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Abstract

In order to explain the large discrepancy between the measured transverse coherent
tune shifts and analytical ones in a short bunch in PETRA. the effects of the closed
orbit distorsion y., and the dispersion n on a beam instability is studied with a two-
particle model.. It foliows the result which supports Kohaupt's previous results; they
hardly contribute to real tune shift. while the momentum dependence of the wake force
can make a beam unstable. with the growth rave which is proportional to the product of
Y. and 7.

1 INTRODUCTION

A transverse mode-coupling instability. which determines a limit of the stored current in re-
cent large electron rings. was first observed in PETRA!1!. Since then, many studies have been
made to understand the mechanism of this instability, by means of analytical methods{2,3.4]
and computer simulations|[4,5.. However, any attempt to quantitatively explain the experi-
mental results in PETRA has lead to a large discrepancy between the measured threshold
current and the analytical one: the former is 4 ~ 5 times larger than the latter.

The conclusion was that a large part of the impedance was not taken into considera-
tion, and an intensive search for “missing impedance” was made by Klatt, Kohaupt. and
Weiland:6;. Although all possible beam components have been checked. a large discrep-
ancy in the vertical coherent tune shifts was still left unexplained. Kohaupt:7/ doubted the
hypothesis: Is it not the impedance which is missing. but an effect which can cause the addi-
tional tune shifts. but was neglected in the former analytical consideration ? Some plausible
candidates for such effects are the closed orbit distortion (C.0.D.}) and the dispersion.

He investigated their contributions to a tune shift with a rigid bunch model|7], and the
Vlasov equation 8., and then obtained no additional tune shifts, but damping or antidamping
of the synchrotron and the betatron coherent oscillations. Whether they are damped or
antidamped depends on the sign of the product of C.0.D. and the dispersion. In his model,
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onlv the coupling of the transverse and the longitudinal motions is considered. Namely, the
interaction between particles in each phase space. which he calls the “iransverse - transverse”
mode-coupling. or the “longitudinai - longitudinal” mode-coupling. is neglected. Combination
of 1hose interactions may cause some new effects.

In order to get insight into the physical mechamism involved. the two-particle model{9.10]
is quite a useful utility, which is simple, but includes all the essential effects. In this paper,
we study a beam instability where the betatron and the synchrotron collective motions are
coupled through C.0.D. and dispersion, with a two-particle model. We expect that an addi-
tional tune shifts will be produced by combination of these interactions. In Sec.2, we show
the equation of motion for the two particles in both planes, and linearize them with some
approximations. We then obtain the 8 x 8 eigenvalue matrix in Sec.3. The coherent tune
shifts are calculated by solving the eigenvalues of this matrix. The formalism is applied to
PETRA in Sec.4. where we find that no significant additional real tune shifts are produced
by C.0.D. and dispersion. A beam can be stable or unstable, which depends on the sign
of the product of C.0.D. and dispersion. as Kohaupt showed with his rigid-bunch model.
We reconsider these stable or unstable solution in Sec.5, limiting the problem oniy in the
longitudinal phase space. The paper is concluded in Sec.6.

2 EQUATION OF MOTION

The beam is represented as two macroparticles, each containing N;2 particles. The total
transverse displacement y; of particle ¢ (¢ = 1,2} from the beam axis consists of three terms:
the closed orbit deviation y,,, the betatron oscillation y,;s counted from y.,, and the dispersion
term 7 - 6,
Yi = Yoo o Yip + 10 b (1)

where 7 is the dispersion. and é; is the momentum deviation of the particle 1.

