2); 1) (3.33)

2eX
real ¢4, we have the following estimates
(i) Let the propagator v be exponentially decreasing and
[y < De=l=ol, 5,y € (am). — (3.34)

Then we have

x?e—mL(X) T8D% 1"
— 1 4
MOx)] < (- D B ] (3.39)
@) K 1
a™v Vgyl = —— < 00, 3.36
-/;e(az)vi vl (ma)? (3.36)
then we have
31 8bhe "
g—vin=1) M(X|9)| < (n — 1)1 I785) [ 5 ] . 3.37
x,,...,s"e(azz)vl (Xl = ( 1T (ma)? (8.37)
PROOF: Because of
minsup sup |(Fa(¢s) —1) —c¢| =minsup sup |Fo(de) — ol =b7 (3.38)
cER zeX -, ¢ cERzgX
Hm gzl=n |Tm du|mmr
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the constants b, and b are independent of ¢, € IR. Thus we can suppose ¥ = 0. Let us set M(X) = M{X|¢ =
0).

{i) From Theorem 2.5.1. (tree graph formula) and (3.34) follows

M| Dt 0 5 [ o ptale) | dﬁu[sl(«t)[HI ,,,,(,,, Fa(:)l (339

n

z(l)_zEx
The Cauchy inequality reads
g () di(n)!
gy 9o < ST (5.40)
The Gaussian expectation values are estimated by
[{F(#))] < sup [F()]. (3.41)
From (3.39), (3.40) and (3.41) follows
n—1_—m ! “ d bx
MO0 S (n = DI 3 [ don-sstal9 ,I_I [k ]. (3.42)

The relation } .., di(n) = 2(n — 1) yields

- —m. n 1 ! -
IM(X)| < (n~ 1)1 D*le ™) BX) ;‘5(,;:“{)-2/(; don—1 f(nls) [] di(n)! . (3.43)
n =1
From the special case (3.29) of Lemma 3.1.5. we obtain
A bx ngn—1
18(X)| < (= 1)t Dr-temito0 CELEEC (3.4

(ii) The tree graph formula for M(X) reads

(n)
M=% ¥ [ donssls) [ dssiq @ TT vece) L[I kil z.(qéz.)]- (3.45)

(i5)en =1 a¢

2(1)-zex

Analog to the proof for (i} we obtain from the Cauchy inequality {3.40) and the estimate (8.41) for
Gaussian expectation values

Mo < el 8 [ donastrin 1 vz.x,)Hdr(n)‘ ()

z(l]szex (‘J’)G"

Integration of inequality (3.46) over z3,..., %, € (aZZ)” gives a factor {ma)~3("=1} on the rhs. Thus

a—v(e—1) |M(X|¢)| <(n—1le— st o M)B(H) Z f don_1 f(n]a)Hd;(n (3.47)

Tidyeer,Bn E(GZE i=1
From the special case (3.29) of Lemma 3.1.5. follows the assertion (ii). 1/

Remark : For translation invariant theories the constant b¥ is independent from X. ¥ 5X(b,) is replaced by
b%, o (betx) in the inequalities (3.35) and (3.37) the assertion of Theorem:3.2.1. is valid for all ¥, € Si.
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Theorem 3.2.2. (Estimates for truncated expectation values of flelds with N components). Let
the functions
o {(L‘N -
2 (Bt es bou) = FalBotyeees boy)

be bolomorph and bounded in ¥ = 8 x <+ X 8, with 8, = {¢ €@ | |Im ¢| € &} for all z € (aZ)". The
constants b, b are defined by :

(3.48)

def
be = min sup sup |Felba1s--eyPa,n) — €l (3.49a)
c€R zc(az)v p20€ @, 11m o, femn
ig{1,....N}
and
def
b,’f = min sup sup |Fa(baz,1se- s ban) — ¢ {3.49b)
C€R 26X 4. €T, iim 4. l=r
€L N}

Let the kernel of the propagator be defined by
Vgy i = 6,'..,‘!)5,9, f,j [ {1, ean N} (3.50)
We have for the truncated expectation value

M(X|p) = (H (Fa($s + ¥2); 1) (3.51)

z€X
where X = {Z1,...,%n} C {(aZ)”, n > 2,and (. } = [ duy(¢)[ . ] the following estimates
(i) Let the propagator v be exponentially decreasing and
|tzy| < De~ =¥l z,y € (aZZ}. (3.34)

Then we have

2g-mI(X) [gDAN2EX "
IM(X[9)] < (n = 1)t mlgq«pm [ 12 ] (3.52)
(ii) Let
—v _ 1
* [ze(az)v [vay| = {ma)? < (3.36)
Then we have
—v{n=1) (mcm)z Bb,,,'yN*]"
ave-i) [ e ety MO < (-1 | T (3.53)

PROOF: We can suppose ¢ = 0 (see proof of Theorem 3.2.1.). Abbreviate M(X) = M(X|¢y = 0).

(i) From the free graph formula {Theorem 2.5.1.} and (3.34) we obtain

|M(X)| < (yD)*"LemHO Y 2 f don-1 f(nls) f dptyuls) (¢)

K F(1)=x€X

n

010> 3%(_ am,,m, ) [] Far (a1} (3:54)

=2 =1 =1

From the multinominjal Theorem follows for the bracket {...} in (3.54)

,,)!
}<H 2 I(II 5 e (920 (3.55)
=dz(rf)
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Because of

3 1< NE0 {3.56)

m:l:,-.;::l:n)

and the Cauchy inequality
F m11...mN!bX 3.57
(14 s (6] € A2 (3.57)
=1 T &
we obtain from (3.56) (
a(n)! vamypx

{.} < Gy N (3.58)

Inserting (3.58) in (3.54) yields
' 1 n
IM(X)] < {10)""‘(§)““*(bf P (n— 1)1 e mEE) Y f dow—1f(nls) [T ds(m)t - (3.59)
7 v0 {=1

From the special case (3.29) of Lemma 3.1.5. follows the assertion (3.52).

(ii) Integration of the tree graph formula over zz,. .oy Tn € (aZZ)¥ gives

L L [ | P

i(.l)::::EX

{| H(Z 345:.,; 3¢=,,(,),, Hﬂﬂz (¢m)|} . [(3.60)

=2 =1 =1

g—v{n=1) - |IM(X1¥)| < (
Ta,n®n E(@Z)”

The proof of (3.53) is analog to the proof of (i) if we replace

—mL(X) 1
e -1, D - --——(ma)z. Vv {3.61)
Remarks:

(i) The remark after Theorem 3.2.1. is also valid for fields with N components.

(ii) H we replace x? by x2/(7N?} we get the assertion of Theorem 3.2.2. from the assertion of Theorem
3.2.1. .

(iii) The assertions of Theorems 3.2.1. and 3.2.2. are also valid after substracting the propagator v by §1.

We will now present upper bounds for the constant

b ==min sup sup | Fp(dz) - ¢l (3.62)
celR 2E(aB)” 4. e ¢ .

|Em gx|=x

In the case of the A\¢*—theory without counterterms, the discrefe Gaussian model and the nonlinear ¢—model :

Lemma 3.2.3.
(i) A¢*—theory without counterterms:
For Fo{¢s) = ¢~*9% we have
b < €82 (3.63)
(ii) discrete Gaussian model:
For F(¢,) = (2x6)~% Tne(amy f et $(¢.—¢2)"5(¢, — 2nn) we have

<

be < W (3.64)
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(iii} noniinear o—model:

For F9(4s) = (226)~% [o_. dége—(€s~¢:)" (§¥N—1 (N — 1)— dimensional unit sphere} we have

b o< 9o r* (38
PROOF:
()
b, € max |e"”¢’+'l'°)‘| = max {e—w:‘*"”""‘ﬁ:“""‘}. (8.66)
® 7 4.€R ¢ER .
Since ¢2 — 65242 > —0x*, we have
b < 82", (3.67)
(i) From the relation ([15]) :
1 .
= D ™ = 3" 5(é, — 27n) (3.68)
meZZ nEZ
follows
3 . em’fzﬁ i Comd Y bi(mE
FO o xin) = 55— 3 (an0)h [ dgsem dieemsavitmante -
4 meZ
226 .
= e’;w 3 ehimbn)gimés (3.60)
meZZ
Therefore
52 (1-5) 7 {26
(6) €T [ —§m? -
be S 1F27 (¢ + 1K) ry. | < 2 E €
meZ—{0}
x?j26 90 2 2126 poo x? 26
=l Y et g i / dz e ¥ = = . (3.70)
4 m=1 i 0 (2"‘5)‘}
(iii) We obtain for the nonlinear c~model
b < (208)~F | dglem HlGmdt < ()~ FON M/ (3.71)

SN-1

On_y = 211'?1‘(%)“‘ is the surface of the (N — 1)—dimensional unit sphere. /

3.3. ESTIMATES FOR ACTIVITIES AND EXISTENCE OF THE THERMODYNAMICAL LIMIT FOR THE
J\q'l"‘—THEORY, THE DISCRETE (GAUSSIAN MODEL AND THE NONLINEAR &—MODEL
ON THE LATTICE

We can obtain conditions for the constants b., (ma) and , such that the convergence condition (see section
2.2.) .

1
3 ' 7 M 2| _ am
e>1: gfie mp 3 MKW <1 -
2EX C(aZ)V
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* is fulfilled, if we use the estimates for the activities given in the Theorems 3.2.1. and 3.2.2. .
For the following Lemma we need estimates for the monomer activity M{{z}|¥). We suppose
Fe(0) =1 (3.73a)
for all z & (aZZ)” and we consider only theories, which obey the following symmetry
Fz(¢a) = Fo(—¢2). : (3.73b)
With this assumptions we obtain by Taylor expansion

N

2
3 (bt +wx,.-)2§?1«;(sc)tg=¢,+¢,,>1 (3.74)

i=1

[

|M({z}[¥)| = [{Fa(¢= +¥=) — 1} =

with some s € [0,1]. The derivative in (3.74) will be estimated with the help of the Cauchy inequality. For that
we use the notation

by = min sup sup | Fp(éziy-eer$a,n) —cl| {(3.49a)
CEREE(GE)" $on€

| Fm ¢_=’,-]==-c

From (3.74) follows
MU < 513 o+ 0] = D5 + 197

=1

with 2 = 5N 2 THo=9(—A+m?)"", then vz < lyr. Therefore

Ny

am)?

M=) < —[( +1¢z|2] (3.75)

Estimate (3.75) is useful for not too large external fields .

Lemma 8.8.1. Let ¥, € RY be an external field for a model with N components and propagator 7(—4 +
m2}~1, which fulfiils .
2 o1

m—szz 2% (3.76a)
for all z € (aZZ)”. The convergence condition (3.72} is fulfilled, if
128 N?~b,.
(165,; + I)W < 1. (3.76b)

PROOF: The condition (3.72) is expressed by integration over the lattice

f IM(I,EQ,,._,zﬂ|¢)|£2“] <1
xz;---,mnE(mZ)"

—u(n-—l)

(372 = >1 [1+IM({I}I¢)|£2+Z =

From (3.75) and (3.76a,b) follows
IM({=}9)] < 75
With the help of inequality (3.53) (Theorem 3.2.2. } follows that the convergence condition (3.72) is fulfilled, if

3 8beEIN?y.,
3¢>2 {1+--+Z($;? S(rim) 7]}

This is equivalent to

Bbsf N2
3§>2:%{1+£+b”5 Ui } <1.

16 2 1~ %Nﬁq
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Especially for & = 4
1280, N3,y

maK

165 <1,
"1 G Ny
This is equivalent to

128N2qb,

{166, + I)W <1l

Remark : From Lemma 3.2.3. follows that the condition

1

25 (3.76a)

b .o
¥z S

has the following form for the A¢%—theory without counterterms , the discrete Gaussian model (with extra mass
m) and the nonlinear c—model :

(a) A¢*—theory without counterterms

WS oo (3.772)
(b) déscrete Gaussian model _
¥2 < (222% 5% (3.77b)
(c) nonlinear c—model
¥z < E%LVZ—%LE ERE (3.77¢)

For an optimal choice of the constant & we have to determine the minimum of the function f(z) =
72 4 >0, 1€ R: = {z € R| z > 0}. We have

min(a2e%") = f(s = (2)*) = (F) et (3.78)
PROOF:
flz) = [-—22:_3 + naz"“s]e““" =0=z= (n—zaf)i". Vv

We will show the following assertion B for the A¢*—theory with/ without counterterms, the nonlinear
o—model and the discrete Gaussian model with extra mass:

B : Let ¢ be a real external field, which fulfills the inequality

1

— T
%0 {3.76a)

b

S¥2 <
for all z € (aZZ)”. The thermodynamical limit (in the sense of van Hove ) exists for the free-propagator-
amputated Greens functions G.(z,,...,%,) and the free energy ]-fqln Z(A|¥). If the support supp ¢ of the
~ external field ¢ is finite, the thermodynamical limit {in the sense of van Hove ) exists for the generating

function
lnZ(AlY) — In Z(Al¢ = 0)

for the free-propagator-amputated Greens functions and the expansion

Z(Aly) ]

Jm b 2G| — 57a(Q) (M(Qiy) - M@ty = o) (2.47)

Q

is convergent in some neighborhood of ¢ = 0.
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Corollary 3.8.2.. Let the partition function for the A¢*—theory without counterterms on the lattice A C
(aZZ)" be _

2(a19) = [ duo(@) [T eH0499)" (3.79)
2EA
If
Mma) < c, (3.80)

where ¢ = [512¢%(16e3 + 1)]=2, then the assertion B is valid for real external fields ¢, which fulfill M4 < 5.

PROOF: From Lemma 3.2.3. (i) follows

b < €E3°, (3.81)
Because of (3.78) we choose & = { 72x) 1. Therefore
' b
;';g <4rter, b <elb. . (3.82)
From Lemma 3.3.1. with 7= N = 1 follows that the convergence condition (3.72) is fulfilled, if
. A
(16e% + 1)512 e*w <1 (3.83)

(3.83) is equivalent to (3.80) and assertion B follows from Theorem 2.2.1., Corollary 2.2.2. and 2.2.3. . v

For the A¢*—theory with counterterms we obtain

Corollary 3.3.3. Let the partition function for the A¢*—theory with counterterms on the lattice A C (aZZ)”
be '

Z(Al'l/)) — '/.dﬂ'v(‘#) H e—'\(d’z+¢z)*+§6m=(¢0w+'ﬁa)2+6e (3.84)
ZEA
with v = (~A 4+ m*)~! and
6m? = A6m2, 8@ = O(1). (3.85)
For coupling constants : : .
A < min(2/(6m?%)?, é(ma)?) (3.86)

with ¢ = [512¢}+5¢(16e! 1% + 1] the assertion B is valid.

