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Abstract

In this report we investigate the spin-orbit motion of particles in storage
rings. Having summarized the fully six-dimensional description of the orbital
motion with coordinates (x, py, z, Pz, 0, n = ég) we introduce the dispersion,
Since the dispersion function 1is introduced via a canonical transformation,
the symplectic structure of the equations of motion (and thus of all the
transfer matrices) in the absence of radiation effects s completely
preserved. In this formulation the coupling between transverse and longitu-

dinal motion only appears in the cavities,

As physical applications of this appreoach we calculate the damping constants,
the beam emittance matrix and the depolarization time.
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1. Introduction and statement of the problem

In the widely used polarization program SLIM 1) coupled linear spin-orbit
motion in the presence of synchrotron radiation is treated using a six-dimen-
sional formalism with the variables x, py, z, py, 0, n = 8E/Ey. The aim of the
present work is to develop a six dimensional formalism which explicitly in-
volves dispersion and which as a result is simpler and is better suited for
diagnostic purposes. Then, using the same mathematical methods as developed
earlier?) the damping constants, beam emittance matrix and depolarization time
Tp are calculated,

This formalism can then serve as a basis for rewriting the numerical code SLIM
using the dispersion approximation,

2. The equations of motion

We begin the investigation of spin-orbit motion 1in a storage ring with the
statement of the equations of motion whereby in our gquasi linear framework
motion in sextupoles can also be included. .

2.1 Orbital motion

The central eguation for the orbital motion 1s written in the form #)

> -+ - > >

;‘ = (A + 8A)y + Cgex ¥ Cy + Cy *+8C . (2.1)

; is the six-dimensional orbit vector describing the transverse and longitu-
dinal particle motion. In coordinates ;; is given by:

T

y' = {X, Pys Z, Pz O, T) (2.2)

Py = x' - Hz
py, = z' + Hx

The matrix A
> >
B 0, K
>
A= =Ky 0 -X; 0 0 0 (2.3)
0 0 0 0 EE--k -%; cosd + L 5(S—Sp) 0

0 H



with

0 1 H
(K +g+H?) 0 N
-H 0 0

N -H -(KZ - g+H?)

and the matrix SA

SA =

PP
A
SAg,
0Ags
SAse

S Amn

describe the

((GAmn)) s

= - E-\—J’-sinclw z 6(3-—sp) :
EO u

= Ay

= - Cp= [(KE+K3)s Ky + 2Ky =gl

= Cpv [KE+K3) oKy - 2Ky 0 9]

= - 20, ¢ (Ky+KZ)

= 0 otherwise

influence of the various beam line elements.

(2.3a)

(2.3b)

(2.4a)

(2.4b)

(2.4¢)

(2.5)



_).
The vector Cgey

Ty = 22(s) (0, 22-x%, 0, 2x2, 0, 0) (2.6)
2B
As) = = [e :]
Eo Yox®7 y=z=0

describes the influence of sextupoles and Eo

-

&= (0,0,0,0,0, Ei Sing « £ 8(s = s) - Cyo (KE+K2)) (2.7)
0 u

describes the energy variation due to photon emission in the bending magnets
and due to particle acceleration in the cavities, where

2 Yo
C, = = ¢? — 2.7a
1 3 € e, | ( )
The vector El
¢l = (0, -AB,, 0, AB,, 0, 0) (2.8)

describes the influence of field errors caused by misalignments of the
magnets. The quantity $¢

§¢' = (0, 0, 0, 0, 0, &c) (2.9)

describes the influence of the quantum fluctuations with

<8c(s)e8cf{s')> = w(s)+8(s -5s') ; (2.9a)
<8c(s)> =0 (2.9b)
w(s) = le,z(S)la‘ C, 3 (2.10)
Cp = 55;8/37- Coobeyl (2.10a)
A= ;E— . (2.10b)

My C



2.2 Spin motion

The equation of motion for the spin is given byZ‘

d ¢ >
—_ = 9 .].
5= a8 (2.11)
with
g,
3 - £, ; (z.11a)
5
0 -5 2y Qr
>
Q = | q R O (2.11b)
-0y 9. 0 a,
-+ a A ].—r
R = - (L+Kg=x+K,+12) Egkl+ﬂ).{L1 + ayg(l+myl-B -
2
Yo Yo - >
- 1+2 01__ - . . 'B + e .ZIB +
T (1+2n)-( Try, nlele,+ x'B; + e, T

F T (Bt x'e By + 200 B,)] +

1 (1 - Yo
1+vq 1+Y,

+

Yo(l+n)«[a + *m)eeclx'e gz-z’- gx}} -

S Kyl H Kty (2.11c)
{eq= cavity field) .

The components iy, §y, £; of & given in (2.11b) can then bhe extracted from
(2.11c). For each of the lens types one finds:

1) For a sextupole

—63--8_)< = Als)exz

Eq

eB_l 2 2y .

= 8z - E—A(s)-(x - z%)
0 .



= 0
Qy = = As) - (Ll +ayy) *xz ;- (2.12a)
ﬂz=-%>\(8)°(1+aYo;-(x2-zz‘ ;
2) For a gquadrupole

e
— B, = “Z
By X9
e
E‘(‘)‘Bz=g°x 5

Ky =Kz =0 3
Qr= 0 ;
Qg = = 9g(s) (Ll +ayy) =z ; (2.12b)
7 = = g{s) « (1 + ayy) *x

3) For a skew guadrupole

e
*E—(-)-BX=N'X M
o
__..B =_an ;
E, ¢

Ky =Kz =0 3

0
= - N(s) «(1 + ayy) +x 3 (2.12¢)

+N(s) + (1 +ayy) ez ;

Ee &3 =
N > A
it t

4) For a bending magnet

=
— B, = 0
X 3
I:'.0
e -
=B, = Kz 3

R T NI R R R T T R A TN R STR TS



Q - + aYo H K .

T T Ty, T

Gy = 0 3 (2.12d)
Q, = - Kevayg - (1 +ayy): Ki' x +Kyem o

2
ary,
ﬂ_[: - O.-x'oKZ ;
1+
Qp = +tKyeayg t (1 + avg) * KZ- z -K,*n (2.12¢e)
2, = 0 ;

5) For a solenoid

m mi m
a Im Se S -i(D
oo V3] fon}
N > =
il i H
1 1 ()
-
- =
- - =
L] -
N = e
W F

P
1 avg
= - . . + 02H-[1 .{-___._.__,9______] :
fe= - 2Melldavg g (1 + )
Yo ' .
fy = (1 + ayg) *H'» x +ayg* T » 2Hex' (2.12f
0
Yo .
Q, = (1 +ayy) *H'»z +avy* v 2z
0
6) For a cavity
e el . 2m .
£ oe(s) = L {sind + o(s) k-5 cosd} ¢« I &(s - s“) ;
By Fy L "

Ky =Kz =0 3



QT= 0 s
Q= (ayg *+ o ) -z'--gi sind + £ (s - su) 3 {2.129)
1+, Eo I
_Y -~
2, = - {ayy * 0 Jex' e ey sing* L (s - S“) :

1+ v, Es U

7) For a dipole kicker magnet

a) x-direction

0
B= |08, 5 0By = By - 8(s - so)
0
Ky =K, =0 ;
Qr= 0
2 = - (1 + ayg) -é%-aéx- 8(s - sg) (2.12k)
9= 0 ;

;. BBy = 2B, 8(s - s))

Qe = 0 (2.121)

e}
3}

n
1
—
-
+
2
o
—
L]
|m
==
[oe) ]
N

.
jog]
——
w
[}
[72]
[}
—
.



