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1. Introduction

When we study orbital motion in circular accelerators, we often employ action-angle
variables. For example, if we know the Twiss parameters of a linear betatron oscillation, the
general solution can be written using two integration constants, the amplitude and the initial
phase of the oscillation. The action variable is the square of the amplitude. The Hamiltonian

becomes a simple function, the product of the betatron frequency and the action variable.

One may ask, however, “Why do we need such a form for a problem already solved?” In
fact, it is pointless if one is only interested in the linear betatron motion. Nevertheless, we
often use action-angle variables because they play an important role if we have perturbations
such as nonlinear terms and synchrotron radiation. For the study of nonlinear effects, the
action-angle variables are an indispensable tool in using classical perturbation theory. As for
the radiation, we know that the equilibrium distribution is a function of the action variables

only.

On the other hand, for the study of spin motion, we normally begin with the equation
of motion, i.e., with the so-called BMT equation (ref.3), but not with the Hamiltonian or
action-angle variables. However, when we have a perturbation, the equation of motion is not

suited for a systematic investigation, although it is often easier to visualize.

The most important perturbation! on the spin motion in electron storage rings is the
(quantized) radiation field, which causes spontaneous po]arizat.ion through the Sokolov-
Ternov mechanism. In this case action-angle variables provide a very effective way to describe
the unperturbed system (classical spin motion). If the perturbation is semi-classical, or in
other words, if we are only interested in calculating up to the first order in Planck’s constant
(h), we can quantize the system approximately simply by dividing the action variables by
h to get the quantum numbers. In fact, Derbenev and Kondratenko (ref.2. We call this
DKII below because we shall refer it so frequently) used this approach to study the quantum
perturbatjon and derived their famous formula for the equilibrium polarization. This is the
classic paper that we have to refer to whenever we talk about spin resonances of higher than

the lowest order.

Unfortunately, however, it seems to the present author that the Soviet papers are often

!The influence of orbit oscillation on the spin is not a perturbation in this context. It is a part of the
unperturbed system.



regarded by physicists in the “West” as being difficult to understand and that this is probably
due to the very compact presentation and to the large geographical separation between the
Soviet and “Western” accelerator physicists. One of the aims of the present paper is a better
understanding of DKII, especially chapter 3, where they discuss classical spin motion in an
external field and introduce the famous vector 7 as the basis vector for the spin action-angle

representation.

The transformation from the initial spin variables to the final action-angle variables is
a canonical transformation. It is merely a rotation. Nevertheless, it is difficult or, at least,
extremely tedious to describe this transformation by a conventional generating function (e.g.
a function of the old angle variable and the new action variable}. It is desirable to use
another formalism. In this paper we shall employ a Lie transformation. The author does not
know what method Derbenev and Kondratenko employed. The results are given in DKII,
but we shall show that they are incomplete and contain some mistakes although the final

Hamiltonian has the correct form.

Derbenev and Kondratenko also give another definition of 7 in ref.1, which we shall call
DKI, but they do not prove the equivalence of these two definitions. The definition in DKI
is more familiar to accelerator physicists because it uses the generalized machine azimuth
# as the independent variable. In DKII the time ¢ is chosen as the independent variable,
since it is more convenient in problems related to quantum mechanics. However, these two
definitions cannot be equivalent because the Hamiltonian is assumed to be independent of
time in DKII, and this makes the application restrictive. In this paper we shall show that

the two definitions are equivalent after generalizing DKII to a time-dependent Hamiltonian.

The plan of this paper is as follows. In the next section we shall explain the Lie trans-
formation method of canonical transformations involving spin by a simple case with the spin
degree of freedom only. In section 3, the method is then generalized for a system with
both spin and orbital degrées of freedom. In section 4 we shall derive the action-angle rep-
resentation of a time-independent Hamiltonian system with both spin and orbit using the
Lie transformation given in section 3. In section 5, after generalizing the formalism to time-
dependent systems, we rewrite the theory using machine azimuth as the independent variable,

and discuss the relation between the two definitions of the vector 7.



2. Canonical Transformations with Spin Only

In this section we introduce the Lie transformation method of a canonical transformation
for spin. In order to clarify the method, we discuss here a simple Hamiltonian system with

the spin only. It is generalized to systems with orbital motion in the next section.

Let us consider the following Hamiltonian for the classical spin motion :
H° =W(t)-& (2,1)

This is equivalent to the equation of motion

ds -
- = W{(t) x &. 2,2
=W () (2.2)
As is well known, if we observe the spin in a coordinate system rotating with instantaneous
angular velocity U(t) (i.e., with angular velocity |U| around the axis U ), the equation of

motion for the new spin components is given by

d5 - -

=W -0@) %3 (2,3)
which corresponds to the Hamiltonian

H= (W) - U(t)-& (2.4)

The aim of this chapter is quite simple; it is to express the change of the Hamiltonian
from (2,1} to (2,4) in terms of a canonical transformation. These equations are, however,
misleading and ambiguous, in particular when vector variables are differentiated, and it looks
as if the same vector § satisfies different equations of motion. The two Hamiltonjans (2,1) and
(2,4) use different basis vectors to describe the spin 5. This fact must be expressed explicitly
to avoid confusion. The spin §'in the Hamiltonian (2,1) is represented in a time-independent

right-handed orthonormal basis {€a,2=1,2,3}, by
§= &usl. (2,5)
[
Instead of (2,1), let us write
HO(s3,1) = 3 _W(t)-€asS. (2,6)
e 4
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On the other hand, in eq(2,4), § is represented in a rotating orthonormal basis {@,(¢)}, by
§=)  alt)sa (2,7)
and the Hamiltonian (2,4) should be written as

H(sa,t) =) (W (1) - U(t)) da(t)sa- (2:8)

[+

We shall still often use vector notation in order to avoid too many subscripts but then it must

be understood that the vector components are referred to the time-independent basis {€,}.

The fact that @, is rotating with the angular velocity L_f(t) is described by

=22 = U(t) X iy (2,9)

O@) = = 3 da(t) x 22 (2,10)

One can easily show the equivalence of these two equations by summing the vector product
of 4, and eq(2,9) over a. Relations like this always hold for the derivatives of orthonormal

basis vectors.