PrROO¥: We have

b < Fea_;(Rie—-A(¢;+i!€}"+%6m’(¢,+t’m)’+6el — ;nea%{e—»\qﬁ:+6hc’¢3m;\n‘+.\-f-l§1¢:;.a§-§3a=’+5e}; (3.87)

From —¢4 + 6x2¢2 + 8042 < (35% + £2)2 we obtain
be < e""ﬂ'+k(3n’+i@-’-)’—xi§1x’+se - esu‘+mm=,¢=+xﬂ_r§-.a’.)l+5e. (3.88)

Let us choose x = (i1)¥. From (3;88) follows

be < e AL OR e (3.89)
Because of assumption (3.86) we have
ém? (4 672 1
y A%+ 6 J\<§. (3.90)
From (3.89) and (3.90) follows
b
-K—':— < 4rtel*t% and b, < et toe (3.91)

with & = (i) t. Because of Lemma 3.3.1. with v = N = 1 the convergence condition (3.72) is fulfilled, if

%1
16 14-8e £ 1+5G : ". .
( . € + 1)512¢ (ma)? <1 (3.92)
This inequality follows from assumption (3.86). Assertion B follows from Theorem 2.2.1., Corollary 2.2.2. and
2.2.3. . 4/

The following corollary presents an estimate of the activity for the nonlinear o--model with extra mass m:
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Corollary 3.3.4. Let the partition function for the nonlinear o—model on the lattice A C (aZZ)” be

Z(Aly) = fd#%v(qé) T 6((8= + ¢2)* - 1) (3.93)

oEA

§ is the Dirac distribution, (9z)zca, (¥z)zea are fields with N components and the propagator v = (—A+m2)t
obeys the following inequality
|tay| € De~ll=—vll (3.04)

with 2 = m + O(a). Then we have for the activity M(X|¢), X C (aZZ)", | X = n > 2, the following estimate

e ME(X) [4v + (am)?] 5+ De]™ on
— 1} " nN (2
MOV < (0~ D G a7 % (3.9
for real external fields 1. |
PROOF: With the help of the #dbtraction trick (Lemmé. 3.1.1. ) follows
2019 = [ b sal) [L OO 9 (5.963)
with '
FO (4o + 92) = (200)~F f dgem r(Edeia)?, (3.96b)
gNw1
Because of Lemma 3.4.1. we choose
P S— (3.97)
= Jfol4v + (am)?]’ .
By Lemma 3.2.3., (iii) we have
b% = min sup sup |Fop(@riyeneybon) =] =be < (276)~ ¥ Oy e 17 (3.98)

L1231 zeX qbr,,'E(vs"E{l ..... N}

[fm ¢=’|-]==u

where Oy.; = 2e¥T(&)~! is the surface of the (N — 1)—dimensional unit sphere §¥-1 By Theorem 3.2.2.,
Eq. (3.52), with 7 = }'v_o follows

2,~ML(X) [RDN3(2n6)~ ¥ 2n F LX)~ 1N /a8 n
MK < (n iy DT (SO ERI TG e (3.99)
We choose 28 ’
Nz==?v-= EHZ;T;EEEFq- (3100)
We insert (3.100) into (3.89) to obtain
gL 22-¥DN4s-1-%¢]"
MOV < (= 1) oo | RS E (3.101)

With the choice of (3.97) for § the assertion (3.95) holds. /

Corollary 3.8.5.. Let the partition function Z(A|¢) for the nonlinear s—model on the lattice A C {aZZ)* be
defined by (3.93). Let the following inequality for the coupling constant fo be fulfilled

r(§)

LG ] - spplaw+ taml] 2] | 53180+ amp)> (2100

256N3%e {dv + (am)?]

mfo<min(%m[
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Then assertion B is valid for all ¥, € R with y2 < Lﬁ,{-[(ew + (am)?) fo] 52,

PROOF: By Lemma 3.3.1. we have to show

128N3b,,
(165, + I)W <1l (3.103)
From Lemma 3.2.3. (iif) with £? = 2¢, § = WN(W (cf. Lemma 3.1.3. ) follows
2e [(4v + (ma)? ¥
be s oms | s (3.104)
From (3.102) follows
(16bs +1) <2. - (3.105)

Because of (3.103) and (3.104) we have to show

256¢ [4v + (am)?|N® [4V + (am)?

x

2
NE)  (am)? | <1 (3.106)
‘(3 106) is valid, because of assumption (3.102}. /

In the next corcllary an estimate of the activity for the discrete Gaussian model with exira mass is given.
Corollary 8.3.8.. Let the partition function for the discrete Gaussian model with extra mass m on the lattice
A C (aZZ} be

| 2(A19) = [ duae(#) []13 (60 —27m). (3.107)

2CA ncZZ
¢ is the Dirac distribution and the propagator v = (—A + m?)~! obeys the following inequality

|tgy| < De™li==3l, (3.94)
Then we have for the activity M(X|¢), X C (aZZ)*, |X| = n > 2, the following estimate

|M(X|$) < (n— 1)!'z—m(x)JrI deD [4v + (am)?]? ],.#1[411 + (am)?)} (3.108)
2\'[2"1? ﬁ3/2

for real external fields 1.

PROOF: With the help of the subtraction trick (Lemma 3.1.1.) follows

2(A19) = [ duge-oa(@) TT FO(6e +2) (3.100)
z€EA
with :
F{O)($s+ ) = (215)~ % f de e~ (&= 5(¢, _ 20m). (3.100b)
: nE(a.E]"
By Lemma 3.1.4. we choose p
From Lemma 3.2.3. {ii) follows
b =1b F6) e /2
=be =min su su P z) — ¢ < . 3.111
S A F2P($a) — el € s (3.111)

1Im d2]=r

By Theorem 3.2.1., Eq.(3.35), we obtain

KBe—AL(X) [SDe ’[26]

IM(X]$)| < (n— 1)} —o5 PN

(3.112)
The assertion (3.108) is valid, if we choose &% = 26. /
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Corollary 3.8.7. Let the partition function Z{A|y) for the discrete Gaussian model with extra mass on the
lattice A C (aZZ)" be defined by (3.107) Suppose that
(128¢)? (4v + (am)?)®
m)?), 1
2x {ma)

Then the assertion B is valid for ¥z € R, 92 < 22’53 (et

PROOF: Because of Lemma 3.3.1. with v= #, N = 1 we have to show

12805,

{16b, -+ 1)'('—'—")—2'—5 < 1. (1.114)

8 > max(22% (4 +(a ). | (3.113)

Because of Lemma 3.2.3., (ii) with £ = 2§ we have to show
16¢ 6def

+1 <1
(\/Zmﬁ )(ma)3v21r H
(3.115) follows from assumption (3.113) if § = mﬂ—mjr v

(3.115)

3.4. IMPROVED ESTIMATES FOR ACTIVITIES

In the contrast to the supposed boundedness of F,(¢.) in section 3.2. we will suppose here that the
derivatives of F,(¢,) increase not faster than 92 (for some ¢ ) in this section. For example Fp($-) may be a
polynom. .We have the following improved estimate for truncated expectation values:

Theorem 3.4.1. Let F, € C°°. We consider the truncated expectation value

M(X19) = (][ [Falga+ o) 1) (3.116)
zEX
for X = {51,...,7a} C (aZ2)”, n > 2. The expectation value is defined by
(0= [dun@l.],  v=(-04m?) (3.117)
Let € > 0 be a constant, whichk fulfills .
. 3 (ma)
e< e {3.118)

and

a d
cld)= sup sup |1 F, — 1)1 Cohe (3.119)
® d¢2

z€(aZZ)* ¢ €
where C. and h, are e-~dependent constants. Then we have the following estimates
(i) Let D and m(=m+ O(a)) be constants, such that
|ay| < De~Pilz-vl (3.94)
is fulfilled. Then

—-mL

DoC ) eDCIh et Taex Pl (3.120)

IM(X|9)] < (n— D E——rr

(ii) We have

Lpc?
—v(n—1) _yi(ma)? ByClhei®
: v/;g,...,a;..e(azz)" IMUXI¥) < (n = )V s =gy

for all m > 0, ¢, €@ with || < &, = € (aZZ)”.

(3.121)
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PROOF: Lef us set a = 1.

(i) From the tree graph formula (Theorem 2.5.1. ) and the inequality (3.94) follows by extracting of a
Gaussian factor e~ ¥9=

IM(X|$)| < (7D)*~tePEX YT 3 f don—1f(nls) f dipyopa}($)

n F(1)=xEX

£ 2 > 252 8 ()
eaz,ex¢,E'e 562, ) Fo(o +¥a)l- (3.122)

We will estimate the Gaussian measure by the following method :

[({F($1G(¢))| < {G(8)}] sup |F(¢)]- (3.123)

Since the propagator vs] may be exhibited as a convex combination of partially decoupled interactions
{see app. B or [8], Eqgs. (3.8)-(3.12)), we get by the assumption (3.118) the inequalities

¥ 3
eyy[s] < e-n?]I < ZI[. (3.124)
We obtain with the n X n—matrix vx = (Vpy)eyex aod Ix = (fog)zyex
2 _é'
[ a1 Do = et [ruxlelrocle) ™ — ]| =
= [ det(Ix — eyuxls])~3] < det(i-nx)-% —2". (3.125)

We insert this on the rhs of inequality (3.122). Thereby

M(X|9)| S 2" (D)3 B / P | |

" m(:):::ex =1 It
gdi(n)
6¢-d‘ ,,)Fz:(‘lf’x: +¢z)|}. (3.126)
£
We have for the bracket {...}
gd(n)
{ } < ¢§:IP]R |e Lo tedu Yay— z¢=g ; ¢::1é)R le” 4“’ ¢d¢(ﬂ) ::;(45-':;)1 (3.127)
From —£42 + €dz ¥z < e_1,b§‘ and (3.119) follows
(o} < ¥ (di(n) — 1)) CHOp,. (3.128)

Therefore

a 1 n
IM(X19)] < (n— 1)} (D)7~ e~ L00) (2p ) of Lovex %<1 3= f dow_y f(nls) ] €& (di(n) - 1.
5 "0 -1

(3.129)
Because of n
Sdn)=2(n-1) (3.130)
=1
and the special case (3.30) of Lemma 8.1.5. , we obtain
IM(X[9)] < (n— 1)t (xD)" 2 ™EX) gk, ) ef 2ouex ¥:F c20—1)gn1, (3.131)
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This is equivalent to the assertion {3.120).

(i) Because of _f;e( oz Vay| = -1z, from the $ree graph formula (Theorem 2.5.1.) follows

v/;:n,....xﬂe(az) (th)l S ( "'—1 E Z /do’ﬂ—lf(n]‘g)/dﬂqn[a](¢ aE‘x

FL)=ceX

2 8 di(n) )
Hle d) "_df,_(_,,')— 'w"l(¢-”:t+¢$£)|'

We get (3.132) from (3.122}, if we replace

—MLX) _,1and D -~ —1—

€
m2

(3.132)

(3.133)

Therefore (3.121) follows from (3.120), if we replace e~™L(X} by 1 and D by iy on the rhe of inequality

(3.20). 4/

In the next Theorem we present a generalization of Theorem 3.4.1. for models with N components.

Theorem 3.4.2. Let
- {G}'N —s @
e (¢z,1)"'s¢'w,N)HF2(¢2,1:-'-3¢5,N)

(3.134)

be functions with N arguments and F, € C™ for 2ll 3 € (aZZ)”. We consider the following truncated expectation

value
M(X|p) = ([ (Fel$a + ¥a); ]}

zeX
for X = {zy,...,2,} C (aZZ)”, n > 2. The expectation value is defined by

)= [ dunsto)] 1.
The kernel of the propagator v is
Vay,ij = bijVzy, v=(~A+m?)"
Let ¢ > 0 be a constant, whichk fulfills
2
€< ?_(ma.)
=15

and

N N
S e ) | (G S Fe(bans - b S (L[ mitlC ™ he

zE(a2)” %,-‘ER

CELL i=1 i=1

where C, and h. are e—dependent constants. Then we have the following estimates
(i) Let D and (= m+ O(a)) be constants, such that
| |vay| < De~lle=l,

Then .
e-—mL (x

o z
) TeDycana o 2V 1 CIN? e Lonex 2oims 192

IM(X]|$)| < (n—1

(i) We have

N3 Nﬂe;-Nn’
—v{r—1) X < — ma’) 842" (LA, n
& z””"zne(az)v | ( |¢)i ( 16762N2[ (ma)z ]
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PROOF: Let us set a == 1.

(i) With the help of the tree graph formula (Theorem 2.5.1. ), inequality (3.94) and the multinominial
theorem we obtain by extracting of a Gaussian factor e~ 592

M| < (D)0 S 3 [ donsstale) f By ($)eF Lomex ims 8

F(l)=zEX
4 Do T2 T[130 2 2 T (ot ) <
Jo=2 =1 a¢x| g a¢’zﬂm T je1
" rs N 2
< (,YD)nwle——mL(x) z Z fdaﬂ_lf(r;ls)fd,u.,,,i,](qb)e: Zzex Em; L
1 #(1)=zEX
n !
I > 2 ,uII s Py ($er + )} (2.139)
=1 My yaiey mpy mN ¢z;,|
Emjﬂdzfﬂ)
Because of 3 _miwomy 1 < N7 we obtain from (3.136)

my=dy (n)

sup  sup 1'[{ D OB, PRI GRP YA

.'I:E(Gm)" bz, ,ER ..... mpy g1 &1 ,%
€Ll E’")"dl(ﬂ)

S sup H{ sup | H e ‘¢*C!‘+€¢*l '¢"£ [ 2¢=",l
ze(aZ) 15 dtl,;en i1

€{d,...,N}
mp (Y AT T g, g <
b i ER LT g mN' g1 ¢::: l ' I
P€{1, e N} ijm,!(n)
n
<N (NCYm=Dp2 [T di(m)t.  (3.140)
=1
Estimation of the expectation value in (3.139) as in the proof of Theorem 3.4.1. (see (3.123),(3.125))

yields
IM(X[9)] < (n = 1)t (YD)~ e~ PEENNC )21 (27 h, )7 oS Leex Loven IWoil”

Zf don_1 f( |s)Hd, (m)l (3.141)
i=1

By the special case {3.29) of Lemma 3.1.5. we obtain
n-—1 . £ N |3
IM(X|9)| < (n—~ 1)! Lﬁll?il__e—mﬂ(x)(Nce)'-’{"“ll(zNhf)"ez Lwex Lo Woil® (3.149)

Therefore assertion (3.137) holds.
(if) The assertion (3.138) follows from (8.137) by the following substitution

eMEX) 1 and D — # (3.133)

(cf. proof of Theorem 3.4.1., (ii)). /

Remark : We get the estimates of Theorem 3.4.1. from the estimates of Theorem 3.2.1., if we substitute :

4
K —s 7 wd be— 2hefl¥al”,
€

From this remark follows a lemma, which corresponds to Lemma 3.3.1. :

(3.143)
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Lemma 3.4.3. Consider a model with 1 component, propagator v = y(—A + m?)~! and external field ¥,
which fulfills '

b PR
= ? < min(

20’
for all z € (aZZ)”. Suppose (with the notation of Theorem 3.4.1. ) that

b (8.144)

128k (25~

2k e5e
(32hee?* +1) Tma)?

<1 (3.145)

Then the convergence condition (3.72) is fulfilled.