3. Introduction of a new reference trajectory (closed orbit)

Linear spin-orbit motion in a storage ring can be compietely described by
eqs. (2.1) and (2.11) but the equations must be solved in several steps. First
of all it 1is necessary to eliminate the inhomogeneous terms éo and El in
{2.1), This 1is achieved in the usual way by finding the (only) periodic solu-
tion }b of eq. (2,1}, Without ¢ we have:

..;ct) = (ﬂ + 5&)?@ + _C>o + gl + Esex 3
N N (3.1)
.}’0(50"'[—} = .YO(So)
and the general solution of (2.1) can be written:
.
3; = ;‘0 + y (3.2)

Putting (3.2) into (2.1} and taking into account (3.1) one obtains in Tinear
&
approximation for y:

> z
9 Ve R+op) 5+ &l (3.3)
ds - -
with . N
B 0, K
A-=1{-k, 0 -k, 0 0 0 | ;
0 0 0 0 & 2T thso. 5 §(s-s.) O
E, L ¥ H
(3.4)
E: _B.+_§sex 3 (3.5&)
0 0 0
- Xg 0 Zy 0
Bsex < A(s) . (3.5b)
0 0 0 0
Z, 0 Xg 0
Z

The vector y describes the synchro-betatron osciilations around the new equi-
Tibrium orbit ;6 (the "closed orbit").



—
By subdividing §I1nto transverse and longitudinal pieces in the form

o
¥ = ¥s (3.6)
~
Ye
one obtains from (3.3) and (3.4)
e, ~ ol § >
—-c-i-—S/j1= (B+6)-y+NG-K : (3.7a)
ds - -
d -~ - o~ o~
T s = - Ky =Kzt vy (3.7b)
d ~ _ eA TR 2T .~ ~
'a-g'ye = g k —L- cosd e« 1 S(S-—Sp)' Ys t
2
4 . .
+ ;El ‘SAep "yt SAge*ye t+ GC (3.7¢)

with

SBik = SAj  (F,k =1,2,3,4) (3.8)
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4. Introduction of dispersion

>
For our further investigation of eq. (3.1) we introduce the dispersion D:

d 5= (B+oB)+0+K
_— = + . .
Lo-Evm-0+K ;

B(sy+L) = Dlsg) (4.1)
with

T
D" = (Dy, D, Ds, D,)

If we ignore the (small) radiation damping terms, 8B, we can write

d 3-F.0+K 4.1
=P8 . (4.1a)
Using the ansatz
22—
Jl=yl+y,* D ; (4.2a)
eq. {3.7¢c) takes the form
s 4
d — eV 21 ~ -
— Vo= —— keSS ecosd I S(s-sp)eys t L GAg ity
ds Ey L ) a pel o m
4 ——
p=1
Taking into account (4.1) and (4.3) eq. (3.7a) can be written as
d il ~ =z —_ >
Syl B+eB)-yt -y -0
dsy (__ __) Y Ye
~ > - iy ~
- (B +68) -yt -0- ko2l icoss X 8(susy) v Y, -
- = Ey L
u
=D B SRgytyy - Dol v I SAgy Dyl =¥ - Dedc  (4.4)
u:]_ ]J:l
with
(YHT = (V1 Y2» Y3+ Wu)



- 11 -

Furthermore we put

— ~ ~ ~ o~ ~

Ys = ¥s = ¥, " Dy - Yyt Dyg +yy 0Dy, +y30 D,

il
It
(L]
1
et
[
L)
9
—
]
|
-
=
W
+
S
-
.
[}
_]...
e
w
=7
=
=
82

and using the relations

Vi=F, 4HF, 5 0 =0, +HD,

Yz;zyq“H'}’l > D;_:,:Dq,"‘HDl
one obtains:
-)7;: -(Kx'lesz'S/"s)
4 »
"'[Z (ng+5ﬂ\2p)'yu+y5°Kx}'Dl
p=1
a4 . B
) {131 Buy + SRgy) * %y + Ve v Kz 1Dy

4 .
+ 9, 1 z (Byp * 804y * Dy + Ky b

= hyﬁ.(Kx.Dl+KZ.D3)

4

8A,, (¥, D, -y, *D;) +SA,, (¥, D, - ¥, *Dj3) . (4.6)
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The eqgs. (4.3}, (4.4) and (4,6) can be put in matrix form

with

and

|en

as well as

i
A

SAme

Shst
SAss
§Ass
A sy
§hgs

SAmn

-
-D
4 = -
=Y (AeA)Y+sc- 0 (4.7)
1
>
v
= ~
y = ¥s (4.8)
¥
A= Ay +Ac 3 (4.9)
~ -> -
i 0, 04
0 0 0 0 0 -[KX°D1+ KZ'D3]
0 0 0 0 %!-k- gﬂ--COS@- T 5(s-su) 0
0 M (4.9a)
+ =T > -
DD -5 -0 0,
ev k .em «COSEs T 5(s-su) 51 0 0 (4.9b)
£, L d .
el
-b'-s 0 0
0 -1 0 0
1 0 0 0
: (4.10}
0 0 0 -1
G 0 1 0
((‘mnm)) 5
SApn = Dp* SAgn firmyn =1, 2, 3, 4 ;
4
- D {8Ace + I SAg - Dp} firm=1, 2, 3, 4 ;
p=1
Dz = SRz
- Dy -8Az
Dy * SAuy
- D3 = SAuy
4
6A66 + z SAGU * DU. M
=1 '
SAmn otherwise . (4.11)
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The matrix A. describes the coupling between synchrotron and betatron oscil-
lations. From eq. (4.9b) it is obvious that the coupling terms disappear if
the dispersion vector is zero in the cavity regionsa):

¥(s)+D = 0 (4.12)

with V(s) = Vs §(s - sp) .
u

It is worthwhile noting that eg. (4.7) without the perturbing terms GE and 8¢

d = - =

— = A

e y Ay (4,13)
can be written 1n'canonica1 form with the Hamiltonian

1= - , 1= —a ol = 1, =
K= S+ Ho D) 4 2(By - HeR)2 + 26,0 X2 426,72 -

[N+ A z5de %7 - %-[KX Dy +Kye Dy]eT2 -

.oley k--gﬂ--cos® -z (s - su) X
X [T+D,»Py *+D;32P, - Dp° X = D, » Z)2 (4.14)
with
Gy = Ky + g+ HE +hexy ;
- (4.15)

G, = Kz = g+ H? - Aexg ;
> - — — — - _
yT=1(X, pgs Z, Pz, O, M) . (4.16)

This can be checked easily by putting (4,14) into the canonical equations of

motion
(- 2 - S X
3Py X
{7 - 3§~ s Py = -3_]5;; (4.17)
op, 9z
R S
8N o0
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Remark:

By neglecting the perturb1ng terms &A and s¢ the starting equation (3.6) for
the orbital vector y can also be derived from a Hamiltonian

L ' 1 o SR IRV R
- “2" +H'Z) E(PZ'H'X)E""é'Gl'XZ"'EGz'ZZ -

- [N + )\. . 20] . ’)‘(’Ej - (KX . ?{ + KZ N) . ﬁ’ -
- 1382 . k L2m, cosd e« £ &(s - sp) . (4.18)
2 EO L u

The Hamiltonian K given in (4.14) can be obtained from & by applying to (4.18)

a canonical transformation of the form“’s)

o~

Fp_(xs %}9’8’9 Ex! -57_3 T-T_ss) = Ex' (’;(’ = ﬁ.Dl) +ﬁ. DZ'?{‘ +

- % [D,D, + DyDu]e M2 +7 + & (4.19)

-> ->
The corresponding transformation equations describe the transition fromy to y
and they agree with egs. (4.2a), (4.2b) and (4.5).
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5. Description of the spin motion

5.1 Perturbation theory

Using egs. (3.2}, 4.2) and (4.5) the orbit vector ; has the form

73+ ¥ (5.1a)
with
§h = %l*'jk 'a >
')\”s:375"'}-2'91*3/1'[)3-E‘Dz‘Ys'D# > (5.1b)
9% = 3% .