The vector §'is a physical object, whereas s and s, are dynamical variables representing
it. Hamiltonians are written in terms of s or s, but not §. However, s and s, consist
of three numbers and, therefore, cannot be mutually conjugate variables. The canonical

variables J° and ¥° corresponding to sC can be defined, for example, by

s? = \/mcos N
82 = \/s2 — JO2sin ¥° (2,11)
sg =J°,
where s is a constant, the magnitude of the spin. We can similarly define J and ¥ corre-
sponding to so. The relation (2,11) is not unique, but we always assume in this paper that

other quantities such as the time and the orbit variables do not enter the relation between

J, ¥ and s,.



At this stage, J and ¥ need not be the action and angle variables but must be canonical;
i.e.,

{(W,J} =1, {¥,¥}={J,J}=o0. (2,12)

Here, the Poisson brackets are denoted by { }, defined in general by

of 09 9f dg
{figd =555 (2,13)
where f and g are functions of generalized momentum p and coordinate g, including the spin.
Note that our sign convention for the Poisson brackets is different from that of DKII. Now,

using eqs(2,11) and (2,12), we have the Poisson brackets between the s, ’s, viz.
{5088} = Z CafvySy | (2,14}
e

and similarly for s2. Here €44, is the three dimensional completely antisymmetric tensor.

The equation of motion corresponding to the Hamiltonian (2,6) is then

ds? , _.
gsf = {0, HY =) {3, s01W -85 = Y cap,W-&ps°. (2,15)
g By

This is the rigorous statement of eq(2,2). Similarly, we have

ds = - :
d_: = {sa, H} = Zfa.@'r(w — U)-ips,. (2,16)
By
Now, since the transformation s — s, , or, equivalently, (J°, o) — (J, W), is expected
to be canonical, it may be described by a generating function S(J,9°,¢), via
70 as a5

v VT a5 (2.17)

or by other combinations of J°,w°, J and ¥. However, it is extremely tedious to find a
suitable generating function, even if possible. In this paper we shall do so with the help of a

Lie transformation.

When S is close to the identity, it can be written as

S(J,9%1) = JU° 1 AS(J,¥9°,¢) (2,18)
and eq(2,17) becomes
dAS GAS
Jo = = =Y 4y =2
J+6\IIO’ ¥=wv" + a7 (2,19)



We may ignore the distinction between (J°,¥°) and (J,¥) in AS up to the first order in
AS, whence

P VT R .
2,20

The point of the Lie transformation is to perform this infinitesimal canonical transformation
successively to get a finite one. We parametrize this sequence by a scalar parameter « and
write eq(2,20) as

dJ dv

a = {J,L}, E—f; - {‘I’,L} (2,21)

where L = L(J,¥,t,k) is called the Lie generating function, and a function of x in general.
One has to note here that J and ¥ are independent (canonical) variables at each stage of the

transformation (at each x) and, therefore,

oF _ 9% g (2,22)
Ok 9k ’
The equations (2,21) can be generalized to an arbitrary function f(J, ¥) as
df
a - {f;L}! (2723)

under the assumption that f does not contain « explicitly. Owing to this fact we can easily
treat non-canonical variables such as s,. Moreover, we need not mix new and old variables

in the generating function.

In order to describe the transformation s5 — s, corresponding to the transformation

of the basis &, — %, by a Lie generating function, we need an intermediate orthonormal
basis {Ua(t,x)} linking €, and %,. Let x = 0 and 1 denote the beginning and the end of the

transformation, respectively; i.e.,
Te(t,0) = €q, Ualt,1) = wuf2). (2,24)

We need not explicitly specify the route from €, to #,. Since {¥,(t,«)} is an orthonormal

basis, we have

A -
E"; = V(t,k) X Dalt, &) (2,25)
with
. 1 S div,
V(t,’ﬁ) = 5 'Ua(t,PC) X E (2,26)



We denote the intermediate spin variable by s, not by s,(x) since the xk-dependence of

So 1s implicit. The physical spin vector §is
§= ) siia(t,), (2,27)
[+ §

which does not depend on the choice of the basis vector; i.e.,

d .. :
Eg(sava(t,n)) =0. (2,28)
We can easily verify
ds% =
=2 == apy(V-Tp)s} - (229)
By

from (2,25) and (2,28). The Lie generating function which leads to the transformation (2,29)
is given by

L(sk,t,k) = — > shia(t,&)-V(t, ). ' (2,30)

o

In fact, we can easily get eq(2,29) by the reduction of

ds? x
a - {SG,L} (2,31)

which is a result of eq(2,23}.

Logically speaking, we should start with the generating function (2,30), calculate {2,31)
to get eq(2,29) and construct the orthonormal basis by using eq(2,28). All of them must be
integrated over k to get the variables at kK = 1. We have described the story in an inverse

mamnner.

Next, let us focus our attention on the change of the Hamiltonian under this transfor-

mation. The conventional generating function S{J, ¥° t) gives the new Hamiltonian via

as
H=H"+—
T

and the infinitesimal transformation (2,18) yields

OAS
_— U =
H-H ot

The corresponding expression in the Lie transformation method is

dH* 8L
de ot

(2,32)



where the intermediate Hamiltonian H* can depend on « both implicitly and explicitly. The

generating function (2,30) leads to
dH* 0, .. = 1 a dia
= - g o (s5FarV) = =3 E = [s T (T X 72 ] (2,33)

where we have used the relation (2,26).

We now show that the partial derivative 8/9¢ and the total derivative d/d« on the right
hand side of eq(2,33) can be exchanged; i.e.,

Z gt [“" Vo (U % (i:,g )] =, %[Siﬁa (Vs X a;f)] (2,34)

[+ ]
Here, we have to note that ¥, depends on « only explicitly whereas s does so only implicitly,

that is to say
di, adv, ds st
% . 2 d 35
dx oK an # (2,3)

Therefore, d/dx and 8/8t commute when operating on v, (but not on s%}.