We want an improved estimate for the activities of the A¢*-~theory without counterterms. For that we will
need the following lemma.

Lemma 3.4.4. We have for m,n € IN* = {1,2, ...} and positive constants A, ¢

ez d" gt 2 €e
e~ % (e Az |S1'1!(;)%'"(3)%'?‘1[‘L (3.146)
if e
A S ﬁ_s.ez (3'147)
is fulfilled.

PROOF: Consider the function f(z) = z®¢=**", z > 0. Because of f(0) = f(o0) =0 and

fl(z) =" n-z)e " 0=z = (%)1/4 (3.148)

the maximum of f(z)isat £ = (ﬁ)%. Hence

1

2" e < () - (3.149)
With the help of the Cauchy ineqiality we obtain
d” ozt n! —A(zkin)* n! —A(z*—sx?z%4xt)
g | S mmaxle | = o maxe : (3.150)
A &
From z? — 65222 + 9x% > 0 follows ” \
e < ;"”; max P (3.151)
Bj the special choice k = (3%1-)‘} follows
dn 322¢e. »
e <t (K2 (3.152)

With the help of the Leibniz’ formula we have

min{m,n) g
" i(z""#a"’”“) =g ¥ ny MmO aat
dz = i/ (m— dzn—d

min{m,n) -
L ta? m . 1 d"=7 gt
=nle 7 3 (J.)z"’ miaee - (3159)
=0
From (3.154) follows
2 ar . min(m,n) m s ] st
e~ E;(:o"’e""’ Nl Y- (j)"’"x z™7I(32eA) 7T (3.154)
J=0
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Hence with the help of (3.149)

min{m,n) m
le™% ——(zmraz‘)l < n! E ( .)( oy )“i"‘(sz AT <

< n! (32e0) % Z( ) 66/2

~|(32e0)2) =

4 (32e0)" ™. (3.155)

=n! (32¢A) %] e:;Z

We have to consider two cases :

1. (32ex)~ +<(-7-)%

cef2
2 ce
< n 22 <nl (Y =)/ S mE .
|...] < n!(32er)42 (€e/2) <n!( ee) { 2) m (3.156)
2. (32e)"% > (e—e"—};)% :
.. = 9m <t (1] = )m(\/% (8.157)
The second inequalities of (3.156), (3.157) follows from the assumption A < 4
Because of 54
e 59 e = 4A|e-i—¢ = L (#3eMY) (3.158)
&I
we obtain by Lemma 3.4.4. .
[e=$92 9 cem2:| < (d—1)! (%)*33/24(32)2,\ (3.159)
for all d € IN* = {1,2, ...} if
A< oeé? (3.147)

128

is fulfilled. Therefore the inequality (3.119) of Theorem 3.4.1. is fulfilled for the A¢*—~theory without countert-
erms with the constants

_ (5,4 € __a3/2 _2_2
C=(Ph  w =34 (3.160)

We obtain by Thecrem 3.4.1. with 4 = 1 the following estimate for the activities of the A¢*—theory without
counterterms :

Corollary 3.4.5. Let the foﬂowmg' inequalities for the coupling constant A > 0 and the propagator v =
(— —A+ m?)~! be fulfilled

A € o (ma)* (3.161)

and )
|tay| < De=™l==sll, (3.94)

Then we have for the A¢*—theory without counterterms

Ze-mL(x)(256\/_D)n $(ma)? Esex ¥=

) 3De(ma)? (3.162)

IM(X )| < (n— 1 " "

forally. € C, ze X, | X|=n22
PROOF: Substitution of (3.160) in (3.120) with v = 1 and ¢ = $(ma)? gives the assertion. /
Substitution of (3.160), ¥ = 1 and ¢ = (ma)? in Lemma 3.4.3. gives the following corollary :
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Corollary 3.4.6. Suppose

A 1 2t
(ma)® < 747° #omer) - (8a68)
and )
|4 |* < min( ==, x?) (3.164)

for all z € (aZZ)”. Then the assertion B is valid for the Agt—theory without counterterms.

4, BOREL SUMMABILITY AND ANALYTICITY
OF THE ACTIVITIES ON THE LATTICE

The perturbation expansion of the partition function Z(A|¢) for the Adt—theory is divergent (see intro-
duction). Likewise the perturbation expansion for the activities is divergent. In this chapter we will show,
that the perturbation expansion for the A¢t—theory on the lattice is Borel summable in A. For the proof we
will use the methods of section 3.4. and we will show that the sufficient condition for Borel summability by
Nevanlinna-Sokal (7] is valid for small coupling constants A.

We obtain an analytic expanéion for the activities, if we introduce a new coupling constant . For that we
replace the propagator v by

v[Yzy = Tay + (1 — 1) b2y Vay- (4.1)
We have v[1] = v. In this manner all lines in the Feynman diagram, which connect different points, get a factor
~. In section 2.4. we have shown that the activities consist of point connected Feynman diagrams. Therefore
all activities A(X|y) with |X| > 2 vanish if v = 0. Hence the polymer system consists only of monomers if
~ = 0. We will show in section 4.2. that the activities are holomorph if - is in a small complex strip around the
imnaginary axis.

4.1. BOREL SUMMABILITY OF THE ACTIVITIES FOR THE A¢*-—~THEORY ON THE LATTICE

We will use the following Theorem by Nevanlinna-Sokal [7], which presents a sufficient condition for Borel
summability :
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Theorem 4.1.1. (Nevanlinna-Sokal). Let f be analytic in Cgr = {z €@ | Re 27! > R™'} and let the

F ‘I—\-\ F]
)'Re E
Cr
|
Fig. 4.1 Region of analyticity for f.
following estimate
N-1
f(2)= Y a2+ Bulz),  |Rn(2)} < Ao N2V (4.2)
k=0
be fullfilled uniformly in N and 2 € Cg. Then
(1) B(t) = 500, ant™/n! is convergent for |¢| < 1/a.
(2) B(t) has an analytic continuation in the complex region
S, = {t € C| dist(t,IR..) < 1/c}, (4.3)

aImt
|

ve 17T
ve LU

3¢

Re t

Fig. 4.2 Region of analyticity of the Borel transform

and is satisfying the bound

B(t) < Kexp(|t|/R) is uniformly in S, with ¢’ > o. (4.4)
(38) f is represented by the following absolutely convergent infegral :
1 o
fle) == f ¢ t/*B(t)dt (4.5)
)

forall z € Cp.
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We consider the activities A(X|y) for the partition function
2(419) = [ du() [T o) (4.6)
zCA

with v = (—A + m?)~!. We need two lemmata for the proof of the Borel summability of A(X|¢). The first
lemma presents the region of analyticity for the activities.

‘Lemma 4.1.2. The activities A(X |9}, X C A, for the A¢*—theory are analytic in {A €€ | Re X > 0}.

PROOF: The integral on the rhs of (4.6) is convergent for Re A > 0. From the analyticity of e=*(#=+¥2)* follows
the analyticity of the partition function Z(Al¢} for Re A > 0. Because of the inversion formula {2.14), the
analyticity of A(X|y) in Re A > 0 follows. /

The next lemma shows, that the assumptions of the Theorem by Nevanlinna-Sokal are fulfilled for the
Agt—theory :

Lemma 4.1.83. Let A(X|¢) be the activity for the A¢*—theory without counterterms. The partition function
Z(A|¢) is defined by (4.6). Suppose that positive constants ¢, ¢, K exist, such that

O<ev<cll<T, gy < Kemlla-vll, (4.7)

Let the asymptotic expansion for A(X|¢) be

N-1
A(X|9) = D axd* + Ry (). (4.8)

k=0

Then the following estimates are fulfilled for real ¥,, 2€ A, and A€ {2 €€ | Re 27! > R**} = Cr with B =
e 2 .
iz8€ ¢

(i) For monomers X = {z} :

|Ry (X)] < 1o NY A (4.9)
with
A i 4.10
1T rNVI-¢ (4.10)
64
oy = 6_2 (4.11]
-(ii) For polymers X with | Xi=n>2:
[Ry (M| < Azol MU NN (4.12)
" (n — 1)! (4Kegy
~ . n— . ee}™™ "1&’ __'mL(x)
As = eT¥c e (4.13)
2T N (1-on/? [31; ]
64
GFgq = -6—5- (4.14)

where L(X) = ming 3, yyc, 1%~ | (the minimum is over all trees n, which connect all points of X )

PROOF: Let us denote the A— dependent activity A(X|¢¥) by Ax. The function A{f) = A.x possesses for
Re X > 0 derivatives from the right in £ = 0 of every order. The Taylor expansion is

N-—-1
1.
h(t) = k}: 7 lm RENEYE® + By (t) (4.15)
=0
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with the Lagrangian remainder
I (NN
hN (t) = mh (S)t

with some ¢ € [0,t]. Therefore we obfain for the power series of the activity

N—1

Ay =h(1) = 3 apd* + By (2).
k=0

The remainder term Ry (A) fulfills

1 N

1
1B O] < e 7 A 31 = 3 Aol 3

(i) : ForX% {z}:

—tA(Patva)* 1 4N |AIN
(em2 @490 o < [{(de + ) ) R <

|Be(3)] < i

tE[O 1] iat

<1 [ dn (@) mag l(6a + e Ve 341 B

Computation of the Gaussian integral yields
f dpio($)e¥% = det(2rv)~% det(2x(v=2 — €))~% = det(f — ev)~t.

{4.7) implies

o $62 !
I deV(¢) | S \/1—_'_—2'

The maxinum in (4.19) is bounded by

AN -~ 547 — |G o= E(Be~¥2)? <
§g|(¢x+¢x) e | ggg;gllﬂ e [ <

< max ]c“‘i‘ﬁ‘b tedath— i'!b’l max i¢4N ~§b3 [

¢zER

(4.16)

(4.17)

{4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Since —542 + efrhr = ~e(4F ~ )7 + ep2, the first maximum on the rhs of inequality (4.22) is bounded by

%%, The second maximum is bounded by (24)2¥ . Hence

_ SN -
max (4 +92)* e $] < (PNt

From (4.20), (4.22) and (4.24) follows

Ry ()] < s P 'jl,,
From Stirling’s formula [20]
NN"”}::#N! el e—0/13N 0<f<1
follows
NzN <5 N(N')B 2N
Hence
BN < 5 r*‘ S E N,

This proves assertion (i).
(i) : For | X|=n2>2:
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(4.24)

(4.25)

(4.26)

(4.27)



With the help of the tree graph formula (Theorem 2.5.1.} and the multinominial Theorem, it follows from (4.18)

|Rn ()] <t1er{lg'}f]{z S0 o= ::,l[do'n—-lf ﬂ|3)fd#u[g](¢)

:(1)—§zex (t])Eﬂ

L

1 ghn _ .
Z Hln‘ a¢d:(ﬂ) (¢31 +¢z,)4“'8 [ M {fay+e) |}IA|N (4.28)

{n} =1
En£=3‘\|‘

Extraction of a Gaussian factor e~ §%= yields

LOEFS D M| [ -sstnls) [ (@)

=(1)—zex ('3)

2 1 al('?) _ .
I > Hmaxle g (e + ) e NG AN, (420
2EX {ne} I=1 %
E:ntzN

Computation of the Gaussian integral yields

f duo($) JJ e%F = det(2muls])~# det(2n(v[s] " — &))" % =

2 X
= det(v]s](v[s] =" — €))~ % = det(1 - evfs])~%. (4.30)

Since the propagator v[s] is a convex combination of partially decoupled interactions (cf. app. B or (8], Eqs.
(3.8)-(3.12)), from assumption (4.7) follows

ev[s] € ev < cll. (4.31)
Hence
fdp,,(¢) H e < (1-c) %, (4.32)
zeX
Furthermore
d:(ﬂ)
g2 00 dns g—t|A| (s +80)¢ | <
‘r,ng.]}!{{ le” qug‘(") (¢a + ¥2) e | <
dy
< max je~ $PiHebbe—$¥]| max |19 8%t pins g~tIMSL1 (4.33)
¢:€R $-€R a¢§z(ﬂ) =

Since —£4% + e,y = —e(%ﬂ — %.)? + e, the first maximum on the rhs of inequality (4.33) is bounded by
¢¥¥7. From this and Lemma 3.4.4. we obtain for A < Tiee?

- zqf,,a = (1)

L e £ n, €€ "
¢gem_ a¢d (n)(¢5’+¢ )4 e tAl{ e +ere )t i<e o2 :d (n)l( )2 ( )—5431(4,15)2 . (4.34)

2

We insert {4.34) on the rhs of (4.29). This gives

| Ry (A)] <Z z 11 |vﬂ,.w:|[do‘,,_1f maa-o-% 3 I [e,.;,zd (n)!

(i5)ENn {ne} 2zeX

=(1)-—:ex nrmN

( }zn (Gé)d '&::_)‘,“""‘:[ ]Alﬂ’_ (4_35)
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Because of 3, x d2{7) = 2(n 1) and |vey| < Ke~™llz=vll | we obtain

a€yn—1 ,—~mL{X) R
Rw () < = 1 BT T ety

zeX {ns} z€X

ny =N

[ don—1f(n'e) [ dalm)t . (436)

zEX

Applying the multinominial Theorem we obtain

( 1 o o N2V
el < . .
ng =N

With the help of Stirling’s formula [20]

1
N+ o =N N~V gcp<1 : (4.25)
follows
nZn, eEN
> e mem. (439
(e 2ex = x
nyz=V

We insert (3.29) and (4.38) on the rhs of (4.36) to obtain

n— 1)1 e} lg—mL(X) FICI I ‘
L e ] | L0 C (4.39)
=eX

for |A| < 7Z¢€2. This proves assertion (ii) .v/

By Lemma 4.1.2. and 4.1.3. the assumption of the Theorem by Nevanlinna-Sokal are fulfilled. Therefore
the activities A(X]|y) are Borel summable in A and we have the following Theorem :

Theorem 4.1.4. Let A(X|%), X C A C (aZZ}” be the activity for the partition function

Z(alg) = [ du () [] -6 (46)

xEA

(i.e. for the A¢*~theory ). Suppose that for positive constants ¢,c, K the following inequalities
0<ev <cl <1, |vay| < Ke~™lI==¥ll, (4.7}

are fulfilled. Then the perturbation expansion
A(X|9) = Zakzk (4.43)

is Borel summable. More precise, with the notations

64 e
| o= = = meg (4.44)
the following assertions are valid
®
o0 .
B{\) = 75-)«" converges for |A| < 1/e. (4.45)
k=0
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(ii) B(A) has an analytic continuation in the compiex region
8, = {} €€ | dist(\,R,) < 1/a}, C (4.486)
and is satisfying the bound

|B{))] < conet. exp(|A|/R) uniformly in Sy, ¢' > 0. (4.47)

(ili) A(X|¢) is represented by the following absolutely convergent integral

[=-]

A(X|¢) = ]; et B(At)dt (4.48)

forall \€Cr = {z€C| Rez™' > R™'}.