In order ‘to utilize the equation of motion (2.8) for the spin it is now neces-
sary to divide the "spin matrix" 2 into two components and to do this in a way
corresponding to the division of the vector §'1n eq. (5.1)

2 = o= 29wy (5.2)
with
2 = aiy) . (5.3)

For the matrix W

X
w= ay) - g(o) = e 0 - (5.4)
- Wy W 0
one obtains using (2.9) and (5.1b):
1) Sextupole:
wr = 0 3
wy = = A{s) (1 + ayy) - {xo' [Z + 7+ D3] + 25+ [X + 7+ D,1} {5.5a)

e
N
:1

= A(s) (1 +ayg) s {xg* [X + 7+ D3] - 25+ [T + 7+ 0,1}

.
]
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2} Quadrupole:

wy = g{s) = (1 +avy)+(z+n-0y) ; (5.5b)

wz = g{s) = (I +ay) (x+n-0,) ;

(=
>
1]
'
=
——
w
—
——
—

+av,) s (xtn-D1) {5.5c¢)

2
ayq -
= + L] 1 . .
Wy 1+ v, (z' + neDy) e Ky
wy = O (5.5d)
wy = - {1+ ays) Ky (X +neDy) + Koo

2
ayg
We = - '('+n'Dz) Kz s
I+ v,
Wy = '*'(1+aYo)‘K;_‘(MZ‘+Fl-’D3)”KZ'H; (5.5e)
wy = 0
5} Solenoid:
= nedH{1 + o ]
fro T Ty

oy = (L+ayg) o H e (X +7eD,) +

L YO . _ - S
Yo' 3 YO-ZH-[(pX”rn-DZ)+H'(2+n-03)1 ;
wr, = (1 + ayg) *H' «(Z + 1+ Dy) +
Yo
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6) Cavity
we = 0
Wy = (aYo+ n )_'(EI+ﬁ'Du}"ej:5in@'25(5*Sp) 5
1+ v, Eo B
wy = - (ayg ¥ —2—) (X" +7+0,) - L sina - 3 s(s - 5,) . (5.5q)
1+ v Eq u

In the following we consider w to be a small perturbation in Tinear approxi-
mation. Then using the ansatz

3 & £
s | - [ 5)] « [ &Y ; (5.6)
5 s s
50 50)
4 g BN (o) (5.7)
(o) (o)

...).
we obtain for the vector E(l)

Hd'é' E1) . glo) LR L, L §l0) (5.8)
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5.2 The (ﬁ, ﬁ, z)-orthonorma] system of the spin motion

In order to further simplify the description of the spin motion we introduce,
>

in the usual way?), a new orthonormal system F(s), ﬁ(s), 2(s) defined in terms

of the one turn matrix N(s,+L, sg) resulting from (5.7).

B0 (s +L) = N(sg*L, so) 50 (s,) (5.9)

With this aim in mind we investigate the eigenvalue spectrum of the matrix N

N(so*L, so) Fulse) = oy Fulso) (5.10)
with
a; = 1 : ?:1(30) = P")F()(Sc.) 5
- - _).
ay = et 1TV T(s,) = Molse) * it Rols) (5.11)
. .
Qg = -iem > _‘:3(%0) = _n>10(50) - 1°Q'o(50) s
-
no(se) = Molsg) X %5(sg) 3
- sl
mo(so) J_ Q‘o(so) 5 (5.12)
-
fig(s)] = [Mg(sy)] = [Ro(so)] =1
and put
A(s) = N(s,5) Ng(so) (5.13)
and
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If we require for the phase function ¥ the relation

4K50+LJ - 4450) = 2TV | (5.15)

then

ms) | Is) ; (5.16)
A(s)] = fmcs)] = [8(s)] =1
(EQFH}’E)S=SO+|_ (Ep_n:sE)S=SO (5.17)

i.e, the vectors ﬁ, E, ¥ are actuaily an orthonormal right-handed vector basis
which transforms into itself after one circuit around the ring.

By differentiating the vectors m and § and considering (5.7) and (5.14):

L) = 200 Rs) ¢ Yo -hge)
L) = 205y - Prisy- ) (5.18a)

At the same time using (5.13)

> -
n

L3R5y = 2l Rs). (5.18b)

Thus m and % depend on the behaviour of the phase function Y which can be
arbitrary except that the phase advance per c¢ircuit must be 27v as given in
eq. (5.15).
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6. The complete equations of coupled spin-orbit motion

With the help of egs. (4.7) and (5.7), (5.8), (5.18a,b) we are now in the
position to construct the complete defining equations of the Tinearized
spin-orbit motion. With this aim in mind, following A. Chao we solve the

egs. (5.7) and (5.8) by introducing the ansatz

). % .7 . (6.1a)

0

S 2 8 eta(s)m+B(s)- 11 (6.1b)

1

{a? + 3% « 1).

Using egs. (6.1a) and (5.18b) eq. (5.7) is already fulfilled and by substi-
tuting (6.la,b) in {5.8) and using (5.18) one obtains

W

a' = (Rps Lys 25) Wy +R Y {6.2a)

- (Mg, My, my) [ wy -a YV (6,2b)

o)
t

Wz

Furthermore, with eg. (5.5) one can put

W

+ N
Wy = _F_(Bxé)' Yy (6.3)
Wz

where F is extracted from (5.5a-g) for the various lenses.
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In detail one has:

1) Sextupole:

Far = = a(s) = (1 +ayy) ez, ;

Fas = = x(s) = (1 + ayy) » xg 3

Fag = Fpp Dy + Fyy = Dy ;

Fap = Fpy 3

Fas = - Fy 5

Fag = Fyy Dy + Fag e Dy

Fsk = 0 otherwise . (6.4a)

2) Quadrupoie:

(6.4b)

-
—
-~
f
o
Q
t+
=
D
=3
=
—te
w1
@

T
[+
P

]l
¥
=
—
wn
e
.
—
-
+
al)
-~
L]
S

*

Fik = 0 otherwise . (6.4c)
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4) Bending magnet:

a) Ky #0 § K; =0 3

2

P 1aIOYO s

Fie = Fip Dy 3

Fop = = (L+av) Ky

Fie = Fgpt Dy + Ky 3

Fiju = O otherwise . (6.4d)

Foo = (1 +ayvy) Ky
Fae = Fo3 * D3 =Kz 3
Fsp = O otherwise . (6.4e)

5) Solenoid:

2
aYp
Fig = 2H-[1 + = - ;
16 \1 + YQ)2
Foy = (1 +ayg)H' ;
a'Y2
- o . o .
F,o = T ” zH

Fog = Fop Dy ® Fpp =Dy #Fpy oDy
Far = = Faz 3
Fss = Fa 5
Fou = Fz2 3
Fie = Fap Dy * Fas "Ds + Fay ¢ Dy 3

Fig = O otherwise . (6.4f)
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Yo el . .
Fay = (ayg + T YO) . E;-s1n® . i §{s - sp)
Foe = Fou * Dy 3
Fso = = Fop 3

Fip = 0 otherwise . (6.49)

Taking into account (6.3), the spin equation (6.2) takes the form

> > e
_d__‘S: Go-y+D0‘5 : (6.5)
ds = =

N o

S = ) 5 (6.6a)

R
6, = R-F (6.60)
% 2y .
with R = ' : (6.6¢)
-m. - My -m,
0 Y
U ; (6.64)

where the orbit vector in (6.5) is defined by (4.7).