With the help of eq(2,28) we can rewrite the difference between the Lh.s. and r.h.s. of
eq(2,34) as

3. . di 4.
ZSZ‘&;UQ'(% x )= ;52%' o (U x a—f)

- e [A L 2 g (52 < )
afB

dk ot

_ Bia x75) . O, dis
B e e R
o

L 9% B
= 3 55 (204 % B+ T2 i) (V % i5)
af

at ot
avg a‘va —
— ® 2 _— — v, V
st ['Uﬁ x (204 % 5t + 5 X vg)}
af :
dvg ov, or, ~
— K 2 o _ - & TP _Q -y ]V
. Sa[ (Vo U5) —; C (T Tp) 5 5t ~ (T8 —; )
= s5(-2Wa+30a—T.)-V =0,

which proves eq{2,34). (This is the most tedious manipulation in our formalism. Perhaps

there is a better way.) Hence, the transformation of the Hamiltonian (2,33) is

dH"" = «*—Z In [s Vo (U X ?;t-ﬁ—)], (2,36)




which can easily be integrated with the result
1 v,
H*=H® — 0} siiar (U5 x 52). (2,37)
af

Here, the second term vanishes at x£ = 0, since 3v3(t,0)/8¢ = 3€5/0t = 0. The first term H°

must be expressed in terms of the intermediate variables

HO =W ) &,s) = WY ok (2,38)
whence
B =YW - 23 g x 22 5,41 (239)
- 2 5 P2y Vet :

By putting k = 1, we obtain the new Hamiltonian

- 1 - dig, _
H(sq,t) = Z(W 52 s X d—tﬁ) o Sa- (2,40)

Owing to eq (2,10) this is equivalent to the expected result (2,8). Thus, we have been able

to contruct a canonical transformation (2,30) which leads to the required Hamiltonian (2,8).

3. Canonical Transformations with Spin and Orbital Motion

It is not difficult to generalize the method in the previous section to a system with orbital

degrees of freedom. Let us start with the Hamiltonian

HO(p°,¢% 50,1) = Hory (p%,9°,8) + > _ W (p%,¢°,1)- €43 (3,1)

a4

Here, p° and ¢° symbolically denote all the canonical variables of the orbital motion, p$ and
g5 (A = 1,2,3). The orbital Hamiltonian, in the absence of spin, is denoted by H..;. The

corresponding BMT equation is
dsg U(n0 0 = 0 ‘
= D " eapyW (p°%,¢°,1)- €550 (3,2)
B

Let us consider a new orthonormal basis {#4{p”, ¢°,t)} which rotates with the instantaneous

angular velocity Tj(po, q°,1);

—2 = G(p°(t), ¢° (1), t) X Ta (3,3)

10



- 1 . du,
U::—Z-;uax-——*. (3,4)

Here, p°(t) and ¢°(t) are solutions of the unperturbed system;

dpo N _aHorb dqo _ +6Horb

dt 93¢0’ dt op°

(3,5)

In this paper we only consider terms up to the first order in spin. The spin motion
is, of course, affected by the orbital motion but the orbit is also perturbed by the spin as
in Stern and Gerlach’s experiment. Since our formalism is canonical, the latter effect is
automatically taken into account. We shall, however, ignore the second order perturbation
of the perturbed orbit on the spin. Therefore, we used the unperturbed equation of motion
in (3,5). The change of a spin variable by a Lie generating function linear in the spin is of
the same order as the spin itself but the change of the orbital variables is small compared
with their unperturbed values. Hence, when we work to the first order of spin, we need not
distinguish between p°,¢° and p,q (orbital variables after transformation) in the spin term.

Therefore, we can also write p and ¢ in eq(3,3) instead of p“ and ¢°.

Next, let us denote by s, the spin component seen in the basis {#,} and express the
canonical transformation .sg — 84 using a Lie transformation. The intermediate orthonormal
basis U, (p*,¢",t, k) satisfies

— 17 X '!TQ (336)

with

The corresponding Lie generating function is given by
L= L(p",q" s5,t,5) = = > sEilV (3,8)
[+

and the transformation of s is

K
dsg,

dr = {sg, L} = - Z €ap~(Vp- ‘?)5: _ (3,9)
B

However, in contrast to the previous section, the Lie generating function (3.8) also generates

the transformation of the orbital variables;

dpf o i 1 d . — dﬁ:@
di - {p)\vL} - 2 azﬁ aq;sava (Uﬁ X dr ) (3!10)

11



Without this change of orbital variables, our transformation s — s, would not be canonical.
Let us solve this equation. We note that the following equation holds for any independent

variable x except the spin; i.e., z = p§, ¢ or ¢;
Zhs Vo Z —s ~ o (U X —)+ O((spin)?), (3,11}

which is a generalization of eq(2,34) and can be proved in the same manner. This time,

however, it holds only up to the first order of spin. Since

dig _ 97 dp} 8t | dgf dvp, i .
de Ok Z( de Op% + dx qu) 9k +  Olspin), ' (3,12)
d/dx and 3/9z do not commute exactly but give
d 07 3 dip, .
axaz) ~ 3z(50) = Olspin). : (3,13)

In the proof of eq(2,34) we commuted d/dx and 8/8t. Hence, eq(3,11) holds only up to the
first order in'spin, but this is sufficient for our purposes. Then, with the help of (3,11), we
can rewrite eq(3,10) up to the first order in spin as

. 8
Z dr 'Uﬂ X ‘éﬁq—:\c), (3,14)

which can easily be integrated to yield

-

1 . ov
PY =+ 5D shia (78 x 5-7). (3.15)
[" q’\

Hence, the momentum at k = 1 is given by

(3,16)

=p + = Zsaua (€g x {@a,pr})-
af

Similarly, for ¢, we have
611‘,@
dpx

52

(uﬁ X

R

>
]

w2y

>
|

9

o
1)
R
=)
R

(3,17)
(g x {¥p,qx}).

[

o)
)

2

I
0y
>

+



These equations can be generalized to any function f {p°,4°.t) of the orbital variables p and
qg as

f(p.0.t) = £5°,4% 1) + %E;saﬁa- (@5 x (@, 1)) (3.18)

Here, f(p.q,t}) is a function given simply by replacing p° and ¢° in f(p°,¢°,t) by the new

variables. This relation does not hold if f is a function of s,.