4.2, ANALITICITY OF THE ACTIVITIES

We consider for finite sublattices A C (aZZ)¥ the partition function

Z(Alv) = f ppo()(8) [ Felda + ¢:) (4.49)
2CA
with
v['T]xy = Mgy + (1 - 7)5zy”:sy- (4-1)

Theorem 4.2.1. Let v = (—A + m?)™! be the propagator and A{X|y), X C A C (aZ)", the activities for
the partition function Z(A|v), which is defined by (4.49). Let F. be bounded functions for all z € A. Then the
activities A(X|v) are holomorpk in y in the complex strip —vzz(ma)? < Re 7 < vze(ma)?.

PROOF: Because of the inversion formula (2.14}, it is sufficient to show the analyticity of Z(Aj¢) in . By
Fourier transformation we obtain

Z(X|y) = f [T ddo Falgn)eite¥=e dtxmantsje=dabile), (4.50)
X

From (4.49) follows for positive definite quadratic forms (g,v¢[7]g)

[Z2(X19) < T sup Fa(ga)l < oo, (4.51)
2EX 2 €

since F., are supposed to be bounded functions. Since the integral on the rhs of (4.50) is convergent and the
e-function e~ $(97719) ig apalytically in v, Z(A|¥) is an analytic function in . By Frobenius’ Theorem [19] the
following inequality is valid for an eigenvalue 6( Rev) of the matrix (v(Re 7)ay)z,yex *

min(|ves! — > [(Re 7)vasl) < 16(Re 7). (4.52)
yeX

The Ths of this inequality is positive for |Re | < |vzz(ma)?|, since 3o cx [Vay| < Ppe(am)e Vo] = T"?LT’
Hence |6{Re 4)| > 0. Because of §(0) > 0 and the continuous dependence of the eigenvalues from Re 7, we
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obtain 6(Re 4) > 0, if |Re 4] < |vzz{ma)?|. Therefore the quadratic form (g, v[Re v]q) ie positive-definite for
|Re | < |vzz(ma)?|. This proves our assertion.

Remark : The activities A(X|4) are an analytic continuation of a convergent power series in 4.

5. RENORMALIZATION GROUP AND MAYER EXPANSION

5.1. RENORMALIZATION WITH X-DEPENDENT COUNTERTERMS

We will consider a theory with X-dependent mass and vacuum energy counterterms. The parfition function
for a finite sublattice X C (aZ4)” have the following form

Z(X|$) = f dpi (§)] [ eV Brt92))e=tVx (849) (5.1)
zEX

with X-dependent counterterms

SVx(¢+¥)=— 3 [6m*(P) D (s + ¥2)* + 5¢(P)]. (5.2)

PCX -3

The counterterms can be fixed (for small coupling constants A and (%%‘-’f) > 0), such that the following
renormalization conditions

In Z(X|$)|y=0 =0 (5.3a)
92
g7 B Z(X[¥)lp=0 =0 (6.3b)

are fulfilled for all finite X C (aZZ)”. In (5. 3b) we differentiate with respect to constant fields ¢, = ¢ for all
zeX.

PROOF: (i) : We will show that we can find mass counterterms §m?(P), such that (5.3b) is fulfilled. Let us
set §e(P) = 0. Reformulation of the mass counterterms yields

- omt () L (ba k) = (X T P| o By pe + e (5.4)

PCX zEP zeX PCX

In the following we will use the notation

s (P) = 3 Em2(Y) ‘ (5.5)
: yor MY

The renormalization condition (5.3b) is equivalent to

Bk be + 467 0P $adsDly=ot

{ ) ((,\2”= av,, —z,\es'ﬂ(x)‘m — 2263 (X)

z,yeX

a .vz ~ 9 'vx 2 2
TN+ 865000 = (T (A5 + 2620841 Jomo=0 (59
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with

() = [ du @] eearrom @y, B
X
This is equivalent to
A[sm2( X)) + Bém?(X) + C = F(§m%(X)) =0 (5.8)
with
A=43" {{(20y)) — (B2 {{ds))} (5.92)
YT
B = 2/X|{{1})} + O()) (5.9b)
am
C=-2 5.9¢
; G2 ) lw=o- (5.9¢)

The function F defined by (5.8) is continuous. For small coupling constants A and (%’a}’f-) > 0 we have

F(6m3(X) = 0) < 0 and F(§m?*(X)} > 0 for large §1?(X). By the mean value theorem exists a positive real
solution §Mm2(X) of Eq. (5.8). By the Mobius inversion formula {Lemma 2.4.2.) we obtain from Eq. (5.5) the
mass counterterms §m?(P), P C X.

(ii) : We will show that vacuum counterterms §e(P) exists , which fulfills (5.33). Eq. (5.32) is equivalent to

= 3 6P =~ taf [ (B[] 00+ Drex O Ecr 4 (5.10)

PCX z€X

The coefficients §e(P) are determined with the help of the M&bius inversion formula (Lemma 2.4.2.) . +/

With
Z(Xlw) - [I'I e—)\l’(¢z+¢¢)]e~5\fx(¢=+¢=) (5_11)
2eX
the partition function reads
Z(X|y) = (Z(X]$)) (5.12)
where { . } denotes the Gaussian expectation value. The polymer representation for Z{X|y) is defined by
zixwy = - IIBriw). (5.13)
X=yv Y

Polymers of this polymer system are called molecules and the activities B(Y|t) are called molecular activities.
The following Theorem gives an expression for B(Y|¢) and shows B(Y|¢) = O(A'¥h,

Theorem 6.1.1. The molecular activities of the polymer representation (5.13) are

B(P|y) = [H e.—ws(¢=+¢=)]{51'lpl + Z H [euﬁm’(M)Ezsu(¢=+¢¢)’+6e(l\l) _ 1]} (5.14)

rc P F McP

supp P=P

for all P C X, The sum is over all sets P, which consist of sets P C X, such that the graph 4(?) is connected

" (cf. section 2.5.5. ) and
supp P={ze X |IMec Puwithze M} =P. (5.15)

Suppose that the renormalization conditions (5.32,b) are fulfilled. Then

B(P|y) = o(AlP]y, (5.16)

PROOF: We split the e-function
eﬁmz(P)Exep(¢a+¢’=)=+6e(1’) =1+ fr(d+¥). (5.17)
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Therefore ' :
@) = TT 1+ fuclp+ ) = 3 T] fuelo +0), (5.18)

MCA Q McQ

where the sum is over all sets @ which consist of subsets of X. For Q we define the graph (@) (see section
2.2. ). Vertices of 4(Q) are the elements of Q and two vertices Py, P; € Q are connected by a line, if P;nP; # 0.
The partition of (@) in connected subgraphs 4(7;) defines the partition

Q=>4 (5.19)

where (%) is connected. Hence it follows from (5.18)

e~ Vx (batibs) _ E H HfMW'“”)' ' . (5.20}

Q:Zp P Mcp

By the distributive law follows

eSVxBHe) - 5 H[ E HfM(¢+¢)]. | ' (5.21)

?
X—D—EP P rupp P=P Mer

In the same way as in the proof of Lemma 2.3.1. follows

e~ SVx(d+¥) — E H[61-|P| + z H fle+ 1‘[;)] : (5.22)

. P
X_EP ? rupp P=P Mer

This proves assertion (5.14). In the following we will show §m2(P) = O(AIZ]) and §e(P) = O(AIP]) by induction.
The renormalized activities are defined by

Z(xig)= 3 Jl4a(¥ie) (5.23)
x_zy Y
and the renormalization conditions (5.3a,b) are equivalent to (see section 1.5. )
ren _[1  ifiXlI=1 :
AT (X =0 = ]
(X19)lp=0 {0 Sharise (5 24a)
a,'/)g Aren(xl¢)l¢—0 = (5‘24b)

We will show §m?(P) = O(AIF1). Since §m?(P) is not dependent from Se, we can suppose Se(X) = 0 for all
X C (aZZ)”. Suppose |P| = 1, P = {z}. We have

- B({z}|¥) = e~ Ve{#xt¥a)+om () ($at ) (5.25)
Since A™*({z}|¢¥) = (B({z}i¥)}}, it follows from (5.25b)

a?
ay? ¥z

Therefore §m3(z) = O(A}). Let §m?(X) = O(AX) for all X C (aZZ)* with | X} < n. Consider P C (aZZ)” with
|P| = n. Because of Eq. (5.14) and the induction hypothesis, we have

55547 ({z}HY)ly=o = (- Aa 53 Val8s) + 6m’(2)) + O(3%) = (5.26)

- B(Ply) = J] eV @at¥a)[efm ()40 _ 1) 4 O(amH1), (5.27)
zeP
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Hence

az

g7 BP19)lw=o = [P §m*(P) + O(A™1). - (5.28)
Since
a=(piwy= 3 ([IiBYien D (5.29)
P=EY Y
(see app. A ), we obtain from (5.27) and (5.28)
2 BPIW)lomo = Pl 8t (P) + OO == 3 B Demo: (530)
P=Y ¥ Y

YEP

By induction hypothesis follows B(Y |¢) = OY!) for all Y C P, Y # P. Therefore the rhs of Eq. (5.30) is of
order A". This proves §m?(P) = O(A").

We will now show 6e(P) = O(MF1). If |[P| = 1, P = {z}, we have
B({z}|¥) = g AVa ($ata)+6m? (z)(#atba)? +0e(2) (5.31)
From (5.24a) follows
A ({2}[$)lpmo = (BUEHE lymo = 1+ (~AVa( ) + §m®(2)9] + be(2)) + O(V) = L. (5.32}

Therefore Se(z) = O(}). Suppose fe(X) = O(AX1), if | X| < n. Let us consider P C (aZZ) with |P| = n. From
(5.24a) and (5.14) follows

B(Phb) - H e-—A‘V(qﬁ,v&-vﬁa)[eé‘m’(P)(¢=+¢=)2+6e(P] ~1]+ O(/\“'H). (5_33)
zEP

With the help of (5.30) we obtain
(B(P|9))|gp=0 = e(P) |P|+ 6m?(P){¢2) + O(A"*!) = - > (1B De=o- (5.34)
Y

Pez Y
Y #P

By induction hypothesis the order of the truncated expectation value is A". From §m?(P) = O(\™) follows
§e(P) = O(A")./

~ The molecular activities B(P|4) are determined by the following recursive equations

(B({z}¥)}lpmo = 1 (5.352)
§£§<B({z}|¢))l¢=o ~0 (5.35b)
for all z € (aZ4)” and
(BPI9)ly=o =~ 3 {T[[BX19) Nlv=o (5.35¢)
P=§:Y Y
RPN =~ 3 (BOYIY); .35
- |¢=0~5@;P=D<< (Y1)s Dlg=o- (5.354)

The renormalized activities are determined by

M (Ply) = A PlY) - s = 3, ([[IBFI) -1 1 (5.36)

p=Yy Y
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with the renormalization conditions

M™*(PiY)|gp=0 =0 (5.37a)
32 en
for all P C (aZ)”, |P| < oo. The renormalized Mayer amplitude is defined by
ren G—VFX| 2n
M (X|¢) = X M (X)) - (5.38)

and the renormalized augmented Mayer amplitude is defined by (cf. {2.46))

Mren(X|g) = Mrer(Xly) [ w0 e¥™) (5.39)
with -
Menxiw)= Y. a(@) [] M (Ply) (5.40)
uwQQ—x Feq

(for the definition of n(z), @, a{Q) see section 2.2. ). From the renormalization conditions we obtain a simple
relation for the two point renormalized connected free-propagator-amputated Greens functions, if the theory is
symmetrical about the transformation ¥ — —¢ on the lattice A C (aZZ)*:

8? -
G (21, 25) = ET I S M(PlY)y=o. : (5.41)
£1,29EPCA .
In general . ,
k .
Gz nza) =, D 2 a@ [ ox M (Pil)lg=0 (5.42)
=1

k>l Nk . P
- z—zk=1 X; x."‘_:A

with Z = {z,...,2}, Cluster Q@ .= (P1,...,Pe), Ix, = [_[,E-x'_ 5‘%:. Fig. 5.1 shows the both possib-
le forms of the cluster for the 4 point renormalized connected free-propagator-amputated Greens function
GT™(2,, 24, 23, 24), if the theory is symmetrical about the transformation ¢ — —¢. ‘

o
il
\\\\\‘\i‘\i‘\“

&

Pig. 5.1 Cluster for the 4 point renormalized connected free-propagator-amputated Greens function GJ%"(z,,...,.2, ), if the theory
is symmetrical about $-—+—1v.
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5.2. GENERALIZATION OF THE TREE GRAPH FORMULA AND ESTIMATES

Because of
z(x|p)=( > [IBPW), (5.43)
x=Ep P

the renormalized activities A™"(X |y} are represented by truncated expectation values (see app. A)

aenxig) = 3 ([[iBPiw) D) (5-44)
X=EP P
The activity M™"{X|¢) = =6y x| + A"*"(X[¢) on the doubled lattice is
MrerXp) = 3 ([]1BPIW) -1 )). (5.45)

X=3"pP F
For these truncated expectation values exist a generalization of the tree graph formula of section 2.5. .

Theorem 5.2.1.. Let M,,..., M, be digjoint subsets of (aZZ)” and B(M;|y) molecular activities, which de-
pends only from ¢4, ¥, with £ € M;. Then

(BM|w); ZZ “don s f) T I o—tstsotacy oo [ B (5.46)
AP 34’

(s7)en #(i) Moris) f=1

where

—v[g] = = Z‘UM M; + Z B8ty « . S UMM, (5.47)
1<i<i<n

with var.af; = XMYXM;, X = characteristic function and

a 3 a a
——— AL M e — Uy . 5.48
s B, 2 56" (64
yEM;
The sum is over all permutations
P {{1,...,‘?%}—-»{1,...,11} (5.49)
i+ (1)
with n(1) = 1 and over all n-trees
{2, o mp = {1, ,n~1} :
n: {an(k) (5.50)

with n(k) < k.