- .
By combining the orbit vector ¥V and the spin vector § we can construct an
8-dimensional vector of the form

(=

(6.7)

i
ey <y
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and then finally the spin eq. {6.5) and the orbit eq. (4.7) can be combined

intc a matrix equation representing the complete equations of motion

-~ -~ K e
A 0o (Aeeh)u +s8
ds - =
with
A0
A= ;
G Do
5
-D
0
>
§¢c = §c¢ 1
0
0

(6.8)
Y
: (6.8a)
0
(6.8b)

- o~ . N .
Since the spin basis (H,%,R) is periodic (eq. (5.17)), A is also periodic,
This equation serves as the starting point for further developments.
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7. The unperturbed problem

7.1 The eigenvalue spectrum of the one turn transfer matrix

We now restrict ourselves to the unperturbed spin-orbit probTem

d - ~ oy

—u = AU

ds =

i.e.

d = lipe

v = A

ds J A

d = &
Eg‘g = B ¥ +Dy3%

(7.1)

(7.1a)

(7.1b)

and investigate the eigenvalue spectrum of the one turn matrix Maxg(sg*L,Sq)

which solves for eq. (7.1):

N

Meoxe) (So*LsSo) Gulsg) = Ay dy(sy)

(7.2)

We then separate the components of the eigenvector qu g1ven in {7.2) into a 6

component orbit part, VU’ and a 2 component spin part, w“

-+ V}J
qu = -
i

In addition, we require that the stability condition
Il =
be satisfied.

The solution to the spin equation (7.1b) is then given as

5(s) = D(s,50) 5(ss) + G(s,55) F(sg)
with <
G(s,s0) = [ ds'-D(s,s') Go(s') M(s',s5) ;
So
cos[ P(s")-Y(s')] sin(¥(s")
~sin[W(s")-P(s1)] cos[¥(s")

_D_(S",S’)

where M(s,s5) is the transfer matrix which solves for the

(s) = M(s,sq) ";'(so) .

<4

(7.3)

(7.4)

(7.5)

(7.53)

“P(s )
“Fis)

(7.5b})

orbit eq. (7.la):
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The matrix Mg,a{s,*+L,s,) can now be written as:

, M{sg*L,sp) 9
Mexs)(sg*L,sSg) = _ . (7.6)
G(sy+L,Sq) D(sqtL,sq)

where by (7.5b) and (5.20), O(sq+L,s5) is given by

cosS2mv sin2mv
D(sy+L,s5) = . {(7.7)
-sinZmvy cos 2mv

With {7.3) and (7.6) the eigenvalue eq. (7.2) transforms into

M{sg+L,s4) vp(so) = Ay 3“(50) ; {7.8a)

G(sg+L,sq) vu(so) + D(sg*L,sq) ﬁu(so) = Ay WH(SU) . {7.8b}
From {7.8a) it is immediately clear that the vectors 3@(30) are simply the

eigenvectors of the one turn matrix M(sy+L,sy) for the orbit motion. This
matrix is symplectic:

MT(So+L,50) * S« M(so*L,50) = S (7.9)
with

o2 0

S = Sz (7,10a}
0 S,
0 -1

§_2 = (7.10b)
i 0

since the matrix A of coefficients given in (4.9) satisfies the condition

ET

+S+ S+A=0, (7.11)
(The symplecticity of the matrix M follows also from the fact that the equa-
tion of motion (7.1a) can be written in canonical form using the Hamiltonian
(4.14))°) .
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As a result, the eigenvectors Vu(soi occur in pairs
(Vi{sg)s vok(sg)) 5 Kk =1, II, III (7.12a)

with the reciprocal eigenvalues

M Aok =1 (7.12b)

Thus, the stability condition (7.4) can be written as

e = 1 3 ALk = ?\k* (7.13)
== V_(sq) = Wsy) 3 A = ™10 2mQk ,» Qy real (7.14)

so that all eigenvalues must Tie on a unit circle and with the normalization
condition for the Vi(sy)

ViH(sg) S Vilsg) = i (k = 1, 1I, III}.
we obtain the relations
ViH(sg) S Volsg) = = Vilsg) = S=V_glse) = i*8ky 3 (7.15a)

—\7k+(50) . §‘ -\?-,Q,(SO) =

i
<
o=
—~
W
(w3
N,
.
wy
.
<
=
Eaman
[l
o
i
[
)
[
o
o
o

(k,% = I, II, III)

Once the vectors 3ik(so) have been found by solving (7.8a), then the spin
parts Wik(so) of the complete eigenvectors

S
> Vik(so)
qtk(so) = >

Wi (sg)

may be obtained (using eg. (7.8b)) as

we(s) = = [D(sg*L,Sg) - Ak » 117 +6(so*L,50) Vi(sg) ;  (7.16a)

n

w_(sg) = w(sy) (7.16b)

so that in general we can put

N Y/’k(s ) :

ax(sq) = | ° ;o (7.17a)
v (sp)

dk(sg) = 4(sg) : (k = I, 1I, III) (7.17b)

where ﬁk(so) is given by (7.16a).
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From (7.17) we already have 6 of the eigenvectors of the 8-dimensional matrix
Mgyg(Sg*tL,Sg). In order to find the two remaining eigenvectors we use the

ansatz -
> 05
d11v(Se) = - (7.18)
W y(Sp)
and obtain from (7.7) and (7.8)
Wi (sy) = —= P ei¥s) (7.19a)
o —_ s .
V2 -j
woty(se) = Wiy(sg) (7.19b)
so that
AIV = -1.2TTQIV )\_IU = A;U (7.20)
with
QIU = v (7.21)

7.2 Floguet's Theorem

The vectors'aik(so) are the eigenvectors of the one turn matrix Mgya(Sp+L,Sg)
with the starting point sg. Since the matrix E (eq. (6.8a}) is periodic, the
matrix Mgy,g 1is also periodic so that the eigenvectors of the matrix
Mgyg(s+L,s) with starting point s can be obtained by operating with

EBxﬂ(Ssso):

R
o Vek(s)

Gagls) = | . = Miaxs)(S,50) GeklSo) 3 (7.22)
Wey (s)

Meaxey(s+L,8) Qui(s) = Asge deyls) . (7.23)

where the eigenvalues remain unchanged.

Arp(s) = haglsg) T Aup o (7.24)
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In particular one finds

Verls) = M(s,s0) Varlsg) 5 (7.25)
- -1 ->
wiels) = - [D(s+L,s) = Ag=11"*+G{s+L,s) vy(s) ; ( )
7.26
Wo(s) = wWX(s)
with COS 2TV sin 2mv
D(s+L,s) = = D(sq*+L,s5q5) 3 {7.27)
~-5in 27mv cos 2Ty
> - 1 [P iems)
wryl{s) = D(s,sq5) wiy(sq) = T/_E_ e ; (7.28)
w1 *
Woy(s) = Wi(s) .