Finally, we derive the new Hamiltonian. From (2,32} we have

dH"* alL 1 ad .. .. dvg
o e SIS Lo S
whence
< 1 o — - aﬁ:@
H* = HO - 5 ZSQ‘UQ‘ (Uﬁ x Hét—) (3120)
af
and at ¥ = 1,
1 ou
_go_ 12 7 (e X P
H=H 5 gsaua (€g x o )- (3,21)

In these expressions HO is the initial Hamiltonian defined in (3,1) but it must be rewritten in
terms of new (or intermediate) variables. It consists of .two terms, namely H,r;, and the spin
term. Since we are only calculating up to the first order in spin, the orbital variables p$ and
g5 in the spin term can simply be replaced by p) and ¢). On the other hand, Hor{p%, 4%, 1)
can be written with the help of (3,18) as

1 — — —
Horb(poa qo,t) = Horb(ﬂa Qat) - Ezsaua' (uﬁ X {uﬁa Horb})- (3922)
af
Hence,
1 - 4= i = -
H° = H,.4(p,q,t) — 3 Z Sala (@g X {#a, Horp}) + ZW(p,q,t)-uasa. (3,23)
af o

Then the new Hamiltonian is

H(p,q.54,t)

_ 1 dug) _
= Horb(pa Qat) + Z[W(pv qst) 2 z upg X {uﬁs orb} Y E"‘ﬁ x ﬁ] YaSa
@

B

[
[~
Q

= Horb(PrQat) + Z(W(p’q’t)

'U,ﬁ X ?) ﬁasa

™o

— Orb P,‘L + Z p?Qa ﬁ(P,‘I,t))'ﬁaSa-
(3.24)

13



Here, H,.+(p; g,t) is given simply by replacing p° and ¢° in Horv(p®.¢°t) by p and g.

4. Action-Angle Variables of Spin Motion

In this section we derive the action-angle representation of a system with spin and orbital
degrees of freedom using the canonical transformation introduced in the preceding sections.
This is the central part of this paper. We assume that the Hamiltonian of the orbital motion,
in the absence of spin, is integrable, and can therefore be written in terms of action-angle
variables I{ and ®%. As in the previous section, we restrict attention to the first order of
spin. In this section we shall discuss time-independent systems only. The initial Hamiltonian

has the form

H(I°,8°,50) = Horp(I°) + Y W(I°,8°)- &,5% (4,1)
[ ]
and the BMT equation is _
ds? & =
d_ta = Z eapyW- f:ﬁsg. (4,2)
By

The instantaneous angular velocity Wis a periodic function of the ®{’s.

The key issue in this section is to find a transformation, amongst the general canonical
transformations given in the previous section, (or equivalently to find U and {#,}) so that

the final Hamiltonian (3,24) is a function of the action variables only.
H = Hono(I) + Y _(W(I,8) - U)- wasa (4,3)

Let us define the action variable, J, for spin as s3 according to eq{2,11). In order that the

expression (4,3} be a function of I, and J only, the following conditions are required.

(a) The vector 1 = W — U is parallel to @3; i.e.,

(W - ﬁ)‘ZﬁaSa = ﬁ'ﬁgSg = |ﬁ|J

(b} Its magnitude 2 = |ﬁ| is a function of I only. (Of course, it can depend on J
from the requirements of the action-angle representation, but in practice J does not

appear because we are calculating only to first order in spin.)

(¢) The #,’s (a =1,2,3), which are solutions of
du S
d—t"' =U X iy, | (4,4)

do not depend on the time explicitly. They are periodic in ®,.

14



If these conditions are satisfied, the new Hamiltonian (4,3) becomes
H(I,J) = Hoe(I) 4+ Q(I)J. (4,5)

It is evident that Q([) is the spin precession frequency;

oH
37 = Q(I). (4,6)
Perhaps, the last condition (¢) needs some explanation. If the new orthonormal basis
{#,} depends on the time explicitly, the basis vectors vary with time even at a fixed space
point. In this case the spin precession frequency is not defined. In fact, it can take any value
in an arbitrarily rotating frame. We cannot define a spin angle variable in such a frame. The
requirement that ¢, be periodic in @ is almost obvious. Without it; we lose the meaning of

®, as an angle variable because a period in @, becomes different from that in ®9.
We can easily show that (1 satisfies the BMT equation if the conditions (a) and (b) hold;
(d) === =00xds=Ux0=0+)xQ=Wx0 (4,7)

It is also evident that {1 does not depend on the time explicitly if (a), (b) and {c) hold.

Conversely, we can prove that Iﬁl is a function of I, only, if Q does not depend on the

time explicitly and if it satisfies the BMT equation (4,7):

d -4 o .
Em;? =200 — = 20- (W x Q) =0

Therefore,

3al  dinl 8|
Z“’ II_HMM_O

- — 4.8
290,  dt ET, ’ (4,8)

A
where w) = dH/JI, is the orbit angular frequency. Since { is a periodic function of ®,, it
can be expanded in a Fourier sertes in ®,. Then, the above equation states that {1 contains

only the zero-harmonic in ®, as long as
Z W) # 0 . (419)
A

holds for any set of integers m (A = 1,2,3). Therefore, {2 is a function of I, only.

15



We will assume that {4,9) holds. In other words, the orbital motion is not in resonance.
Rigorously speaking, if the unperturbed system (without spin) is nonlinear (but integrable),
wy can depend on I, and the condition (4,9) is not satisfied for some values of I,. A tiny
perturbation by the spin can destroy the integrability of the system in the immediate vicinity
of such resonances. This problem is beyond our scope and will not be discussed in this paper.

We can say that it is not interesting in practice as a problem of spin.

From the above considerations we can replace the requirement (b) with the BMT equa-

tion (d).

Let us state some theorems here which will be used frequently without notice below.

(1) d/dt and 8/t commute if the Hamiltonian does not depend on the time explicitly.

(2) d/dt and 3/3®, commute if @), is the true angle variable. (d/dt and 3/0®9 commute

only approximately.)

(3) Let B(A,z) be the set of vectors & which satisfy dd/dx = A x d. Then if @,b €
B(E,x), we have ¢,d + c2b € B(zi',:r) and @ x b € B(j,:c), where ¢; and ¢, are
constants, i.e., dc1/dz = dea/dz = 0. Here, d/dzx can be a partial derivative if used
correctly. In more sophisticated terms, B(fi‘,:r,) forms a Lie algebra with respect
to the vector product. (This has nothing to do with the Lie transformation in the

previous section.)