" PROOF: The Fourier transform B(M]|g) of B(M|y) is defined by

B(M1Y) = [1T] daceis=®+*NB(Mig) (5.5

zEM

We ingerf (5.51) on the rhs of (5.43). This gives

2= % [ [T daa) Baigyetteo. (5.52)
EM

X= M 2zeM
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Hence

sxw= ¥ [ aaetomdsong] [ et @9

x=y u" ‘M zeM

We introduce indices for Eq. (5.53). This gives

1X) n
X)) =3, 3 [ [H(H dqz)e-ﬂ«"ww)é,-(Mlq)]He‘%‘””i"ﬂ’- (5.54)

(RS)
R,SE{M} RS

n=1 X=E"' IM’l i=1 zcM; s;{}
Furthermore
|X| n _
Z(X|¥) = E Z Zf['n( H dqw)e“"z‘(q,vmu.-ﬂ B,-(M‘q)] H [e*%(q,vu,.u,-q) ~1]. (5.55)
 on=1x=%"" M; Bn i=1 z€M; (i)eBn

il

B, is the set of all graphs with n vertices. We decompose B, into connected Mayer graphs §r, I € {1,...,n 4t

n. Hence

|X| ‘ | o
ow=3 ¥ % O/ tommoboae] [T whemso-i. 65

n=] xzz:_;l M, !L:EI I Gr I €I (sNEST
We omit the indices in (5.56). This gives
zixw)= Y, > JT4@{M) (5.57)
X=3.M {M}=3,Q @

with

i) =Y [ TL(IT daetomaobiang)] [ peodemos=a @59)
Sq

MEQ zEM (RS)ESq

where Q is a subset of the partition {M} of X and ¥ @ is a partition of {M}. §x labels the set of all Mayer
graphs with vertex set Q. By the distributive law follows

Y TJa@imn= 3 H[ ™ Z(Q,{M})]. (5.59)

x:EM{M}=EQ Q Xx=3.Q @ Q=3 M
From (5.43), (5.57)-(5.59) and the definition of the truncated expectation value follows

S ([liBivy b= Y AXAM)=

x=Y M M X=3 M
Y X [[ I (T aetomecabong] I fertomma - 560)
X=3" M §isy Me{M} seM (RE)EG (ar)
Let us set B(M|¢) =0, if M # M;for all i =1,...,n. Therefore Eq. (5.60) yields
(TIBMe); = 3 f LH( I1 dqz)e‘*(“"’”f“‘f“’E(le;)] I (e ¥termmd —q), (5.61)
f==1 GEGn =1 aEM; (sNec

§n labels the set of all Mayer graphs with vertex set n = {1,...,n}. We obtain by the abstract tree graph
formula {see app. B, Corollary B.5. )

(Lmtte ) = L X [ donssaie) f Ll'[( T] dae)e=Homnso) Byiaio)|
x 0 :

§=1 =1 xEM;
H [~ z vaxqu]e_%(q’v['lq). (5.62)

(é5)en  TE€M)
VEML(5)

We apply the inverse Fourier transformation on the rhs of Eq. (5.62). This proves the assertion. v
In the same way we obtained estimates for the truncated expectation value (ILzex[Fa(d2); |} by the tree

graph formula, we obtain estimates for the truncated:expectation value ([I7, [B(M;|¥); |} with the help of the
generalized tree graph formula {5.46).
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Theorem 6.2.2. Let M,,...,M, be digjoint subsets of (aZZ)” and B{M;|y) molecular activities, which
depend only on ¢z, %, wmb z € M;. Suppose that B(M;|y) are holomorph and bounded functions in

sl {(dz)zem; € eqil | |[Im ¢5| < &}, We introduce the notations

M 4! min sup sup |B(M;¢¥) —¢| < oo (5.63)

C€R zeM; .o
TEm a e

¢

foralli€ {1,...,n} and
C(My,..., M) = ([ 1B(Mi]v); ]). (5.64)

fu=]

Then we have the following estimates :

(i) Suppose that for positive constants D, m the following inequality
|vgy| < De~mll==ll (5.65)

is fulfilled. Then

8DemLP)|C(M,,. .., M, n——l I 8De"“"““"c‘“‘ :
| ’(62 ) [P H[ |M|] (5.66)
[E-31
with P=3_1_ M,
(i) Let
1
a“"f Upy| = ——5 < 00. 5.67
xE(aZ)”l ol (ma)? ( )
Then
—olom 8|C(My,..., M) _ (n—1)! [Sc”M }
v(e-1) 1 < |M:] 5.68
a .
ey maRl S H (max)? (569
With M; = {Zp, 4 tni_y 4113 Bnydngttni }y [ Mi| =ni, forallie {1,...,n} and s =3 i, n..
PROOF: (i) : By Theorem 5.2.1. and {5.65) follows
1 n
[C(M;,..., M) < (n—1)! Zfo don1f(nls)  sup {1'[ i( Z )f’ (")B(Mw);}
7 211 =1 ‘.CGM

ﬁZi:x M;

Dn—-leﬂmL(Ml,...,Mﬂ) (5.69)
where d;(1) = number of lines in the n-tree n, which emerge from vertex 4, and

L(M,,..., My) = min > min ||z -y (5.70)
{inen vEM,

ie. L(My,...,M,) ie the length of the shortest polygon, which connects M,,..., M,. By the multinominial
theorem follows

1] 4
#d(n) < ")' M)l 5.71
(X ) “@Baaw) s 32 B ([ 5o B (5.71)
xEM. i b | i=1
z"'j=4i(n)
The Cauchy inequality for several variables implies
M.
2 di{n)! C,cliu.
v : =, 5.72
l(ng- ErR = ki) ml;;w M| % () (5.72)
mi=edi{n)
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Because of di(n)!
. UL R Y AT
Z 1< Z ...l_;‘.n.__,(1+ ) N YALIUE

My, miag; | - L ™AL H-___1 m,!
2 mymdi{n) Z:Mj=d.'(n) ! m; summands
we obtain 3 &)t
; i\f): M,
I § 5o H O BOMIY)| < S35 Rl (5.73)
We ingert this on the rhs of (5.69) and use (3.29). This gives
Dr—lg~mL(My.. Mo} B
[C(My,. .., M) < (n—1)! ) 8" ] extaes (5.74)
=1

From the definition of L follows

L(i M) < L(My, ..., M)+ iL(M,-). (5.75)

=1 i=1

Therefore (5.74) proves the assertion (5.66).

(ii) : The assertion (5.68) follows in the same way as in the proof for (i), if we integrate over z3,...,%,—1 €

(aZ2)”. v/

5.3. RENORMALIZATION GROUP AND MAYER EXPANSION

The Fourier transform 25 of the field $ on the lattice (aZZ)” is defined by
1 ~
= — ] d K 5.76
P2 = ny fpe[—f.ﬂv P fpe (5.76)
with pz = ¥ 5_, pi%i. The field ¢ is called high frequent if the dominant part of the Fourier integral (5.76) is at

large p. The Fourier transform ¥ of the translation invariant propagator v is given by

_ . '
= : d’p v, PF-Y), 5.77
o = TP [p e P (5.77)

The momenta p of the field ¢ on the lattice (aZZ)” are bounded by .

fipll <

K]

. {6.78)

Therefore the UV-cutoff on a lattice with lattice spacing @ is 7. UV-divergences emerge from the continuum
limit @ — 0. They are removed: by suitable counterterms.

Corresponding to Wilson’s renormalization group approach {21] the UV-cutoff decreases, if a renormalisa-
tion group step is done. For that we split off the propagator, v

v=ot 4 o (5.79a)

where .
v, =0 if Pl & [Kse1, K5, §=1,...,N : (5.79b)
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with 0 = Ko < K1 < ... Ky_1 < Ky = L. Let ¢ be the process of the covariance v*. Then we have
p=¢"+ - +¢V. | (5.80)

The propagator v* connects only fields, whose momenta lies in the section [K;_;, K;]. The momenta of the fields
¢* increase with increasing index i (in the contrary to the notation of [8]). By the partition formula {Lemma
3.1.2. ) we have

Z(Aly) = f diy(p)eV(#) = f ot ($1) .. (N )e=V (874670, (5.81)

After integration over the field ¢V the propagator v with UV-cutoff £ proceeds to the propagator v — v” with
UV-cutoff Ky—1 < Z. This is called the first renormalization group step. Thereby, the action ¥V = V¥ proceeds
to a new {in general nonlocal) action V¥ ~1. This new action. V¥~ is called the effective action. Next, we
apply this procedure to the new form of the partition function. After k renormalization group steps we get an
UV-cutoff Ky_g. The free energy In Z{A|¢) equals the negative effevtive action after N renormalization group
steps. The form of the partition function after N — k renormalization group steps is

2019) = [ du (e @ (5.82)
with the field .
glsH =3 ¢f (5.82b)
i=1
and the propagator
k&
o[SE = B (5.82¢)
=1
The effective action V'* is recursive determined by
VNV + )=V (s +¢) (5.83a)
VEH(glS*=1 4 g) = —In f Qo (gF)e= V" (BT +4549) (5.83b)

with & € {1,..., N}. Therefore we have after N renormalization group steps
Vo(¢) = ~1n Z(Al|¢). (5.84)
Instead of (5.79a,b) we may split off the propagator v = (=4 + m?)~! in the following manner
v=ov' 4+ . g oY (5.85a)

where
. {(—~A+M2)_1 ifi=N

VS (cAF MR - (—A+ M i< N (5.85D)

with m = My < M; < -+ < My—1 < My = M = O(a™!). The propagator after k renormalization group
steps is
ikt R = (A )T - (A My ) (5.86)

This is a propagator for a theory with Pauli-Villars cutoff My 41_x. Momenta which are larger than Myi1-&
are suppressed in this case. The Pauli-Villars cutoff will decreases after application of a renormalization group
atep.

Mayer expansion yields a decomposition of the configuration space and the renormaligation group approach
yields a decomposition of the momentum space. Combination of the Mayer expansion with the renormalization
group yields therefore a decomposition of the phase space (’phase space cell expansion’). For estimates of the
activity M(X|¥) we have used the same propagator v for all Polymers P. These estimates are bad for large
polymers P and high frequent fields ¢. Decomposition of the phase space carry to improved estimates for the
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activities. In this sense the method of iterated Mayer expansions leads to an improved estimate of the activity
([8], [9]). For that the polymers are decomposed in polymers, which are again decomposed in polymers,
etc. . Points of the lattice are called O-vertices, Ordinary polymers are called 1-vertices. k-vertices are
collections of (k — 1)-vertices. The points of a k-vertex are called conafstuenis. Every k-vertex corresponds
to an activity. k-vertices interact over the propagator v¥+1—k, Since the strength of the propagator v¥+1-F¥
increases and the range decreases if the index k decreases, it follows that the elements P’ of a k-vertex P interact
over a propagator whose range is less and whose strength is larger than the corresponding range and strength of
the propagator, which defines the interaction for the k-vertices. The activities for the k-vertex P are expressed
by the activities for the (k ~ 1)-vertices, which are elements of the k-vertex P. Therefore the estimates for the
k-vertices are recursive. For the k-th recursion step an estimate for the propagator v¥—%+! is used. This gives
better estimates than the estimates obtained by simple Mayer expansion, where we have used bounds for the
whole propagator v.

A perturbative formulation for the rerormalization group steps was given by Gallavotti and Nicol$ [11].
For the proof of the Gallavotti Nicolé tree formula the following partition formula for the truncated expectation
value is useful.

Lemma 5.3.1. (Partition formula for truncated expectation values ). Let S be finite set and B;, 1 € §,
random variables. Then we have for positive propagators vy, v .

(T11Bis Dorsor = 3 (TTHTLIBs: Dors Dos- (5.87)

€S SzE:J I jeJ

PROOF: By the distributive law follows

> H{ > ATTuIdBss Dess ])w’} = 3 > IIIIcIIiBss Dess Der (5.88)

R=)"1 I “y=%"5 J JEJ R=)_K{K}=y,1 I JeI jei

By the definition of the truncated expectation value ( ; },: we obtain for the rhs of (5.88)

cwis= 30 ([I(IT 1By Deo)es (5.89)

R_—_-EK K jexK
and once more by the definition of the fruncated expectation value { ; ), follows

rhs = (([] B: Jos)er (5.90)

IER

By the partition formula for expectation values (Lemma 3.2.2. ) follows

rhe = ([] Bi)or4va. (5.91)
i€ER

Hence

> H{ > (TTuTTBs5 Doss 1>,11}=<H Bi)ossor- (5.92)

R:EI I I:EJ Jojed i€ER
The definition of truncated expectation values proves the assertion (5.87). +/

The partitions in the partition formula (5.87) are related to tree graphs with depth 2. The maximal vertices
of the free graphs represent the elements j € § and the vertices with depth 1 represent subsets J C §, such that
for the direct successor which represenis j, the relation j € J holds. The generalization of the partition formula
for truncated expectation values for the splitting (5.79) of the propagator v leads to the notion of the Gallavotti
Nicolé tree. Let us set I'(k, I) for the set of all trees with the depth & and maximal vertices € I. For the splitting
(5.79) of the propagator v and the random variables B;, i € I we will call a tree v € I'(k,I), 1 < k¥ < N,
Gallavotti Nicols tree (GN-tree). Two irees 1,7, are put together by introducing a new root where the old
roots of 4; and <o are direct successors of the new root. The new tree is labeled by 4; o 43. In the same way
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we pui together more than two trees. The depth of the new tree 7; o 72 is increased by 1. The truncated
expectation value £7(B,v), B = {B;, i € I}, which corresponds to 7 € T'(k, I} , is recursively defined by

() €Ly =([[iBs v E~el(,I) (5.933)

el

@) ET(B, ) =([IIE7(B,%); onw-r i y=mo -0y € T(k+1,J), % €Tk, L) (5.93b)
f=1

and J = 370, I, For v € T(k,I) the truncated expectation value £ T(B, ) depends from the field plV=* —
j‘:lk ¢7. The generalizgation of the partition formula for truncated expectation values is

Corollary 5.3.2. (GN tree formula for truncated expectation values).

(H[Bﬂ'; ])DN--"+1+...0N = Z -fT(B,q) (594)

fer ‘TEr(klI)
forallke {1,...,N}, B={B; icI).

PROOF (BY INDUCTION}: For k = 1 follows the assertion by definition (i) of the truncated expectation value
ET(B, 7). Suppose that the assertion is valid for k. By Lemma 5.3.1. we obtain

(T118ss Dowv-ron = 37 ATTUTT B3 Doorts soiares Dgwas. (5.95)

el I=E 3 4 Jeg
From the induction hypothesis follows

(T1(Bss Dow-rssor = 3 (1N > ET(B,7); [erw—s- (5.96)

ier ="y J ~er(kJ)

By the definition (ii) of the truncated expectation value €7 (I,7') for 4 € T'(k + 1, I) follows the assertion for
k+1.