The vectors _\Tik(s) defined by (7.25) also fulfill the same orthogonality
relations (7.15) as Vik(so):

VH(s) +S e Vg(s) = - VoF(s) S V_g(s) = i 8g i
. . N N (7.29)
Vir(s) »Sev_gls) = v F(s)+Sevy(s) = 0
Similar relations are also valid for the vectors Wil\, :
Wiy(s)« Sp=wpy(s) = - Wwory(s) = Sp-w_my(s) =i ;
N _ N N ‘ . (7.30)
WIU(S)._S__Z'W_IV(S) = W_IU(S)'ga'WI\J(S) =0
as one can see by substitution of (7.8) into the left side of (7.30).
Putting . S
. »~ --i.ZTFQ hilead
duls) = Gyls)-e LT (7.31)
n pe je2mQ,, « 2
1 - g . - U L .
Ju(s) vu(s) e L
5 —je? . S
Wu(s) = w“(s) - e ! ﬂQ“ L (u =2k with k = I,II,III)

-
the factor gy(s)
. s
> tie2nQ,* +~
au(s) = quls) e oL
is seen to be a periodic function with period L:

+1'°27rQM- s*L

Gu(s+L) = quls+L)-e

sie2mQy
e Wegy(s)
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The representation of the eigenvectors Ep(s) as a product of a periodic func-

+ ; S
tion qp(s) and a harmonic function e~ ZTTQUT_' is an example of *"Floquet's
Theorem",

With the derivation of this theorem and the orthogonality relations (7.29) and
(7.30) we now have a connection with the spin-orbit formalism of Report
DESY 83-062. The remaining work on the complete spin-orbit eq. (6.8) can now
be carried through in direct analogy to the methods of DESY 83-062 and thus,
in the following the methods need only be sketched,

For tTater considerations we mention here that the matrix ﬂ(s+L,s) has the
simple block diagonal form

(8
Miuxay(stL,s) Otax2)
M(s+L,s) = (7.33)
{a)
O(axe) Mizxz) (s tL,s)

if the matrix A. (eq. (4.9b)), describing the coupling between synchretron
and betatron motion, vanishes, Furthermore, the 2-dimensional one turn matrix

P"_E‘?xz)(sﬂ,s) which is defined by the equation of synchrotron motion

d — : —
R R MR S SRR
(7.34)
d — 8\7 Zn - _—
— 7= =—eke="ecosgp > L 6(5-5y)+0
ds Eo L u H
{see eq. (7.1a) and (4.9)) can be represented in the form
cos 2mQg+ Gg{s)esin2nQy Bg* sin2nQy
(@)
MGy (s+L,s) = -
- Yg* sin2nQy cos 21 Qg -ag{s)esin2nQ,
{7.35)

with Byyg = 05 + 1.
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From eq. {7.33) and (7.35) one then sees that for the orbit eigenvectors 3k(s)
one can write

>(B}
> Yk
Vi = N ; k=1, 11 ; (7.36a)
0.
0, . Bo(s) L
- - =T S
Virn ~ +(3) s V(O) = "/'—_._..: .+ £ G( ) (7.36b)
v 2Bg -~ Lag(s)+il
where, in the case that the betatron oscillations are decoupled:
(x)
) Mizxzy(s*L,8) O¢2x2)
Miaxay(s+Ll,s) = () ;
z
O(2x2) Mizx2y(s+L,s)
cOos ZﬂQy-Pay(s)'sin ZﬂQy By(s)'sin ZﬂQy
MY (s+l,s) =
Dax2)ls 51 =
- Yy(S)'SiHZNQy cosZnQy-my(s)-sinZﬂQy
By=vy = ayz + 1 (y = x, 2) (7.37)
the vecters ?1 and 311 take a form similar to 3111:
(%) 3
so _ [V so [ P2 ) (7.38a)
1T > 1§ G 5 .
;. 18
By(s)
Y
1 R it ¥yls) (7.38b)
2By(s) Al (s)+1)



- 32 -

Remark :
An approximate form for the matrix M(G)(S+L,S) can be established in which in
the eguation of motion (7.34) the coefficients of n and o are averaged over one
turn: LS L
[Ky*Dy + Kp#Dp]l = = =

R

A5 - [K(3)°D (%) + K,(%)°D,(3)] (7.39a)

vy~ 4

(momentum compaction factor) ;

~ S+L -~
L in *COSP = 3 g(s—s“) — 1 [ d%. E-\J-r--k A +COSP o 3 6(?15“)
Eo | L% Eg M
s+l Y
=L 2. cose. 0¥+ & sino .z §(S-sp)
L L sind ¢ Es n
5'22
T ®
with
U
Qa = ..H-_.-ki..z.f!-.ct o-—g— ; 7.39b
L L9 E, ( )
s+l N .
Up = [ dS-eV-sing- 5 §(5 - sp) (7.40)
S

average energy per particle per turn
picked up from the cavities

S+L ~ 2 it 2 prw
= Ey o« [ d¥ . Cie [K(F) + K3(F)]
S

{average energy lost per particle per turn)

Thus, eq. (7.34) transforms into the differential equation system

45- -y.e7
ds ’
(7.41)
d+. 82,3
ds "
with the soiution

g(s) cos 22 (s-54) --% sinQ (s-sg) a{sg)

= (7.42)

n(s) %-sin 2{s-59) cos S1{s-5q) n(sq)
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Thus, one obtains for the one turn matrix

cos L - %-sinszL

MEaeay(s+Lys) = (7.43)
9
- sin L cosQ L

and by comparison of (7.43) with (7.35) we find (By > 0)

21Qg = -9+ L ; (7.43a)
Bg = % ; (7.43b)
Gg= 0 (7.43c)
Yo = 2 (7.43d)

where the quantities @ and » are taken from (7.39a,b).In particular by substi-
tuting (7.39) and (7.40) in (7.43b) one obtains

gz = L L netg? (7.44)
21T k 1 SO+L
= frodSe 0K (B) + KD ]
So

Since 3(0)(3) must be a solution to (7.41), one sees that the phase function
VY.(s) introduced in (7.36b) is given by

Ys(s) = -2+ (s - s5) . (7.45)
so that with (7.43a), the condition

Yo(s+L) - Yy(s) = 2m0, (7.46)
is fulfilled.

For our further investigations we assume that the one turn matrix ﬂ(sO+L,so)
takes the block diagonal form given by eq. (7.33), i.e, that the coupling of
synchro- betatron motion (approximately) vanishes. By suppression of the dis-
persion D in the cavities this can always be achieved exactly as can be seen
from eqs. (4.9b) and (4.12). Of course, one can retain the coupling terms and
one will obtain exactly the same numerical results as given by the normal
fully coupled 6x6-formalism of Refs. (1) and (2). As we shall see later, by
ignoring the coupling terms the formalism becomes simpler and more physically
transparent.
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8. Solution ansatz for the perturbed problem. Bogoliubov averaging

The general solution of the unperturbed equation of motion (7.1} can be repre-
sented (see eq. (7.22)) by

U = LA G+ A Al (8.1)
k=I,1I,
III,IV
with the integration constants Ay, A (k = I, II, III, IV).
To solve the perturbed problem (7.8) we make the ansatz
(Variation of Constants)

U= 1 {Ads)e T + Ag(s) cdt (8.2)
k=I,1I,

and obtain by substituting (8.2) into (7.8)

D
LoAA(s) N+ AL ()Nl =R L (A # AVt t8ce| 0
k:I,II, k:I,II,
I1I III
(8.3a)
Arg(s)eiipy + ALy (8)eWiyy = = 1 {Ap(s)ewy + Alk(s)ew g} . (8.3b)
k=1,1I
II1

With the help of the orthogonality relations (7.29) and (7.30) these equations
can be solved for Ay(s) (k=I,II,III,IV).