All of these can be proved easily.

Before we discuss how to choose {#,}, we have to show that the basis {@,} which
satisfies the requirements given above is not in fact unique. This is not only interesting

mathematically but also useful for elucidating the physical picture.

As will be shown later, #3(= 7) is unique. The difference between {@1,%7) and @3 is that
the first two satisfy (4,4) only but the third vector satisfies the BMT equation (4,7), too. Let
{#,} be the new orthonormal basis which is given by rotating {i,} around @3 through the
angle 3 m)®,, where {m,} is an arbitrary set of integers;

@+ i) = e 2 P (7 4 i)
(4,10)

—

—f
’U,3 = u3.
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As is easily seen, ul, satisfies

di’, -
o " U (4,11)
where
U =0+ () maw)i. (4,12)
A

Therefore, if we define ' by

S

ﬁl’ = _ ﬁ’ - ﬁ - (ZmAw})ﬁ = (ﬂ — Zm_xw)\)ﬁ, (4,13)

all the conditions (a) to (d) are satisfied by using U, ¥’ and @, instead of U, (I and #,.

This fact shows that if {2 is a spin precession frequency, then 2 =1 — 3" m,w, can be
so regarded. It is ambiguous up to a linear combination of orbital frequencies. Hence, if the

spin resonant condition .
=3 maws (4,14)

holds, then the spin precession frequency seen in some (time-independent) frame is zero. This

resonance is more important in our problem than the orbit resonance {4,9).

As is well known, the spin tune (=precession frequency /revolution frequency) in circular
accelerators can only be defined in general up to the fractional part. This may be seen
by noting the fact stated above. As is shown in section 5, one of the w) is the revolution
frequency wo. Hence, the integer part of (1/wg is ambiguous. However, we do not have this
ambiguity when considering betatron oscillations. This comes from the fact that we observe
the particle at a fixed location (machine azimuth) in the ring but at any transverse coordinate.
If instead we observe it in a three-dimensionally limited (but finite) region, the particle will
only appear in this region with a long time interval which is some “least common multiple”

of orbital oscillation periods, and we shall have more ambiguity in defining the spin tune.

So far, things have been defined only heuristically. We shall now redefine all the quantities
rigorously. Let us proceed with the problem of choosing {#,}. First, we define #{= 3) as

follows.
n(I,®) =explicitly time-independent solution to the BMT equation
(4,15)
with unit length, periodic in &,.
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or, equivalently, 7i(1, @) is the solution to the coupled linear partial differential equation

—— =W(I,®) x7A 4,16
> Wi a@) ( ) xn ( b )

with the periodic boundary conditions
ﬁ(I,@l + ZN,QQ, ) = ﬁ:(I,@l,‘@z + 27!',....) = = ﬁ’(I,‘bl,‘I’g, ) (4,17)

Since it is evident from the requirements (a) through (d) that the above property of # is
necessary, the point is whether or not it determines % uniquely. Suppose there were another

vector i’ (1, ®) which satisfied {4,15). Define u’ by

—pf = dp

_ i — ' (7 i')

Wy = Ea
1—(R”-7")

This is the vector given by the Schmidt orthogonalization from 7 and 7. It is perpendicular

to 7.

Since 7- 7’ is conserved (d(7-n')/dt = 0), and since we have assumed 7 # &', the
denominator does not vanish. Also, i satisfies the BMT equation. Define @, = i’ x 4}
and 43 = 7ii’. These obviously satisfy the BMT equation as is seen from the theorem (3).
Now, all the 47, satisfy the BMT equation and none depends on t explicitly. Therefore, by
transforming to the {#’ } system, we have

L i, di,
W:§¥uax dt =U.

This means that @ = 0, which is equivalent to the spin resonant condition (4,14). Therefore,

the above definition of 7 is unique away from the spin resonance.

The reason we need a time-independent solution can be explained in a different way. If
we have any solution E(I,@,t) of the BMT equation, then the projection of the spin onto
this vector 5 f is a constant of the motion. What we want, however, is not a constant of the
motion but an integral of the motion. The former is a conserved quantity consisting of the

canonical variables and time, but the latter is a time-independent function. So, if we know

7i(I, ®}), the projection onto 7 is an integral of the motion.

Next, we define two other vectors @; and #,. In order to do so, we introduce two other
orthonormal solutions, 7 and 772, to the BMT equation, perpendicular to 7. For notational

convenience let 73 = 1. Then, we can write .

X W x i, (4,18)



and
dﬁa(I, <I’,t)

= (4,19)

- 1 -
W(I,8) = 5 Y Fall, ®,1) x

There is still arbitrariness in the initial values of 771 and 772. These will be specified later.
One sees from the discussion above that 7} and 772 do depend on ¢ explicitly. Otherwise, we

have the spin resonant condition (4,14}

The orthonormal basis {#f,} is not the one we want, but the difference between it and
{#} is merely a rotation around the axis 73 = @3 = #. This rotation contains a component
uniformly increasing with time as well as periodically oscillating terms. In order to simplify
the formulation, let us subtract this oscillatory part from 77 and #3. Consider the vector

1 O M A7

— ]' — —y
- — X —— = — _— ——— ],
@=3 2 Ta 2(1]1 X + 1g X Y (4,20)

The term a = 3 vanishes because 73 is independent of time. As can be seen by differentiating
1 fs = 2+ s = 0, 071 /0t is parallel to 72 and 972 /3t to 77;. Hence & is parallel to #7a, say,
@ = F(I,®,t)7. One can see by partial differentiation of the BMT equation with respect to
t that 37, /0t also satisfies the BMT equation, thus so does @. On the other hand, 3 = #
is already a solution to the BMT equation, hence, dF/dt must vanish; i.e., F is a function of
I, and @) — wyt only. Next, we impose the constraint on #, that @ does not depend on ¢
explicitly; 23 5 o7

T PR

(=3

= 0. (4,21)