We consider now the special case By = V for all 4, where V is the action, The GN-trees are characterized
by the depth and the number of maximal vertices in this case. Let us denote I'(k, n) for the set of all GN-trees
with depth k and n maximal vertices. We use the notation :

W =r0...0n1. (5.97)

p arguments

With this notations we have the following corollary for the representation of the effective action.
Corollary 5.3.3. Let the combinatorial factor C(v) for v € L(k, n), n€NN, ke {1,...,N} be defined by
) O =n! ifyel(1,n) (5.98a)

() (1o o) = H pd C(w)P it 4 € Tk, n). (5.98b)

i=1

Then we have with the notatjons (5.79)-(5.84)

VR 9= Y Y (mrn £ (5.99)

220 €T (N —k,n) )
forallke {1,...,N}.
PROOF (BY INDUCTION): Let us get { = N — k. Suppose { = 1. Then
VNSV g gy o In(e“'v("*"’)),:v. {5.100)
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With the help of the perturbation expansion {2.75) follows

— _ _ (_1)n+1 . ] .
VLS gy = BT IV Y e (5.101)

n20 n argumenta

By the definition of £T(V,7) for 7 € T'(1,n) and C(4) = n! follows the assertion for I = 1. Suppose that the
assertion is valid for §, 1 < I < N. By the induction hypothesis and the perturbation expansion (2.75) follows

Z (—-1,3!""'1 GV Yom—ttrp pov = E E (-1» C(.-;)?) (5.102)

n20 n ar,g'uments n20 1EI‘(I n)
" Let ¥ be of order A. Comparison of the terms of the order A® in (5.102) yields

ET (Y, 2}

e (5.103)

(Vi.o;V JoNmtdisgon =01 3

n arguments 1E'I“I(l,n)

‘Purthermore by the definition of the effective action V¥=(+1) follows

_ ~ _ 1 n+1
YA (IS0 4 g) = Do Oy = 30 (V) 5V vt e (5108

n20 n argumenta

By Lemma 5.3.1. follows

VN gISF =] 4 gy = 5D z (= .'{f‘[[( ViooosV donipoponllon—  (5.105)

KNI i
n>0r>1  fng e=1 2 Il 25t )

" n arguments

\‘=1

where p; = |{n,] n; = §}|, i.e. p; equals the number of integers j in the partition {n;}. We insert (5.103) on
the rhs of (5.105). This gives

A=) (SN =040 4 gy = 550 E (1)

|
nZ0rZ1 _ (mi) iy p

i f[[ ¥ & £ (o)

'T\ EI‘(! ny }

=n

—.l.
We put together the GN-trees ;. This gives

VNf(’+1)(¢ISN-“(‘+1)] + )= Z E Z -——-;L.:-%-)—ui—é'r{V o .. oqf). (5.107)

‘ . ITizy G ()P
"'20"21'7{10---0’)‘5'61““4-1,“) =1 ! ( l)

The assertion for [ + 1 follows by the definition of the combinatorial coefficient C(7). v/

Remark: (i) If the action V is of order ), then it follows that ET(V, '1) is of order A™ and the expansion (5.99)
for the effective action V¥ ig a perturbat:on expansion.

(ii) Corollary 5.3.3. implies a perturbation expansion for In Z{A[¢):

mZAW =Y. > ()" wnE2) (5.108)

¢
720 e (N,n) ™)
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Fig. 5.2. shows an example for a GN-tree.

Fig. 5.2 Example for a GN-tree ¥&I'(3,8). 7 represents the truncated expectation value

{(V;V}ﬂ’+b2; <V>v3+v3; {(V;V)v'; (V)vs>v’)v1'

Let A C (aZZ)” be a finite sublattice. Let the maximal vertices of a GN-tree represent elements of A. The set
of all GN-trees v with depth k and maximal vertices in X C A is denoted by I'(k, X). Let B(X|¢) be random
variables which depend omly from ¢ -+ ¥z, = € X. For the:splitting (5.79) of the propagator v we define the
truncated expectation value for the GN-trees v and random variables B(X|¢) :

() ET(B,7) =B(X|y) if yeT(1,X) (5.109a)
() ET(B) - <_1f[1[£f(s, 105 Doseorin
fy=mo- oy el'(k+1,X), % €l(kY) with iY. =X and k€ {1,2,..., N}(5.109b)
g
(5%) ET(B,')f) = fI ET(B, %) fy=mo o el(N+2,X}, € N +1,Y;)
=
with fr_:Y.- = X. (5.109c)

i=1
With this notations we obtain for the activities A(X[y) after N renormalization group steps :

Corollary 5.3.4. (GN-tree formula for activities). Let the partition function be defined by

2(A1) = [ dm(@)Z(Al) (5.110a)
with _
Zlwy = > [IBX¥). (5.110b)
A=Zx X
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Then the activities A(X|y) of the polymer representation
zaw) = 3, JlAxiv) (5.111)
A=Ex X
are
AXlp)= > E7(B,. - (5.112)
€T (N +1,X)
PrOOF: The assertion follows itnmediately from

Axl) = > ([[BEI); D (5.113)

x=EY Y

and the GN-tree formula for truncated expectation values (Corollary 5.3.2. ). +/

Remarks:
(i) By definition (iii) of the truncated expectation value £T(B, ) for vy € T(N + 2, A} follows
ZAW)= Y ET(B,). . (5.114)
~EL(N+2,A)

(ii) With the help of the recursion relation (5.109) for the truncated expectation value £7(B,7) and the
generalization of the tree graph formula (Theorem 5.2.1.) the activities A(X|4) may be expressed by trees,
whose verfices consist of trees, whose vertices consist again of trees, etc. . Then the tree estimate for truncated
expectation values (Theorem 5.2.2. ) leads to a recursive estimate for the activities, #f there is a suitable
estimate for the molecular activities B{Y |¢) forall Y C X.

(ili) Every GN-tree v € I'(k, X) corresponds to a k-vertex a with constituent set X. Fig. 5.3 shows an example
for a GN-tree « and the corresponding k-vertex a.

Xy X, X3 Xy Xg Xy ¥ Xg Xy X

A0

(%)

Pig. 5.3 Example for a 4-vertex « with constituent set X={=,,...,210}(a) and the corresponding GN-tree 4 with depth 4 (b).
The GN-tree 4 or 4-vertex « represents

{{(B ({z1,23,%2}[¢); B({20.2s}|¥)) 25 {B{{ze,z7}|8); 3({36”1")5 B({zo}[9)) ) 425 (B({Tr0} )83} 01-
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APPENDIX A. »CALCULUS, TRUNCATED EXPECTATION
VALUES AND COMBINATORIAL COEFFICIENT a(Q)

A.1l. %x-CALCULUS [17]

Let T be an arbitrary finite set, Functions X : I' — IN are called mulitindices. For a finite multiindex X

we define
xt= [ x(y,  1X1=2" X(2) (A1)
qer ~+€r

The addition of multiindices X and X, is defined by
(X1 + X3)(7) = X1(7) + Xa() (A.2)
for all 4 € T'. Let A™ be the set of all complex valued functions on the set of all multiindices, i.e.
A ={f : {X : T — IN} - ¢}. (A.3)
The +product of two functions f;, fz € A™ is defined by

fixfd(X)= D AX(X) (A4)
3 K=XatXa

Addition and multiplication by scalars on A™ are defined by

{(fi + f2)(X} = f1(X) + f2(X) (A.5)
(Af)(X) = Af(X) (A.6)
for all fi, fa, f € 4™, X € €. By this definitions 4™ je an algebra with unit element I,
1 HX=0
f(X) = { o  otherwise. (A7)

Let us restrict on multiindices X with X! = 1. Then X corresponds to a subset of ' and the familiar -algebra
( 4, ) is defined by
A={f : {X : >N} »IN} > €| f(X)=01if X1#1}. (A.8)

Clearly, £ is a subalgebra of A™.

To each function f € A™ we may associate a formal power series f € P[(#y)er) in the variables z,,v € I':

fedmw— flzy= 3. f(X)Z, (A.9)

X 1 TN

where 2¥ = [l er 2X(1), Conversely, to each formal power series F € P[(2,)qer] we associate a function
feAm:
f € P{(zy)yer] — f € A7 with f(X} = 8x f(2)]s=o0, {A.10)

where 9x = [[,er 5?%- The set P[(2)yer] of 2ll formal power series is an algebra and the multiplication
¥

(Fi - F)(2) = Fu(2) fal(2). (A.11)
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for all i, fa € P{(2y)yer| corresponds to the x-product on A™. Let f € AP = {f € A™ | F(0) = 0} and
fe P[2| the corresponding formal power series. The ezponential function exp : AT — L+ AT is defined by

1
expf=1+ —(f*--%f) (A.12)
ﬂz?-:l ! n factors
or equivalently
expf(X)= >, /M) (4.13)
x=v ¥

From the algebra-isomorphism of P[z] and A™ follows

(exp )(2) = exp(f{(2))- (A.14)

The logarithm In : T+ AT — AT is defined by

— 1
m+ )= E (g g | (A.15)
n21 n factors
or equivalently .
nI+HX) =S S (-] (A.16)
n>l o Z:m Y; =1
for all multiindices X with X # 0. We have
(T + £))(z) = (1 + (=) (A17)

By Eqs. (A.14) ﬁnd (A.17) we obtain the following inversion formulas
expln(I+ f) =0+ f {A.18)
lnexpf=Ff (A.19)

for all f € 4. Especially, for A € 44 Ef(fe A £(0) =0} and Z € T+ A4 follows that

Z2(X)=(expA)X) = 3, []A4W) (4.20)
x=3v Y
is equivalent to
AX)=(Z)(X)=), > ()tin-1) [I2z(v). (A.21)
nZlx=5"" v i=1 '

=l

The multiindices may be interpreted here as sets and the sums as digjoint unions.

A.2. TRUNCATED EXPECTATION VALUE

Let A C {aZZ)” be a finite sublattice and dp, the Gaussian measure with covariance v. Let A(A) = {f :
p(A) — @} be the x-algebra for the power set p(4) = {X | X & A}. Let B(X|¢) be a random variable for all
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X C A with B(@|¢) = 1 and B{X|¢) depends only from ., z € X. For another random variable Z(X|¢) the

ezpectation value is defined by

E12(x19) = [ dun()2(X10).

(A.22)

We will use the abbreviation £(Z(X|¢)] = £(X). £ i¢ an element of the »-algebra A(A). The truncaied expec-

tation value is defined by

£T(X) = (In £)(X)
for all X C A. Equivalently, the truncated expectation value is completely determined by
xy=3Y, [I&7m).
x=3yr Y
"This follows from the inversion formulas {A.20), (A.21). Furthermore we have

n

ET(X) =Y (-1 -1t D e

“21 X:}:n Y;: i=1

(=3

For 2(X|¢) = EX:ZY [y B(Y|¢) we use the notation

T(x)= Y (IBXIe) I

x=3)v ¥
By the isomorphism of section A.l. (see Eqe. (A.9), (A.10)) follows
ET(X) = Ox lufexp( D B(Y)2¥)}|z=0-

YCX
Especially for
| Fz(¢2) if|X]|=1,X={z}
B(X)“"{o if!X|22,
follows

(TL1Fg)s 1 = 2o tnlexs(e 3 Faladamo

TEX zEX
Let the partition function be defined by

Z(Al) = (J] eV

rEA

Because of (A.29), the perturbation expansion for In Z(Aj¢) is

mza) =3 E 2 (T e @emo = 35 L2 v 3 V).
As nl

n!
n>1 zEA n>1 €A XEM

]

Yoo

n arguments

This proves the relation (2.75).

A.3. COMBINATORIAL COEFFICIENT «(Q)

Theorem A.3.1. Let T’ be a finite set and
g T'xI'—{0,1}
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with g(v,7) = —1 for all v € I'. We associate to a multiindex X : T' — IN a collection of vertices 11,...,7x;
and links (47'), if g{~, ')} = ~1. This graph is labeled by G(X). We define a function ® by

2= [I  G+awam). (A.33)
X (%) :J’?g‘rj) >l

Clearly, ®(X) = 0 holds for X! > 1. Let us define

Z=>) ¥X)X. (A.34)
P
Then we have
mZ=>Y & (X)* (A.35)
X
with
== > (-1 (A.36)
cc:G(x)

The sum is over all connected subgraphs C of G(X) with the same set of vertices as for G(X) and I(C) equals
the number of links in C.

PROOF [18]: Let 41,...,1, be the vertices of G(X) witk n = |X|. Expansion of the product on the rhs of
(A.33) yields

#(x)= > [l (A3
N=E; I
with N = {I!"'yn} and
= | Zeeg: Hiiea 9% 1) if |I| 2 2
0= { 1 cedrTnes ’ otherwise. (A.38)

We insert (A.37) on the rhs of (A.34). This gives

z=%, 3 Iz, (A.39)

X N=z r I JjEe!
After resummation we obtain an expansion in the number of vertices

SPEPIEI N D> [1o0} [T 2w (A40)

n>0 . ED LS. cR)= EI I $=1

For every partition {n;} with n = 3% n, exists i :"i.I - pa.rtltlons X = Z'ml Y; withiX] ==, |¥i|=
=1 " =l

n; and p, = |{ng|n; = r}|. Therefore we obtaih

k "
n! , i
Z Z Z E k H n 'H( E g(”l)""”ﬂ{)nz'fj) (A-41)
n>0 " k2o (n;} Ilimy it Iy P i, 5 er i=1
Ei==1="
with the abbreviation _ 5 I : -
) = 4 Zeegr unes g w) I 22 P
‘ ats-- -5 m) { 1 ! otherwise. (A.42)

By the multineminial theorem follows

Z= Z kl z Z 9‘(’)‘1, r"fﬂ qu,]k (A.43)

k>0 n>1 n! sy fn€l

an Z Z QIR Y ﬂz'fj' (A.44)

"’>1 "1! L Tn€ED
Comparison of the coefficients with In Z = 3, ®7(X)z* yields

&7 (X) = %g(vl,---,'nz])- (A.45)

Hence

This provee the assertion. +/
By Theorem A.3.1. follows the representation (2.19) of In Z(A]¢) :
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Corollary A.3.2. If

z(Mlp)y = Y. [Taxw), (A.46)
A=2:X X
then
In Z(Aly) = > ln A({z}[$) + ) _ «(@)A(Ql¥) (A.47)
ZEA Q

with the notations of section 2.2. .

PROOF: We will use Theorem A.3.1. with T’ = p(A)(=power set of A). By the definition

= A - _ TA(X) if | X|>2
AX) = bu.ix) { 0 lc»tLerlwiase (A.48)
followsa
YexF= 3 [T4x), (A.49)
X A=y x X
if

(-1 ifXNY £0
9(X,Y) = {0 otherwise

is chosen. X denotes the multiindex L ieeX
o N if z
X(I)*{o if z ¢ X.
By Theorem A.3.1. follows
In Z(Al$) = ) o A({z}I¥) +Z<I>T(X)z" > ln A({z}]¥) +Zaccz )A(Q14) (A.50)

rEA zEA

where the sum is over all clusters @ = (P, ..., Pg*) with |F;] > 2. /
With the help of the abstract tree graph formula (Corollary B.4.2. } we obtain an estimate for the

combinatorial coefficient (@) :

Corollary A.3.8. We have
(m— 1)} g1

e (451

a(@)] <

for the cluster @ = (P}, ..., P0*), n= Y i

PROOF: Let G be a Mayer graph with n vertices 1,...,n. We define

o [ 5 e@
Wi { 0 otherwise. (A.52)
Because of 2
1= wi; -1 i@ ed
— d i5 o e .
2 buile D { 0 otherwise (A.53)
we have
E (_1)!(6') = ["—[d‘ﬁu] z E Wil — 1] (A.54)
[e{eted 1< \":J;‘(" MegG, (iJ)EM

where §n denotes the set of all Mayer graphs with n vertices. By the abstract tree graph formula (Corollary
B.4.2. ) follows

Z( 1’(0}—2 H [“fd¢:s]{ fdvn-xf nIS)Hww(m(w(k))ez‘s‘“""w"‘”""’[’]}- (A.55)

CCG 1<t<;<n
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The sum is over all permutations

T {1{.1_’_;;1_'(’1.;;}_4{1"“’”} {A.56)
with m{1) = 1. Since |w;| < 2 and |e¥#/| = 1 we cbtain
| 0O < (v 1t eyt S [ dons ol (A7)
cCca n V0
The special case i
Z/(; dop—1f(n]8) € ™t (A.58)
n

of the tree estimate (Lemma 3.1.4. ) proves the assertion. /

APPENDIX B. DECOUPLING EXPANSION FOR NONLOCAL INTERACTIONS,
TREE GRAPH FORMULA AND ESTIMATES

B.1. INTERPOLATING INTERACTION -

:
*

For every finite point sets X we define the muliiparticle inferaction by

BX)=3" 3 Ez,...,m) (B.1)
P 2. meX
&' is symmetrically in the arguments zy,...,z;. The points z;,...,%; are not necessarily distinci. The point

set occupied by zy,...,z is denoted by p(z1,..., ). A disjoint partition of ¥ in n subsets ¥; is labeled by ¥,
i.e.