If one then uses the Bogoliubov averaging technigue one obtains, using (7.36)

i 2. 5Q(5-50)

Ak(S) = e L y {Ak(so) -
S ., 2T, 80,0 (s'-
- i« f ds! -e1 t (s SG)-fk*(s‘)° sc(s")} (8.4a)
%0

Als) = [AZ(s)] for k =1, II, III (8.4b)
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So
111
- Fst)eSc(s') wfﬁ(s') S, W_k(s')} : (8.5a)
A_Iu(S) = ATV(S) (8.5b)
where
.
=D
i = wh s | o
1
(B) * 8) % B) & By % .
(Vi1 ) -Dz-(viz) -Dl*-(vi;) « D, - (viq) « Dy fiir k=I,11
- Bo' +iemp,
- Z?-e o fir k = III ; (8.6)
So*tL . . _ N
§Qp = El" [ 0% VF(R) « S 8A(R) - v (B) . (8.7)

As already shown in (7), the quantities 6Q, immediately give the complex
Q-shift of the kth oscillation mode resulting from the perturbation matrix SA,

Together with eq. (8.2), which is built from the orbit part

? = ) {Ak(s) 'Gk(s) + A (s) - V_k(s)} (8.8a)
k=1,II,
111

and the spin part

E )
k=1,II,
111

{Ag(s) =W (s) + A (s) - W (s)} +

+ Ay (s) Wiy (s) + A_gy(s) e w_ty(s) (8.8b)

these equations describe the spin-orbit motion in the presence of the synchro-
tron radiation damping terms in GA.
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9. Influence of synchrotron radiation on orbit motion

9.1 The beam emittance matrix

[
As a result of the stochastic excitation term §C in the equation of motion
(6.8) the only meaningful quantities that can be evaluated are averages of the
form

< £(U(s)) +g(u(s)) >

c

which depend on the statistical properties of the guantum fluctuations dc.

We first consider only the orbital part of the motion which by eqs., (8.4} and
(8.8a) is independent of the spin behaviour and we determine the moments

< Tnls) * Tnls) >, = Lo Ak, (8) * vimvan
k,=I,IT,11I

AL -2 (8) iV g T Ak, ) (8) Vo, mVen F
+ Ack,-)(8) " Vol mVog,nt s (9.1)
(myn=1,2, 3, 4,5, 6)
with
(A (k-2 ) ()] (9.2a)

*

[A(k,2)(s)] (9.2b)

i
H

A(k’ﬁ)(s) < Ayg(s)+ Ag(s) >sc

Alk,-g){(s) = < A(s) = A_g(s) >4

which give directly the width of the beam distribution.

Since we are mainly interested in the stationary (or eguilibrium} values of
the beam dimensions at an arbitrary position s in the storage ring we shall

calculate

Aleag)(s) = 1in A py(s+heL) . (9.3)

N—>w
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From eq. (8.4), taking into account
<8c(s)> = 0 ; | (9.4a)
< 8c(s) * 8c(s')> = wls)* &(s - s') (9.4b)

and using the abbreviations

8k = 80y - g—; <oy (9.5)
§Qi = Re {8qy} ;
Gy = —ZF'Im{GQk} :

and from now on ignoring integrals over oscillating functionsz), we obtain:

Afk,-k)(s+N-L) = < [A(sHNeL)[2 >

= < ]Ak(s)!z >{SC ' epzak-N *
.-Zuk'N S+L .l. T
+ 1-¢ - | dF o2 Ok [_(S"S) = w(%) - IF (B) ]2
(9.6a)

Aw,i@(s+Nﬂj <NJS+N'L)‘AiMS+N'L)>SC

= < A(s) - Aug(s) >+ en 200K S0 o (agctag )

{otherwise) (9.6b)

From (9.6a,b) it is however clear, that stationary equilibrium values of the
A(k,xg ) are only possible if ap in (9.5) satisfy the condition

a > 0 (k = I, 1I, I1I) . (9.7}

If
Otk<0

the particle motion is, according to (8.8a) and (9.6}, unstable,
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In the following we assume that the stability condition (9.7) is valid.

Thus, finally one obtains for the equilibrium case the stationary values
(Nay » 1):

stat - stat
Af,-i)(8) = <IA(s)]® >
s+L 1, ~
LT w2t @ e (@)1 s (9.8a)
e20t.k_ l I
tat
A?kaﬂ)(s) = 0 otherwise (9.8b)

and from (9.1) and (9.2) we get:

- — tat
< Vnls) ¥n(s) >50 =

2. L <Im(s)]2 %25 Re fvp(s)evn(s)} (9.9
k=1,11,
III

which describes the "Beam Emittance Matrix".
Normally, ¢y « 1, so that one can replace (9.8a) in good approximation by

gtat 1
< IAk(S)‘z >(SC = Zu-k

s+L
* @) If(3)2
S

or using (8.6} by

s+l
“2%;;. [ dZew(Z)s | Viq*Da- Vg Dit vis Dy Via*Da| 2 for k=1,11;
S
< [A(s)|*5n =
]_ S+L ~f ~ o~
e [ ¥ w(8)+ B5(5) for k = IIl. {9,10)
40!.k S
In this case, the integral is periodic and<[Ak(s){2>sgact is independent of the
position of the start points:
tat _-
<[;ﬂ\k(s)|2>867°‘C = const. (9.11)
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Using the same approximation in (9.6a) one obtains (for N = 1)

<IAk(S+L)I2>5C - < IAk(S)|2>6c

d 2
s | A (s)] >0 ®

L
- Zak 2 1 stb Toin (T <Y 2
= - __L__.<|Ak(5)[ s T g d¥w (%) - [ . (8) 2. (9.12)

From this it is clear that the stationary values given by (9.8a) and (9.10)
arise from an equilibrium between the stochastic excitation caused by quantum
fluctuations in the synchrotron radiation (function w(s) in (9.6a)) and a
damping of the synchro-betatron oscillations caused by the continuous emission
of synchrotron Tlight, where the gquantity @ is clearly the damping constant.

From (8.7) and (9.5) the damping constants can be written as

: so*l | & - -T >
W oo dS e viH () « [S - 6A(R) + A (B}« ST+ v (3) (9.13)
S0

and by using {(2.3) as well as (7.15) and (7.38) we get

U : SpFL »
Qp = % =2+ Im ] d¥ «x
0 So
4
x L-vid *Dy + vy #Dy - w5 <Dy + vy +Dgle 8Rgy * vk for k=I,11; (9.14a)
p=l
UO 1 SO+L o~ 4 e
%rr = == -5 [ dS . EOSAL(R)- Dy (%) (9.14b)
2 -
0 SO u—-l

where the guantity U, comes from eg. (7.40).

These results have already been obtained by G. Leleux®? and A, Piwinskig) for the
case where H 2 0 (no solenoids).
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For the sum
Gy + arpt Opgg

one obtains from eq. (9.14)

Uy 1 & Sofl N
ap +agp tagy = 2==+ 5 I [ dSe8A,(8) - {- Dy +
0
{(8)+ e (8)
+ L [- i+ (V) =SyeD)evpy *
k=1,11 K - ki
> 8
s G s, D) e v+ (9.15)
with
22 O2x2)
Sy = .
O¢2x2) Se ,

~5
The dispersion vector D may now be expanded in terms of the eigenvectors

+(B) >(8)

*
Vi and Vi F (?f)) {(k = I, II)
-3
D= Z {cg- Vgﬂ + c_k-'GT?} (9.16)
k=1I,I1

where the coefficients ¢, and c_g are given according to (7.15) and (7.38a) by

1
1
—
L ]
-
-~
-
%)
I-F
-
o4
f o
-

Ck'

S SN D (9.17)
It is then clear from {9.16) and (9.17) that the second summand on the right
side of (9.15) vanishes so that finally
Us ,
ap +oagp *apg = 2 = (9.18)
Eo
results,
This relation is known as thc Robinson Theorem and allows one of the damping

constants to be defined in te-ms of the other two.
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9.2 Special case: decoupled machine