This is always possible because if we replace 77 + 1772 by e“if(f'q’_wt)(ﬁl + t#]2), the new 7y

and 7 satisfy the BMT equation and the new @ is

7
(F(I,9 — wt} — Ef(f’ ® — wi))n.
Therefore, if we choose f to satisfy
-(%f(],(b—wt)=F(I,<I>—wt)—<F>, (4,22)

then @ does not depend on t. Here, < F > is the zero-harmonic in the Fourier expansion of
F with respect to @) — w)t. Unless we subtract < F > from F, f cannot be a function of
$ — wt only but depends on ¢ explicitly. ¥rom now on, we denote by 5] and 772 only those
that satisfy the requirement (4,21). Let us define ﬁ(I ,®) and Q(I) by
= 1 = O o
Q,®) = - Ta X —— = (DRI, ). 4,23
18) = 5 37 x e = 0, 9) (4.23)
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In reality, 0 is essentially equal to < F >. As can be verified easily,

2= Q(1,8) X (4,24)

Now, we are ready to define #; and u#,. Since eq(4,24) states that the explicit time-
dependence of 7, is a rotation around 1 with constant angular velocity, we get time inde-
pendent vectors #; and u» by rotating 77 and #j; backwards by the steady angular velocity
—{1; thus ,

By (1,®) + 12 (1, ®) = PG (1, @, 1) + 1721, ®,1)). (4,25)

It is evident from eqs{4,23) and (4,24) that 94/t vanishes.

The procedure stated above is exactly the one employed in standard canonical pertur-
bation theory, where we attribute the average of the perturbation (ﬁ in our case) to the
Hamiltonian of the next order and the rest to the generating function. Oﬁr generating func-
tion will be written in terms of #,. Since the rotation angle £2(I)¢ in the expression {4,25)
has non-vanishing total time derivative, the new vectors #, and u> no longer satisfy the BMT
equation. Let us find the equation they do satisfy. From (4,24) and (4,25) we have

d ) ) . . T . i o = ~ .
a(ﬁ'l + vig) = (I} (&, + id2) + MW x (77 +ime) = (W — Q) X (@3 + eire),

because (1 | @3. Since @3 obviously satisfies the same equation, we deduce

di (I, ® ~
Walls®) _ G(1,0) x a1, 9) (4,26)
with
U(1,8) =W(I,®) - U1, ). , (4,27)
One can easily verify that
T T L B, 1 O,
U—2§uax pr —2§w,\u0x6¢)‘—u2§w;naxa®,\. (4,28)

The last equality comes from the fact that the relation between {#,} and {7.} (eq(4,25))

does not contain ®.

Thus, we have finished the preparation for the canonical transformation to the action-

angle representation. It is now easy to perform the final step by applying the methods of
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the previous section. We have only to replace p) and gy with Iy and ®,. It is even easier
because the transformation in this section is time-independent. It is sufficient to quote the

results only.

The Lie generating function is given by eq(3,8) and the relation between the old and the

new spin variables is

I

§

Y s9Ea =) _ saiia (4,29)
o4 [#3 -

The transformations of the orbital variables are

) o w
=1+ 5 Zﬁsaua- (@p x {ig,1»}) (4,30)
and
1 e
d, :(PSH— Ezﬁsaua-(ug X {u,@,‘bg}). (4,31)
The new Hamiltonian 1s
H(I,J) = Hopo(1) + Y _ (1, ®)- #asa = Hors(I) + JQ(I). (4,32)

Let us note the following point, though trivial. The spin precession frequency 0H /o =
0(I) is a function of the orbital action variables only. It does not depend on J or, equivalently,
on the precession amplitude. This means that the spin motion is linear. This is not the case,
however, if we take into account the fact that the influence of the spin on the orbit can affect

the spin itself in the second order of perturbation, albeit an extremely small effect.

Before closing this section we mention the relation between our formalism and the one
in DKIL Derbenev and Kondratenko’s argument can be summarized as follows. First, they
denote by EO, “some(kaxue-méo)” orthonormal basis vectors satisfying the BMT equation and

they define (} and % by

D R A, (1,8,1) . ana
ﬂeg;fau,@,t)x o 7 =0/ (4,33)

They claim (1) I does not depend on the time explicitly, and (2) (1 satisfies the BMT equation,
and (3) |(1] is a function of I, only, and (4) 7 does not depend on the choice of {&,).
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Of these, (2) is obvious because 3¢, /8t € B(W 1), and (3) follows from (1) and (2) as we
proved above. They proved (4) using (1). The statement (1) is essential in the action angle
formalism. This is a very beautiful argument in that it gives a closed expression for 1 and
7i. Only the BMT equation is needed for the definition of £,. Our definitions (4,15),(4,21)
and (4,23) look clumsy by comparison. Unfortunately, however, the statement (1) does not

hold in general. The following simple example will illustrate the problem.

Consider a precession around €3 with the angular velocity modulated by the orbital

motion which has one degree of freedom. The Hamiltonian is

HO(I°,8°,5°) = Homp (1) + W (I°, 8%} &,.s° (4,34)

o

with

W (I°, °) = (Wo(I°) + a(I°) cos ®%)é;. ‘ (4,35)
Obviously, 53 = €3 is a solution of the BMT equation. The other two solutions are linear
combinations of €; and e,. Let us write

El = +€&j cosd + e sin

—

€2 = —¢€ysind + éxcos (4,36)
€3 = &.
The BMT equation yields
d
i Wo(I?) + a(I°) cos ®°, (4,37)
and its general solution is given by
¢ = Wo (It + () (sin ®° — 7(1°,9° — wt)) (4,38)
0 W(IO) k) - )
with
OH 1, (19)
0y orb
Here, f is an arbitrary function of I° and ®° — wt, since df /dt = 0. Then the definition (4,33)
of 0 gives -
g 819 — =, G(IO) a 0 0
- — = |Wn — —_— —_— Ea.
1= 5 = [Wo— Sy 5/ U0 ® wt)] & (4,40)

Now, if we choose the initial condition £, = €., we have f = sin (®#° — wt) which leads to
an /8t # 0. The correct choice for obtaining a time-independent {1 is f =0. This is obvious

in this simple example, but it is not easy to express the correct choice in a general form.
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There is a cure. Since they did not give any condition on Ea except the BMT equation
and the orthonormality, we have to interpret “kaxue-méo” as “arbitrary”. We can, however,
demand a constraint

afl
— J)t=0 = 0.
(57 )e=0 (4,41)
i.e., on the initial value of £, (its dependence on &, at t = 0). Since 8(1/8t satisfies the BMT

equation, which is homogeneous, 31/t vanishes at any time t if eq(4,41) is satisfied.