Y=Y for Yo=(¥,...,Ya) (B.2)

We will use the notation

k
y® =3"y; (B.3)
=1

forall k¢ {1,...,n}. For s € [0,1] and a subset ¥ C X the I-particle interaction is modified by
l
Yy o, me|8xy) = H S @y L 2) (B.4)
=1

with the characteristic function xy . Corresponding to (B.4) we define

EXlsxy)=Y_ D €E'(z1,...,zlexy): (B.5)

I ®5,.. 45X

The multiparticle inferaction defined by (B.5) is called an inferpolating tnteraction. In the following we define
an interpolating interaction.
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Definition (of an interpolating interaction)

Let ¥, be a disjoint partition of Y (), For s4,...,8, € [0,1] the interpolating interaction E(Y™Mle1,...,8n-1)

is defined recursively by
Eo(Y™) = B(Y (™)

E(y(")) = Bt (Y ™ sixy o) + B (Y ) — B (Y sy o)

for all i € {1,...,n} and
E(Y®™|sy,...,80-1) = Eo(Y ™).

We will use also the following notation

By (Xlo1y. vy 8nm1) = BY ™oy, .., 801)

for X = Y#), The following Lemma shows that E(Y{™)|sy,...,s,) is independent from sy, :

Lemma B.1.1.. An explicit expression for the interpolating interaction is

n—1
By (Xlorse-ont) =30 3o [l er€(on,...om)

{ Zyqe-es ;mEeEX 1=1
with .
ni = Ni(1— & x1)s N=le{,..., B z;e YV},
With the notation

n—1

&l = T o7 et
n(zl,...,z¢|sl,...,sn_1)- 8, €N Z1y ey T)

=1
the following conditions are fulfilled
{i) Decoupling
Suppose that for zy,...,% € X, it exists 1,52 € {1,...,n — 1}, 1 < ja, with

p(ml""szf)nz'fp #90, re{lsz}-

Then

E}i.n(zl,...,z;|sl,...,s¢ 2=0,,..,8-1)=0
for alii € {j1,...,72 — 1}+
{ii) Reduction

For
Y AXE Y, Y, x—Y()

we have
E?"Ax(X|51, ceny8p = 1) —_— Efﬂ_le(XIS]_,.;. ,Sﬂ,_]_)-

(iii) Locality
Suppose that for £,..., 51 € X

p(z1,...,z)NY; =0 forallj >sor p(xyy.-,z)NY; =0 forallj <4

Then
6,,.6'17“(1:1,...,z;|31,...,sn__1) =0

(iv) Positivity
If E(X) > 0 then Eg {X]|s1,...,8n~1) 2 0.
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PRoOOF: Without loss of generality we prove the assertion for

E(X) = Yzy,...,z) (B.18)
where X D p(z1,...,z1). By the recursive definition of the interpolating interaction we have to show
Ei(X) = ™ By (X) (B.19)

with nt = N}(1 - 6 wt)s Ni= {7 €{1,...,1}{z; € Y ©)}|. This follows by consideration of two different cases :

L p(z1,...,2) N (X =Y £0:
From Eq. {B.6) follows

Ei(X)=FEi_1(X|sixyo)- ‘ {B.20)
With the notation (B.9) we have
: !
E(X) = [] £ By (X) = ¥ By (X). (B.21)
=1
This proves (B.19) because of { = N}
2. Llyaasy® EY(':) :
From Eq. (B.6) follows _
E(X) = By (YD) = B (X). (B.22)

Because of { = N} we have (B.19). This proves Eq. (B.8). We will now show the conditions (i)-(iv) :
(i} : By assumption (B.11) follows N} # [,0if i € {71,...,52 — 1}. From (B.8) follows

ol NH(1-8, )
£ (21, ooy onma) = [[ 60 7 Emyyen m). (B.23)
=1 .
This proves Eq. (B.12). -
(i) : If N, =1, then nl, = 0. This gives (B.14).
t

(iii) : By assumption (B.15) follows Nj = 0 or = [. Therefore n} = 0. By Eq. (B.10) the expression
&y (®1,-..,m[91,...,841) is independent from s;. This proves Eq. (B.16).

{iv) : This follows immediately from the recursive definition of Ey (X|sy,...,9,—1) and the fact that convex
combinations maintain inequalifies. /

The interpolating interaction may be represented graphically. Every point set Y; is represented by a
horizontal line. Every point z; € ¥; of an interaction term £'(zy,...,z;) is represented by a point on the i-th
horizontal line. Because of the symmetry of £, the labelling of the points on the lines is unessential. Let us
denote the maximal index of lines which have points by max. We associate to every point on the line ¢ the term
8§8¢41 . - . Synag—1. Lhe product of this terms gives H;:ll s?". This is the s-factor of the interpolating interaction
{see Eq. (B.10)). Fig. B.1 shows an example of this construction for a 4-particle interaction.

1 .

Fig. B.1 Example for the graphical representation of a 4-particle interaction with the s-dependent coefficient s1858).

84



Let us consider the 2-particle interaction

B(X)= ) &(z.9) (B.24)
z,yEX
with X = {%;,...,%»} and the partition ~
Yo =1,...,Yn) (B.25)

with ¥; = {z;}. Then the interpolating interaction is

By (Xlssyeos8n1) =2 9 8isivr.-8i-1€2(2i,25) + ) €3z, 7). (B.26)

1<i<y<n i=1

This is the modified propagator v[s] for £2(z, y) = vy (cf. (2.110)). For an l-particle interaction

E(¢) = Z p(Z1,- 0 TPy - - Py (B.27)

ELyueny T} eX

the interpolating interaction may be recursively defined by

By, (#) = E(#) | (B.28)
El—f.' (¢|‘91: L) 13l‘) = E?.-_l(ﬁf’x—yc&) -+ siéY(") |815 veey si—l) + (1 - SE)EY’,-__I (¢Y(") |31:- . :sl'-—l)} i€ {15 ey n‘}
(B.28b)
with the notation
($v)e = xv (2)$2- (B.29)
This corresponds to (B.6). The conditions (i}-(iv) of Lemma B.1.1. are also fulfilled.
B.2. REPRESENTATION OF THE MOLECULAR ACTIVITIES WITH
THE HELP OF THE INTERPOLATING INTERACTION
Lemma B.2.1. Let the multiparticle interaction be defined by
EX)y=Y. > Elz,em) (B.30)
I &1y EX
for every finite point set X. Consider the polymer representation
X = 3 T[B(Y). (B.31)
X=ZY Y
The molecular activities B(Y) are uniquely defined by (B.31)(cf. app. A). We have
BY)= ) > A (B.32)
=ly| %
ylii=v
with
1 -1 : , Bo (¥ .
AYy) = f dsy ...dojoy []100 BS) (Y6+Dlsy, .. a)ePss & Ieemtim) (B.33)
o . i1

=1
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E,({L(Y(Hl)lsl,---:si) =3 3 L T P (B.34)

{ 2y yen,mp €V LT
PICTIRR TSI SO TS

where the sum 3 », is over all disjoint partitions ¥ = E§=1 Y; with Yy = {z}, for a fixed chosen z c Y.
y () my
Permutations of Y3, ...,Y; are considered as different partitions. Suppose that the conditions (i) (decoupling )

and (i} (reduction ) of Lemmma B.1.1. are fulfilled for the interpolating interaction €'(zy,...,zi|sy, ... . 8)-

PROOF: We will consider the following Kirkwood Salaburg equations with remainder
eFX) = N {Ka(W)eFXW) 4 R (X,W)) (B.35)
w

2EW CX

for ali n € IN* == {1, 2,3, ...} with

KW)=)_ 3 A¥) (B.36)
ign ¥
() aw
1 1 . .
R(XW)= 3 fodsl---dsn B0, { [T 00 ES) (Y C+Vsy,..., si)yeBrmm Kloss)]. (BLa7)
Yn =1 :

yi{n)=w

Then R,(X,W) = 0 for n > |X|. By the unique solution of the Kirkwood Salsburg equations follows the
assertion. Eq. (B.35) is proved by induction. Let n = 1. By reduction (Lemma B.1.1., (ii) ) follows

By, px(Xle1 = 1) = E(X). (B.38)
The mean value theorem yields
1
eB(X) = By ax(X|e:=0) +/ ds,8,, eBriax(X]o1) (B.39)
0

By decoupling {Lemma B.1.1., (i) ) follows
Bo,nx(Xls1 = 0) = (1) + E(X ~ Y;). (B.40)

This proves the assertion for n = 1. Let the assertion be valid for n. We apply the derivative in 8, on the rhs
of {B.37}. Since

aanE?ﬂAx(Xlslr'--:sn)zz E aanell?'n,\x(zls-"’zflslv":sﬂ»)=

i 21,...,3)!€x
=y ¥ 3 B pxc(B1yeee,Tilony e, 80) = a,,-,.r-:{_;:ll(w"+1)|sl,...,a,.) (B.41)
Yn-l-l. i 31,...,a16Y("+1) Yn+1
FICT T =;)—Y(”)=Y,.,+1
it follows
1 n , ]
BaX W)= 3 [ o dsn JT00EY, (Y Dloy,... a]eBranxKlentn) (Bag)
LN ] 1=1
yi{n)=w
By reduction (Lemma B.1.1., (ii) ) follows
Ey (X|81,...,85) = Ep, o oax(X[81,...,80, 8041 = 1). (B.43)

We use the mean value theorem. This gives

1 n
R. (X, W)= Z f(; ds; ...ds, H[ . .]eE”n+x"x(xi’“'"""“:o}_{.

Yn+; !=1
yvinl=w

1 n
+ E f d31 . dsndsﬂ+1 3’”+; H[ Ve .]e'Elfn+1Ax (xl‘ll"'|aﬂ+l) (B.M)
4]

Frpr =1
¥(r)ww
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By decoupling {Lemma B.1.1., (i) )

Ey , ax(X]o15- - 8n41 =0) = By, (Y sy, . 00) + E(X — y(n+1)y (B.45)
follows
Z R (X,W) Z { E f ds, .. ds,,,]:[[ Er 2 (Y00, 80) LE-W 4 p (X, W)} =
:ewcx =ewcx Y(“_‘;:')‘_W

T AT AT+ B KW} (B46)

?n+.l.

::EWCX y(nehl)

The assertion {B.35) for n + 1 follows by induction hypothesis. /

B.3. REPRESENTATION OF THE ACTIVITIES WITH THE HELP
OF THE INTERPOLATING INTERACTION

By Lemma B.2.1. for the representation of the molecular activities follows a representation of the activities
for multiparticle interactions :

Theorem B.3.1. Let the partition function Z(X) for finite point sets be defined by

= f dpo (4)€% ) (B.47)
with the multiparticle interaction
BX)=7Y 3o € m). (B.48)
[ @1, BnEX

The activities A(Y), ¥ C X, are defined uniquely by

zixy= > [lA). (B.49)
x=3v Y
The modified propagator v[s] for parameters sy,...,8n-1 € [0,1] and partitions ¥, of Y is defined by
vlslay = 9, SiSiri---8i-1[xvi(2)vmyxy; (y) + xv, (@) vayxv, (W)} + D xv:(2)vayxv: (9)- (B.50)
1<i<is<n i=1
Then
i )
=3 X [ o .deyes [ diaga @ TL0WE, T+ n, 00l rares=a)
J<|Y| ?; §=1
y{il=y
(B.51)
with
) 1 3
E’E?)+ (Y(t+1]|31:...,3:‘)= Z [2 aqsxl‘u'[s]w;zgaqs o +Z E . é‘i(,q:l,...,:r:; 31,...,3,-)]
2€Y (O #1 5z €Y (FHL)
53€Yi4y Plrg e )=V =y Ly

(B.52)
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where the sum 3~ »,  is over all disjoint partitions Y = Ef“=1 Y; with ¥, = {z}, for any = € Y. Permutations
¥y () =y
of ¥3,...,Y; are considered as different. The interpolating interaction €'(z1,..., |81, ...8;) is supposed to

fulfill the conditions (i) and (ii) of Lemama B.1.1. . The differential operators in En(‘: )+1 (Y6+1) sy, ..., 8;) operates
only on the e-function on the rhs of (B.51).

PROOF: Consider the multiparticle interaction
E(-X) -1 Z GePa — = Z Gz Vayqy + Z Z 51(31,-- ,31) (B.53)
TEX T yEX I o, o€X
The correspending interpolating interaction is
E‘F:+1(Y(£+l)|31 Sy 8) = =1 Z Jatz — 5 z: 9z[8]aygy + E Z EHz1,.. ., 3tlo1,. .0 8)  (B.54)
zeX zyeX Ty B EX
and fulfills the conditions of decoupling and reduction (see Lemma B.1.1. ). By Lemma B.2.1. we have

o @8)x~H(a,09) X4 D mex E @) _

Z H{E z fdsl ds-" 1]._.[[3 z “%qxxv}:st;zszz+

X= Zy Y i<y zyer{¥)
y (N ay {zg}=%;4y

+Z‘: Z El(.?h,---,51'311--':&'))]

LI agey(‘+“')
F(=1;---,3[)—Y(‘}=Y|‘+1

o He) = Harbly 0+ 20 20, L eri € (Brntidorinny) } {B.55)

Integration of (B.55) by [ [I.cx 9¢+49: proves the assertion. /

B.4. EXPLICIT S-DEPENDENCE OF THE DECOUPLING EXPANSION
AND PROOF OF THE TREE GRAPH FORMULA

In this section the interpolating interaction defined by Eq. (B.8) will be used. By Theorem B.3.1. we have
the following representation of the activities A(Y).

Corollary B.4.1. Let the partition function be defined by
2(X) = [ duy($)e) (B.47)

with the interaction

=3 Y iz, m) (B.48)

4 Tyyea @ EX .

for all finite point sets X. Suppose that the interpolating interaction is defined by

n—1
By (Y®or,yomn) =30 30 [ €. m) (B.563)

I z3,..,2€7(n) i=1
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with

l= N -6y, N=[{je{l.. BzeYP) (B.56b)
and the interpolating propagator is defined by
n
Vslaw = D SiS6r1.e- 51 Xw (2} Uayxvi (¥) + X (2)Vauxw (9)] + Y xvi(@)vayxw(v)- (B.50)
12i<si<n i=1

Then we have for the activities A(Y), ¥ C X

LT T XX [t f s @I s Teacstocs 50l

t<y| ¢ a=2 =1
!

r)

{a! -

{HN, o ,a(z N E Ele(zy, .. o)) (¢ )lh""’s'“l)} (B.57)
j=1757 Ve ™ #i€%¥n5(a)

Plen, g1 ¥ )=Ya

with
= 1,2 O 4 &3 ifl=2
Fion, .y ar) = | BEo Ve + E2om) iTE=2 (B.58)
ENzy,. .. %1) otherwise.