With the help of egs. (9.9), (9.10) and (2.11) we are now in the position to
calculate the damping constants and beam size of an arbitrarily coupled
machine but we continue for now with consideration of the uncoupled case

N=H=0 . (9.19)

In this case, using the relations

(0
Ky = =+ 8,7 (9.20a)
O .
_ e (0)
= E (9.20b)

one gets for the quantities §A,, (u =1, 2, 3, 4) appearing in (9.,14)
gu \H

6Rgy = = Cy (sz + Kza) * Cx :
8Rgs = = Cyv (K& +KS)+Cp (9.21)

GASZ = GAGL;. = 0 .

with
2K, 1 [eBZ}
C - K + - . ; (9.22&)
o Ke + k2 80 U )
2K [aBZ]
C, = Ky, + . . (9.22b)
L kZ vk BO UK

Using (7.38a,b) together with (9.21), the damping constants as given by
(9.14a,b} become '

op = 3 2- 2 ] 0¥ 0 LK+ K10, (R) 4 D,(R) (9.23a)
o So
%pp = %-2 ) % [ 800« [KS + KT Cp(8) 2 D,(3) (9.23b)
0 So
v Sotl

orpp = == + ~21. [ d5 0o K + KT = [0 (3)D(B) + C,(R)D,(3)]. (9.23c¢)
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tat
Furthermore, using these a|, the excitation strengths < !Aklzfgz for the
synchro-betatron oscillations given by {9.10) become

stat 1 S+l o " . o
< IA};IZ se Ea_l' JS. ds « w(%) - {Bx(s)'Dx () +
+ 20¢x('§) * Dx(g) -D;((’é') '*'Yx(g) . D;(E’)} ; (9.24a)
< Agl? 57 = j 4%+ w(@)+ {B,(¥) - 0I3(F) +
+ 20,(%) ¢ D,(3) + D7(8) +vz(8) DI(Y} (9.24b)
stat % 1 s+L . »
A 2 = e . ds . 9.24
<IApl® > 7T o é e w(’) (9.24c)

where the expression for B given in (7.43b) has been used.

With (9.9) and (9.14), the beam emittance matrix may also be calculated, In
particular one finds for the mean square energy spread:

<72 >S§§t = 2+ < |Apl? Sg o lvi,el? according to (9.9)
Stdt ~ .
= < |A131 |2 > se ° Yo(%) according to (7.36b)
_ 1 stL . according to {9.24c¢)
T by : ds - w(S) and to (7.43b) (9.25)

and for the average bunch length:

= < [Agl2 > « Bgls) according to (7.36b)
o ouE . stat ‘ according to (9.24c)
P nl® > and to (7.43d)  (9:26)
with (see (7.39))
n2 1 L Ug
— Le= o >t . —, 9.27
BTN T TR (9.27)

These results (9.24, 9.25, 9.26) will be recognized as being identical to

those obtained by more elementary means”’) .



- 43 -

10 Spin-depolarization

The expressions for the damping constants, dk, and the beam emittance matrix

<Ymls) *¥n(s) >§zat obtained in the previous chapter already provide a gene-

ral description of the orbit motion.

In order to investigate the spin-orbit motion, in addition to the quantities
Ak, 20)(s) = <A(s)* Aeg(s)> o (k,% = I, II, III}

we also require the terms with the factor Apy:

Av,-tv){s) = <Ay (s) *ATy(s) >, = Acy,v)(s)
§c

- *
A(IU,IU)(S) = <Ay (s)+Ap(s) Zse © [A(..IU,JV)(S)] ;

e

*
Atv,—k)(s) = <A (s) AS(s) > = (A0l s

*

<A (s) *Als) > 5. = [Acy,-k)(s)]

i

Ay, k) (s)

For the term A(ry _jyy one obtains, using (8.5) together with (7.28) and (7.10b)

<Apy(s)« ATy(s) >

Acy,-1v) () Se

N .
< AIV(SQ) . AIU(So) >(3C +

S
*2 [ dSew@) - {lIm £ (FFewgy)]® o+
So k=1,II,
111
Fln o, (FE e w)1?) (10.1)
111

and for the remaining terms A(ry,1v) and Ay, +k) one obtains

< AIU(SO'I'N'L) . AIV(SO+N'L) >6C = < AIV(SO) b AIU(SO)}GC H (10,2)

<AIV(SO+N'L)' Aik(SO+N.L) >6C =

_ e-N-cxk .e-i-Z'n-GQk-N « < Apy(sy) Ak(50)>6c (10.3)
(for k = I, II, III)

if one neglects the integrals over the oscillating terms.
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From eq. (8.8b) we also obtain for the spin components & and 5 the expressions

<OL(S) > = z {<Ak(5) > * Wy, T <Ak*(8) > 'Wk* J' N
éc k=1.11 e 1 déc 1
11,7y
<B(s) > = LoLchp(s) > oy, + <AT(s) > cwpt s
sc K=1.11 k ScC k2 k hYe k2
117, Tv
<a?(s) + B2(s) >sc © 2+ Re ) R“EH {A(k’ﬁ)(s)- [wiy Weq T Wio We, 1 +
LI, v
A2y (5) e Doy Wy + wiep Wi lh (10.4)

Furthermore, we assume that the initial stochastic averages of the spin com-
ponents at an arbitrary starting point s=s,, are given by the relations

a) <A(sy) >se = 0 for k = I,IL,III,IV (10,5a)

== <a(sg) >s0 = < B(sg) >se T 0 ; (10.5b)
b) <a?(sq) + B*(sgy) >sc ® 0 (10.6)
¢} Agv,anise) = 0 . (10.7)

Equations (10.5) and (10.6) express the assumption that at s=s, the beam is
polarized in the direction of the n-axis so that following (6.1) the existing

degree of polarization is given by

(23

P(sg) = o - (10.8)

After N circuits we then obtain (using (9.4a) together with (8.4), (8.5) and
(10.2)):

I
o
e

< Ap{sg*tN L)>GC =0 <afsgtN L)>6c =
= ‘ (10.9)
for k = I,1I,1I1, IV <B(sgtN L) >4, =

I
[}

H

< A(IU,IU)(SO+N L) >50 =0 {10.10)
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and if in particular we consider the case when the orbital motion is in equi-

tibrium:
N-uk » 1

1
<

A(ky@)(so'*'N'L)

A(k’_g)(so+N-L) 0 for L # k

<IAlso) 255 5 (k£ 1v)

A(k,_k)(so+N-L)

and evaluate (20.4), wusing (7.28) and (7.32) together with (9.6a,b),
(10.3) and (10.10), we obtain

1
z c<a®(sgt N L) + B2(sytN L)>dc =

tat
= <A E TR g (sg) 12+ fw,y(sg) 2] +
k=I,II,
Ii1

+ < [Ap (sgtN-L)]2 > (10.11)

8¢

where N must nevertheless be sufficiently small so that the condition given 1in
(6.1b):
a?(s) + R2(s)x 1

is fulfilled; this is necessary for the application of the perturbation theory
given in section 5.1, i.e.