In practice, however, the constraint (4,41) is a partial differential equation which is
not easy to solve. Even the existence of a solution is not trivial. Moreover, it spoils the
beautiful definition of 7 because Ea cannot be given explicitly. Although not elegant, this
extra constraint can save Derbenev and Kondratenko’s formalism. Then, it.is evident that
their definition of 7 is equivalent to ours, since the new constraint (4,41) guarantees the

validity of the statement (1).

Next, they define #; and #3 as solutions of the BMT equation perpendicular to 7 and
rotate them around 7 to define l_i and l; They claim fl and fg are time independent. It
is evident that in general this does not hold either, if one considers why we imposed the
constraint (4,21) on 77, to make %, explicitly time independent. If one imposes the condition
(4,21) on their vectors 77 and 73, then their 7; and 7> are equivalent to ours and their l_;

and /; to our #; and us.

They give the transformations of Iy and ®, (eqs{3,3) and (3,4) in DKII), which corre-
spond to our (4,30) and (4,31), but £, in their formulae should be replaced by our {@a} or
their {7, ﬂ,fz} (The transformation for I, eq(3,3) in DKII, is still correct owing to the rela-
tion (4,28) but that for @, is not correct in general.) If we observe the spin in the frame (€.},
the spin term totally disappears from the Hamiltonian, contrary to their final Hamiltonian.!

We shall see the spin at rest in this frame and thus cannot find its precession frequency.

Thus, by demanding the two additional conditions (4,21) and (4,41), their formalism
becomes basically correct and the transformed Hamiltonian eventually becomes the same as

ours. However, the basis {Ea}, with a new, complicated, constraint, is no longer attractive.

1There might be an objection to this statement from people who claim to have verified the final Hamiltonian
(3,5) in DKII by substituting the new orbital variables, (3,3) and (3,4}, into the initial Hamiltonian (3,2). Note
that the transformation to the basis {£,} is time-dependent. We need an extra term (partial time-derivative
of the generating function) and it eliminates the spin term entirely.
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I think that in reality the only possible form for é; is
ga(Is ¢5t) - ERaﬁ(I)ﬁﬁ(IsQ:t),

where R,z is an arbitrary 3 x 3 rotation matrix whose elements are functions of I only. | have
not yet proved this, but, provided it holds, there is no reason to complicate the formalism by

adding another orthonormal basis {Ea}, which merely makes a constant angle with {7, }.

5. Time-Dependent Systems and the Accelerator Coordinate

So far, we have restricted attention to a time-independent Hamiltonian system, but this
1s not sufficient for accelerator physics because the field in the RF cavities depends on the
time explicitly. We cannot take into account the synchrotron oscillation without explicit time-

dependence.!

There are three degrees of freedom in the orbital motion in the Hamiltonian
in section 4. One may think that they are the horizontal and vertical betatron oscillations
and the synchrotron oscillation, but, in reality, the third degree of freedom is the revolution
around the ring. The particle energy is assumed to be constant theré. Therefore, one of the

three oscillation frequencies w) is the revolution frequency.

It is very easy, however, to generalize formally the method in the previous section to
time-dependent Hamiltonian systems, since, as is well known, a time-dependent system with
n degrees of freedom is equivalent to a time-independent system with (n + 1) degrees of

freedom.

For a time dependent Hamiltonian Hors(pa,qx,t) (A = 1,2,3), we introduce a new

Hamiltonian with the independent variable 7 as

Hors(P1,91,P2,92,P3,93,P4,94) = Hors(P1,91,P2,92,P3,93,t) + (- E), (5,1)
where g4 = t and py = —E. The equations of motion for ¢ and £ are
d(_E) agorb aHorb
- — —_— 2
dr ot ot (5.2)
and
dt OH,
= = =1, 5,
dr o(—F) (5:3)

1The footnote (3) in DKII states that the explicit time dependence due to the RF field can be neglected. In
practice, however, we know that the synchrotron oscillation often has significant effects on the spin motion.
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Eq(5,3) shows that ¢ and 7 are equivalent as the solution to the equation of motion
t =1 + const. (5.4)

Eq(5,2) coincides with the rate of change of the Hamiltonian in the original system dHy s /dt =
oH, / dt.

We express the extended Hamiltonian (5,1) using the action-angle variables, assuming

integrability, and write
H(I3,9%,80) = Homp(I5) + Y _W(12,25) 6.6 (A=1,2,3,4) (5,5)
[#3

This has the same form as the Hamiltonian in the previuos section (4,1). All the discussions in
the previous section are valid if ¢ is replaced by 7 and the sum over X ranges from 1 to 4. The
number of orthonormal spin vectors is of course three. Then we can define a 7-independent

vector 7{J, ®) uniquely.

We have used the time ¢, or its substitute 7, as the independent variable so far. This
is a convenient choice for problems related to quantum theory. In the theories of modern
circular accelerators, however, we normally use the arc-length s along the design orbit (or
the closed orbit) or the so-called generalized machine azimuth # which is proportional to s
and normalized to 27 for one revolution over the ring. Let us rewrite our formalism using ¢

as the independent variable.

The Hamiltonian (5,5) can be written in the action angle representation as
K(Ix,J) = Horp(In) + JRUIL), (5,6)

where we have omitted the bar which was used to denote four degrees of freedom of or-
bital motion. The four modes A = 1,2, 3,4 describe oscillations in the horizontal transverse,
vertical transverse and the longitudinal displacements from the closed orbit (including pos-
sible coupling between them), and the revolution around the ring. (Otherwise, it is not an

accelerator.) We denote the latter by A = 4 and write &, = 6.