T=(lg,...,k) is a (¢ — 1)-tupel of integers > 2. ¥: = (Y1,...,Y2) is a disjoint partition of Y with ¥, = {z} for
some z € Y. Permutations of Yz,...,Y; define different partmons Y,. The differential operator in & g operates
only on the e-function on the rhs of Eq (B.57). We have the condition

1< Y| < Lo (B.59)
N = (Na,...,Ny) is a (¢ — 1)-tupel of positive integers with
1< N, <l ~|Yel {B.60)
% are the following | and N dependent functions .
max(Na) k
" {a — (fht(};)),,_ . (et =) (B.61)
with ni(a) < a and the notation
{1,... -1 ={1..,t~1}x - x{1,...,4 =1}

k times

p?is defined by
p% = [{ni(a)| ni(a) = 7} {B.62)

PROOF: By Theorem B.3.1. follows

=YY ¥ [ donoancs f @{1]e....

<Y T a=2

(‘) =Y
2= RS sc._l)]e*"n“’“""’-“’"-1)}- (B.63)

£y geesry, EY (8]
p(:l‘...,a(a)—-y(“‘“l)-_—}'a

Furthermore
gla —
E'e(Zyyen s B |81, 000 s 8a-1) =

p(:r;,...,s‘a)—Y(“"'l)zYa

ta—|Yal

=3 3 (Na)ela(m, T80y Samt)-  (B.64)

Ne=1 , @yle-1) for jem,
F(SNu+1|---;=:,)=Ya
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We insert (B.64) on the ths of (B.63). This gives

AY) = E Z Z Z[ dsy . .dssn1/d#'{a](¢){g[a-,_;

<Y 7
(')
Z AI: ) g‘“(&ﬁ, ey I, |81, carySgay )}e-Ey‘ (Y a0t y) }_ (B65)

2gevie—2) for jeng
PLaN, 41 el, }=Yg

With 1
a—
Elo(zyynn s T, |85, ny80-1) Hs gy, ., m,) (B.66a)
ng=NP(1-gpe),  Nie=lie{l... L} 5 e YV (B.66b)
we obfain

Z (f;,) g‘“(ml,...,z;a By +aa8qm1) = Z H (8a—18¢—2- sk‘r_a)

-‘l_fEY("“” for I€Ng (ku} =t LN =1
FlaNg Loeees 2, 1=¥n 1<k <a

H pe !l(_;\r N) E f’n(mi,...,ma). (B.67)
F=1 ¥y

=,'EY,,? for j<m,

P2 gedseens 2, Y=¥a

The sum is over all N -tupel (kf)i=1, .. ~, with k¥ € {1,...,a—1}. P equals the number of elements z; in Yy,
ie.
= |{k5| ki = 7} (B.68)

The tupels (k#) for a € {2,...,t} may be replaced by functions #. We insert {B.67) on the rhs of (B.65) and set
ni(a) = k¥ ‘ (B.69)
This proves Eq. (B.57). v/

The decoupling expansion (B.57) is essentially simpler for 2-particle interactions

X)=3 Yz + ). E%z,y). (B.70)

zEX ZYEX
For this special case the conditions (B.59) and (B.60) of Corollary B.4.1. are
la=2 [Ya|=1 (B.71)

for all a € {2,...,t}. For that the summation over ¢, 'f; ¥:, and N on the rhs of (B.57) is a sum over partitions
Ya,...,Y; with .
t= IY(t}la ¥, = ({51}’ {'7"2}: ey {xt})a la =2, N, =1 (B'72)

for all @ € {2,...,t}. The sum over % is in this special case a sum over all ¢-trees 5. Thereby the tree graph
formula is a special case of the decoupling expansion.

PROOF OF THEOREM 2.5.1. (TREE GRAPH FORMULA): Let us set
B(X) =Y mFo(¢s+ $a). (B.73)
TEX .
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By Corollary B.4.1. follows

A(X|¢) = E Z[ da"n.—l [3a—233 3. 5q;(a)/dﬂv[a](¢)

Y("‘)—X
N
> EY, n1la) Ty z’ zeX
23 E€Vq
where
= ({z1},{z2},...,{zn}) withz, =z€ X (B.75)
is a partition of X = {21,...,2n}. The sum over ¥, is a sum over permutations of z3,..., zZs. The interpolating

propagator v[s] defined by Eq. (B.50) equals the modified propagator defined by ({2.110) for the partition ¥,.
With the notations n; = » and

f(ﬂ’s) = 1-_[ [aa——?sa—-a cen sq(a)] {2.107)

a=2

follows by Eq. (B.74) the assertion (2.111a). 1/

The tree graph formula yields a relation of representations by Mayer graphs and by tree graphs. We have
for complex wy; with 1 i< j<n, i,5,nelN

s = Y H{ > II levs -1]}- | (B.76)
{trn}=311 I “GEGr(i)EC

Gr is the set of all Mayer graphs with vertex set I. By the tree graph formula we obtain the following corollary

Corollary B.4.2. (abstract tree graph formula). We have

> 1l [e"’"—ll“zz _/ dos1 f(nle) H (i lisiesss Ol (B.77)

Gegn (i)EG
with

858500 0 541 Wys i<y
wis[s] = { wl-:+1 j—1 Wiy G ; (B.78)
for allt,§ with 1 <1 < j € n. The sum is over all permutations
{1,...,n} — {1,...,n}

{1 o ﬂ_(z) (B.79)

with x(1) = 1 and all n-trees ‘

' J{z...,n} = {1,...,n—1}

7: { Eoa qu) _ ! (B.BO)

with n(k) < k.

B.5. ESTIMATES FOR THE SUM OVER 7% IN THE DECOUPLING
EXPANSION FOR NONLOCAL INTERACTIONS

This section presents a generalization of the tree estimate {(Lemma 3.1.4 ) and the Lemma by Battle (Lemma
3.1.5. ) for the decoupling expansion of nonlocal interactions.

eject
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Lemma B.5.1. (generalisation of the tree estimate). Let I = (is,.. .y} and N = (Nz, ., N¢) be
(t — 1)-tuples of positive integers with Ny < l, for all a € {2,. } Let p a) >0 a€{],. t}, be non
negative real numbers. With the notation

Na
Nt(“) Z/ day ... dse—1 1__[{ (a)leNe8,,_, ]__I[sa—l 3!7.(6)!‘(”:(“))]} (B.81}

a=32 =1

we have the inequality

St H{Wm(an‘« . expw(a—l)HN)} (B.82)
=3 f=g+1 4"t 1=a

PROOF: The sum over 7 may be replaced by the sum over n;(a) = ki from 1 to a —1 foralla € {2,...,1}.
Therefore

1 N, a—1
sf;ﬁ‘t(ﬂ-) =j; dsy ... dss_1 H{”’(G)!a Naala 1 H[Z $a~15a-2 3k,—#(ki)]} =
a=2 =1 k;=1
1 ' ‘
= f dsy...dsy; H {p(a)' ~Nag, 1[2 84—18g-2 - sk_u(k)]N'}. (B.83)
0 a=2
Let us set
1 t+1—i a—1 t—i i
Slu) = / dsy...dss_ H [Z 8oz ... seu(k)Ne exp(z Sti...app(k) H Neyoox) (B.84)
0 a=2 k=1 k=1 k=2
forall € {1,...,t}. We have
_ i :
S 7.0 (#) < TT [ Nap(a@)=="18(n). (B-85)
a=2

8!(u) is estimated by recursion. Because of 1 < J) dse®® (u > 0), we obtain

t—~1i a—1
S < f dey ... dsMds(®; . ds I TS sams - skp(B))
a=2 k=1
t—i Newips t—i . §
[E i1 St—ig - - - SRV i+* exp( E Z si_)_,-st_,-._l ... 8ppu(k) H Niio—x). (B.86)
k=1 (=1 k=1 k=3
We integrate (B.86) over 351_)1, e t(j_v:“‘“). We use the inequality
. 1
f ds ue™/® < ge™/®
0
and obtain
1 t—i a—1 1
S'(u) Sf ds; .. dst_ —1 [ 8g.2 . 3};,‘} k‘)]N“ -
) 0 ' al:Ia kz—-: ‘ (T k=2 Negan)Ve-iss
Ne_iga t—i 1
exp Z Zst i—18t-i—2 « ..Skﬂ.(k) H M,.{.z_.k). (B.BT)
=1 k=1 k=3
Thereby
s'< exp(p(t — 1) Hk—z Ney2—k) s! 1) (B.88)

(ITmg Nesa—p)¥eita
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Because of §/(u) = 1 we obtain

: p{t—1) ¥,
o) < T Mansae ) S 83() <
a=2
- a)fe—Na eh(t=1)Ne gu(t=2)NeNews
< ;I_;_[Z{Nai‘( ) ] N N';N‘-l Si(p) < .
< g{ m—[#(a)]t,—m exp(u(a — 1) EN;)}. v (B.89)

By the generalization of the tree estimate follows

Lemma B.6.2. (generalization of the Lemma by Battle). Let T={(l,...,k) and N = (Nay...,N:) be
(¢ - 1)- tuples of positive integers with N, < g for all a € {2,...,t}. We use the notations

I — N, ifa=¢
d;ﬁ(a) = efa)+la— N, %f l<axt {B.90a)
ex(1) ifa=1
with
o) = b m(B) =all,  a€{l...,t—1) (B.90b)

d~ ~(a.) equals the exponent of u(a) on the rhs of Eq. (B.81). Then

1
Z’/‘; 48y ...4d8_ ldNtN(l) H{d"”“ (a}! s, _, H[sa 1 Sm(a)}} <

a=2

¢

N,

< ([T ) + et H{ [(H'J + 1] (I Na)!}, (B.o1)
=2 a="2 (Hs—wa+1

PROOF: By Lemma B.5.1. follows for the positive real numbers ¢, a € {1,...,¢}:

No

ola) ~(1)
fdsl dsp_ 1H{ T By H{“’a— sn-(a)]}tl =

=1

tha =N exp(tg.1 HN ] (B.92)

1;[ [(I_If_a+1 ARSI

t=a
We multiplicate the factor Hizz[e_t“*(ﬂim Ni+1)g~t: This gives
Efldsl---dstulthN "tl(H N+1)H{ 7N (a) Pt (H a+1N+I)}
o;'.o 0 au=2
P t N,
tlmN et H {B%_l H[sa__l . S"i(a}]} <
a=Z §=1
ﬁ N,
< et [ a tlﬂn"‘Nne—‘ta] N; t::—Nze—te_ (Bgs)

a=2 (H:'=u+1 ‘Nl')N“

We integrate (B.93) over ¢, from 0 to oo and we use

0o !
n_—at __ n
/(; dt t"e = -
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This gives

1 N,
Z[ dsl . .d3¢_1 d;,ﬁ(l)! H {d;;,s;(a)!&,n_l H[sa_l [ 8,.“(“)]}
~ v 0 i=1
n

t
a=2

1 N,
S [

[T N+ I]df:';(a) oy L Tiz gy Vi) e

ax=1 s=a-+1

By the definition (B.90) of d (@) follows

Therefore the assertion follows by the inequality (B.94). v/

APPENDIX C. GENERATING FUNCTION FOR
FREE-PROPAGATOR-AMPUTATED GREENS FUNCTIONS

Lemma C.1.. The generating function for Greens functions is defined by
110) = 5 [ dmm (@RS,

where N is fixed by T[0] = 1. Then the following relation holds on the lattice (aZZ)” = A¢or

Z(At'oehb) - _ }_
m[z(ﬂtotl'.b = 0)] =ITll-3 [-z.ye(am)u I(@)lz9)(3)

with
2(Aeo ) = f dpia($)F (6 + V).

The generating function for the free-propagator-amputated Greens functions is

PROOF: Subtraction of the integration variables gives

Z(henld) = [ da(d~ DIF(@) = dettamo)? [{ T] dalF(g) e =970 =

DE (aZZ)>

N.) !]. (B.94) §

e e e

(B.95)

(C.1)

(C.2)

(C.3)

= [ @@ F@)e BTV, (C)

With
M@= [ Hmaw)
yE(aiz)”

and (C.1) follows (C.2). The derivative with respect to J(x) reads

& é
57() fge(amw Sy
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This yields

- 6" Z(Ave]¥) |
Gc(xl.! ety zn) - j_;l,...y,.,e(am)" v(xl)yl) ree U(mn:yn) 61}1(!{1) R -E'p(yu) In [Z(A-todld’ — 0)] |'f1=0

forn > 2 and

62 1n[ Z(Asot!v)

Gc(zlj ’52) = f 0(21, yl)u(xﬂi y?) 51&(_{]1)51,[1(![2) Z(Atathb - 0)] ]1;5-‘:0 + t’("":1! SZ)

y1.¥2E(eZ)Y

for n = 2. The n-point free-propagator-amputated Greens function is therefore

_ i Z(Asor|9)
)= 55(en) - b0en) ln[zumw =0)] [p=0- v

Ge(Z1y-+-120

APPENDIX D. EQUIVALENCE OF RENORMALIZATION CONDITIONS

Lemma D.1.. Suppose that the partition function Z{X|¢) fulfills
Z(XI¥) = Z(X| - ¥)
for all finite X C (aZZ)”. Then the renormalization conditions
ln Z(X|¢)lp=0 =0
32

ETE] In Z(X|¢)lg=0=0

are equivalent to

A Xl =1{g  EXI=1

V] otherwise
32

a3

AT (X|¥)g=0 =0

for all finite X C (aZZ)* with _
zxig)= 3, I[4a=w).

x=3v ¥

(c.7)

(C.8)

(C.9)

(D.1)

(D.2a)}
(D.2b)

(D.3a)

(D.3b)

(D.4)

~ The derivative in (D.2b) and (D.3b) is with respect to constant external fields ), = o for all z € (aZZ)*.

PROOF: 1.) Suppose that the renormalization conditions (D.2a,b) are fulfilled . We will show the renormaliza-

tion conditions (D.3a,b}). From (D.2a) follows

Z(X|$ = 0) = 1.

(D-5)

By uniqueness of the activities A”** in (D.4) and the renormalization condition (D.2a) follows (D.3a). Because

of the symmetry (D.1), follows '
a ,
32 (X[ Nly=o = 0.

g5

(D.6)



{D.2b), (D.5) and (D.6) we obtain

3
With the help of the inversion formula (see app. A, (A.21) )
L COEDCH A CESENED W | B4¢:%1) (D:8)
n>1 X=y v P k=1

we obtain the renormalization condition {D.3b).

2.) Suppose that the renormalization conditions (D.3a,b) are fulfilled. By the polymer representation (D.4) and
(D.3a) follows (D.2a). Because of the symmetry (D.1), we have

S A XI¥)ly=o = 0. (D9)

Therefore (D.3b) and (D.4) prove the renormalization condition (D.2b). \/
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