<a®(sy+NeL) + B2(s,+NeL) >sc € 1. (10.12)

Since on average, the spin components o and B in (10.9) at $s=s4*+N L vanish,
the polarization vector continues to peint along the direction n and the left
side of (10.11) immediately gives the relative change in the polarization

P(sg) - P(sg+ N-L)
P(sy)

after N circuits (see fig. 1). Thus we may write:

P(sg) - P(sg+ NeL)

= I <A (s 12 TN [ wpg (sq) 2 +
P{sy) k=I,1I, k%o §c kit>o
I1I

*lwa(so) 2] + < [Apy(sg*NeL)|2 >, . (10.13)



- 46

1-32‘-(a2+,r52)

Figure 1
For the depolarization time tp:
1 dP c dP
=l = b A e 2 a m e
"D P dt P ds
we then obtain
L, c P{sg + (N+1)+ L) - P(sg*NeL)
0 P(so*+ Nel) L
c 1
r = * {P(sqgtNeL) - P + (N+1)- L
s S {IP(sg) - P(sg + (N+#1)+ L)] - [P(sg) - P(sg+NeL)]}
L P(sg)

24

C
’E’ '{< IAIV(SO + (N+1)- L)|2 >5C - < iAI\;(SQ'I'N'L)Iz >6C}

and using {20.1) we find

SetL | »
o7 =2.E' SI o w(s) - {1y |»<=1'7:"11,111(fkﬂk'"*"kl)]2 +
0
+ 0y I (ffew)12th . (10.14)
k=I,II,III

where the components wy, and wy, of the vector Wk in (7.26) are to be used.
(10.14} is suitable for a numerical calculation of the depolarization time and
it can also serve as starting point for a systematic optimization of the degree
of polarization in storage rings as shown in (11).
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With the help of this equation we are finally in the position to estimate the
depolarizing effect of the synchrotron radiation on the spin motion.

In discussion of eq. (10.14) it is also useful to make a principal axis trans-
formation of the factor

[D(F+L,8) -a « 1177

of eq. (7.26). Thus:

COS 2TV SinZnv 1
D(s+L,s) = =UKU
-sin2mv Cos 27TV
1 1 ei-2ﬁv 0
. 1 .
with U= — ; K= -i*27V
vZ oo\i - - 0 €

=2 [DE+L,E) - Ape 17 = (U (K - e 2Tk L gy Lyttt

= Us(K - o- 102l | l)-l 'E_l

so that the vector Wk can be written in the form

iT(QeY) 1 .
> j sin(Qg+v)
we(8) =+~ U
0 e'iTT(Qk'*“\)) 1
sinm(Qy-v)
x UT'R(3+L,3) Vi (%) (10.15)

It is then clear that the compcnents of Wk (and thereby according to {10.14)
the quantity tp-') become infinitely large, when

Qg £ v = integer . : {10.16)

At these resonance positions the polarization is then destroyed.
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By substituting the forms for fj given in (8.6) into (10.14) and using this
principal axis transformation we see that when the machine is uncoupled as in
section 9.2, 151 has exactly the same form as given by Yokoyalz)..in this
case, the depolarizing effect can be written in terms of simple integrals over
the B-functions and the dispersion.

11. Summary

We have investigated the spin-orbit motion of particles in storage rings using
the dispersion formalism. Starting from the fully six-dimensional description
of the orbital motion as described in Ref. (2), the dispersion function was
introduced via a canonical transformation so that the symplectic structure of
the equations of motion and thus all the transfer matrices are completely pre-
served in the absence of radiation effects. The coupling in the synchro-beta-
tron oscillations now appears in the cavities and vanishes if the dispersion
in the cavities is equal to zero. Neglecting the synchro-betatron coupling,
the transfer matrix of the orbit has block diagonal form. In this case, it is
no Tlonger necessary to construct the eigenvectors of the full 8x8 one turn
matrix. Instead, only 4x4 and 2x2 eigenproblems need to be handled.

Together with the report in Ref, (2), these investigations cover the whole
Tinear theory of spin-orbit motion.

The formalism developed in this work has been used as a basis for rewriting
the spin part of SLIM in thick lens form neglecting transverse-longitudinal
coupling 12), of course, this formalism can also be reduced to a thin lens

form ),
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APPENDIX

Calculation of the eight-dimensional transfer matrix of a cavity
in the dispersion formalism taking into account the synchro-betatron coupling.

In this appendix we show how the 8x8 transfer matrix of a cavity can be calcu-
lated in the version of the dispersion formalism in which all synchro-betatron
coupling terms are retained (see section 4 , especially eq. (4.9)).

For this purpose one has to investigate the solution of the orbital eguation

of motion
435- 73 (1)
ds -
and the spin eguation
- > 0 1
L= 6oy+y - ) (2)
ds - 10

for a cavity (see eg. (7.1) and (6.6d).

For a (pointtike) cavity at the position s = So the matrix E:is given accor-
ding to eq. {4.9) by

K= §(s - Sp) * Ky (3)
with
- -> -
DeDT-S -D 0y
- -~
K, = | o1 0 0 -E—Vk-Z—LITcow : (4)
> 0
-0T-s 1 0

Go = 68(s - sg)* ke (5)
with
o L L A
Y . X z ~
Ez-(\,0+1+0 )-Elsmcb - F (6)
Yo 0 Mt My =My
and
0 0 0 0 0
F = 0 1 Dy (7)
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With these definitions eq. (1) and eq. (2) can be rewritten in the form

Lo a5 - s0) o Kale) ¥ (82)
N N 0 1
L5 sl -s)kae) Y+t ) (8b)

In solving egs. (8a, 8b) it is important that the terms
faia =z
Ki{s) vy and  Ko(s)y

-
which multiply the &-functions are continuous functions of s at s, although ¥y
changes discontinuously at s, as can be seen from (8a}.

N
The continuity can be proven easily if one takes into account the fact that 3;1

and @ are continuous at s = sy (see eq. (3.4), (3.5), (2.3a}) and that

- > > -

DT -S yL = D.g.‘}"l
0

- __: ~

F -y = Yu
Y2

> >
and if one rewrites K, y and K, y in the form

> > 5 +
N D-DT-S y! -0 o
Kyy = N --Ei-k-gilT cosd (9a}
-pT.s §t to °
0
& ' % L
= Y ) T X z
K, ¥ = (avg + 7= )« k- L sing Yul. (9b)
L+vo & L L P R A

Now, integrating both sides of eq. (8a, b) from s,-€ to syte one immediately

obtains {g =-> 0)

- >

Y{sg*to) = [1+ Kilsg)] y(sg-0) (10a)

—_—

>

S(sg+0) = S(sg-0) + Kalsg) = ¥{sg-0) (10b)
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From eq. (10a, b) one can then extract the eight-dimensional transfer matrix
of a cavity which reads

M(GXG)(SO+03 Sg = 0) 0

M(exa)(sgto, sg-0) = (11)
G(sg+o, sy-0) EYETYY
with | [
M(6x6)(30+0’ 50'0) = 1+ EI(SO) {(11a)
G(sgto, sg-c) = Kalsg) .« (11b)

Ki(sg) is defined by eq. (4) and K,(sy) is given by

o 0 -2 0 2 0 (D, 2, -D,2,)
Y Z X 4 2
0 ) eV X z (12)

s 5ing
1+v K 0 @, 0 -my 0 -(Dymy-D,m,)

..K_Z(So) = (aYO +

(see eq. (6) and (7)).

Mesxs){Sg+0, Sg-0) in eqg. (11) is the transfer matrix of the orbital motion
and G(sy+0, sq-0) is the spin~orbit coupling matrix of a cavity.

Miexs)(Sg*0s Sg-0} is symplectic, i.e. it fulfills the condition .

.M_g.éxé)(so'l'os 50‘0) '§_'_[\_4_(6x6)(so+0s So"o) =3 (13)

which can be checked easily by putting (1la) into (13).

Egs. (lla) and (4) also clearly show again that the transverse and longitu-
-

dinal motions are completely decoupled if the dispersion vector D vanishes in

the cavity region (see section 4, especially eq. (4.12)).

When this (fully coupled) version of the cavity matrix is used the dispersion
formalism will give exactly the same results as the usual six-dimensional for-
malism of coupled synchro-betatron oscillations?),
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