Let the inverse of H,,4(11, 12, I3, 14) = a with respect to I4 be I, = F(I,,13,15,a). Then,
solving (5,6) with respect to I up to first order in spin, we obtain

aF
I4:F—JQ(II,IZ,I3,F)ﬁ F = F(I,,13,13,K). (5,7)
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Therefore, the new Hamiltonian with # as the independent variable is given by

oF
H(Il,Ig,Ig,—K,J)Z—I4=“F+Jﬂﬁa-}_—{—. (5,8)

Here, the canonical variables are (I, ®1), (I2, ®2}, (I3, ®3) and (—K,7). Note that 8F /3K is
the reciprocal of the revolution angular frequency wy;. We can identify 10F /@K as the spin
tune. Since we are not interested in the value of K, which was introduced formally to make
the Hamiltonian time-independent, and since K is conserved, it can be eliminated from the

Harmiltonian. Then', we have
H(IlsI2aI3a‘I) = _F(IlaIzs I3) + JV(‘IISI?!I3) (5’9)

where v(1I), ]2, I3) is the spin tune. This is the form usual in accelerator physics.

How do we visualize our orthonormal vectors {i#,}, when we choose the above variables?
Firstly, let us recall the definition of 7, (4,15) and (4,16). Since &4 = 8, eq(4,15) can be

written as

3 on % _ & 1,,0) xn 0
§VA8¢A+%—1U(, ,0) x 7, (5,10)
where vy = va(I1,12,1s) = wy/wo (A = 1,2,3) are the tunes of the orbital motion and
w(l,®,0) = w Jwo. We have one more argument I. It is related to the operating beam
energy. (I4 is now the Hamiltonian itself.) But since we usually regard it merely as a
parameter, we have omitted this argument. Note that, when we first introduced eq(4,15), the

orbital motion had three degrees of freedom. In eq(5,10) we also have three but the meaning

is different.
Since d®) /df = v, we can rewrite {5,10) as

i .
i w(I,®,0) x n. (5,11)

The periodicity of 77, eq(4,17), can now be written as
ﬁ(I,q’1+27T, q)g, @3,9) = H(I, Ql, @2 + 271',@3,9)

(5,12)
= fi(I,q)l,q,z,@g + 271',9) = ﬁ(I,@l,q)g,‘I’g,a -+ 27r) = ﬁ(I,@l,‘}g,@g,e).

Derbenev and Kondratenko gave their first definition of 7 in DKI using the BMT equation

(5,11) and the periodicity (5,12). It is now evident that our definition (4,14) is the same as
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their first definition. In the previous section we showed that our definition leads to that in

DKII after adding some constraints. Thus we see that all the three definitions are equivalent.

The properties of the other two vectors «; and @, are obvious, since they are also 7-
independent. Their periodicity in ®, (A = 1,2,3,4) is now the periodicity in ®, (A = 1,2,3}

and in 4.

There is a subtle problem as to the other orthonormal basis {77} because, except for

73 = i, it depends on 7 explicitly. The original BMT equation is

dna _ 3'?a + Z

dr = W(I,®) x 7,. (5,13)

6@;

Replacing ®4 with ¢ and dividing by wg(= w4), we have

—

1 8 J 7o
- Y "+ E w(l,®,0 o ,14
(w031+80n UA@‘I’; ( ) X7 (8,14)

Therefore, in general, 7, is a function of five arguments, i.e.,
(1,93, 03, 94,7) = (D1, 92, 83,00 + wor, 7) = (@1, P2, ®85,6,(0 ~ 6o} /wo).

However, we need not regard 8, as a variable because it is merely the origin of the independent
variable. (We cannot discard the initial values of the ®,’s, viz. @ —wv» 0.) Therefore, we can
absorb the last argument into 6. But by this process § = @4 loses its character as an angle
variable and the periodicity of . in 0 is lost. In this sense we can replace the differential

operator in the parenthesis in eq(5,14) with d/9¢ and write

—

3
aﬁa affa dna — ~
. Az_lu*aq),\ dg W e (5,15)

which is the familiar form of the BMT equation. The point is that the r-independence
(dependence) is replaced by the periodicity (non-periodicity) in # in a formalism where # is

the independent variable.

Finally, let us make some comments on the nature of 77(1, ®,#). Note that 7 is a function
of ®,, not only of §. The BMT equation (5,11) is usually considered as an ordinary differential

equation
dri(8)
dé

— (1, 8(6),8) x 7(6) (5,16)
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where ®(8} is a solution to the orbital equation of motion;
®,(0) = ®ro -+ 10 (5,17)

If we regard (5,16) as an initial value problem, then the solution is a function of the initial

values: (8} = (I ®,0,8,7(0)). By rewriting ®,0 using (5,17), we have

7(0) = f(I,®) — v26,0,7(0)) = 7(I,®,,0,7(0)).
If we choose a proper initial value #{0), which is not easy in practice, then the periodicity in

@ is restored in this process and we get the correct 7.

It may be of help to condider that # is a solution to the partial differential equation
(5.10) under the periodic boundary condition (5,12). Then, we can conceive of # without
tracing the orbit of a particle. Eqs(5,10) and (5,11) are related by the characteristic equation

of the partial differential equation;

dd, dd, db
df = — 1+ =272 278 (5,18)
1551 5 V3

Owing to the periodicity , # can be expanded into a four-fold Fourier series
i(l,®,8) = anm (1} exp i( k0+2m,\<1h (5,19)

If we trace the orbit of a particle, (5,17), then 7 becomes a fuction of # only and its Fourier
spectrum contains the frequencies k-+ >~ mjywy. A remarkable fact is that it does not contain

the spin tune. This is one of the most important properties of 7.

The Fourier expansion not only helps us to get an understanding of 7 but it is also useful

for applications. Since w in {5,10) is also periodic in ®) and 8, it can be expanded as
w(I,®,0) Z Bem (1) expi(kd + Y my@y). (5,20)

Then the BMT equation (5,10) becomes a coupled linear equation

1k + Zm),ll,\ nk,m I) Z Wk— k' m.- m' (1) X flgs mf(]) (5,21)

A=1 k',m'
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We can obtain 7 by solving this linear equation. (Some caution is required, but it is not

the aim of the present paper.) It has a unique solution unless the spin tune v satisfies the

resonant condition

3
V=k+Z'm)\I/).. (5,22)
A=1

Note that the spin resonance condition now has the integer term, which comes from the

revolution frequency term in (4,14).

We have constructed an action-angle representation of the Hamiltonian with spin and
elucidated the role of the vector 7 which is not familiar in accelerator physics. The description

is rather abstract but it helps us, the author believes,- to make further steps in the problem

of radiative polarization.
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