During time O < t < t, when particle 1 proceeds particle 2 in the longitudinal phase space,
the eguation of motion for the transverse coordinates are written as

&

di: Yip — wWglhs = 0: (2)
d* o Ne*c? ,

SaYae T Walsa = 2E—W¢(73 —73) (Yeo = Y158 — 617). (3)

where W, (7; — 72) is the wake potential as a function of the distance between two particles.
71 — 72, £ is the beam energy. ws is the betatron angular frequency. e is the elementary
charge. and ¢ is the speed of light. For simplicity, the betatron function. the C.0.D., and the
dispersion are assumed to be constant over the ring.
We define the longitudinal coordinate #; by the longitudinal position relative to the center
of the bunch. The momentum deviation & is given by the time derivative of 7:
T

6 = ——. 4

' ae )
The equation of motion for the longitudinal coordinates are

d* Nelac

2
prriiing win = g | Wil0) + WLAO) (ee s + &im)* 1, {5)
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d* . Netac®, , N
To — W.7g = ‘ Vf-"ig O - H' T T M . O en T Uus - 60 1"
._ 5 Wil0) - Wiln = ma) = WD) (ter = v2s + &om)

+Wiln = ) e — Y15 = 6N Yoo — Y25 +5zn) i (6)

where W, and W' are the longitudinal wake potentials due to on-axis, and off-axis motion
of particles, respectively, w, is the synchrotron angular frequency, and « is the momentum
compaction factor. The terms W;(0) and W (0} show the beam loading effects due to self-
induced wake fields.

The longitudinal wake potential W' (z) is related to the transverse one W, (z) by the
relation (Panofsky-Wenzel theorem):11]

d

Wi(z) =+ W (2). (7)

*

The transverse wake potential initially increases linearly with distance from zero, and
then starts to decrease through the round top. For a short bunch, say 1 ~ 2 c¢m long, the
linear approximation of the transverse wake potential is a good approximation:

Wo(z) = W'z (8)
The corresponding longitudinal wake potential becomes a constant due to the relationship( 7):
Wi(z) =Wl (9)

For the same reason, the “pure” longitudinal wake potential can be approximated by a

constant:
W!i(z) = W;Q- (10)

Inserting Eqs.( 8)-( 10) into egs. of motion( 2}, { 3). { 5), and { 6), we have

d? "
&}gym +wzthg = 0O, (11)
d* , Ne*e? .. | N
TELLL + Wiyes = ¥a W (= m2)yer = (1 — 72) (v1s — af’l) R (12)
d* . Nefac® 1 n .
T - W, T = - -+ _W 2Y.o -
gz #71 2F {2 || i, T 2Yeo(v1s acﬁ)
7 ]
- — AP0, 13
.(ylﬂ oc 1) } ( )
d* . }\e act S n . n .
Te A+ w Ty = VV + Wyt + 2y, - —T) = — L 5)?
T I, { - oWl 2y (y20 = — 2) = (Y26 ac'rz) ]
0 o . n - .
Wy 'Vi'. co + - — (" =7
Yoo+ Wileolyis + g2p — (7 2))
~W (ym + yag {11+ 72) } (14)

The factor 1/2 in front of Wef" and WY in Eqs.( 13) and ( 14) comes from the fundamental
theorem: of beam loading.

Our final goal is to derive an eigenvalue equation for coherent frequencies from Egs.( 11)-
{ 14). For that purpose, we linearize Eqs.{ 11)-( 14) by omitting all the nonlinear terms except

" for the second term in Eq.( 12} which gives the usual transverse tune shift in the absence

b
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of C.0.D. and dispersion. In order 1o make this term linear with respect 10 y;x ~ 275, we
replace the verm 7, — 79 by the time average over the period 0 < 1 < tg:

(r1— 72){yie - "3('1) a :—C/L (71 = 72)dt - (y15 — i*’ﬁ)- (1)
This is not so unreasonable, because during the time 0 < ¢ < t, the quantity 7; — 72 does
not change sign (particle 1 always proceeds particle 2). In addition, the formalism becomes
equivalent to the usual two-particle model in the absence of C.0.D. and the dispersion|9,10,
where the transverse wake potential is assumed to be constant. However, the relationship( 7)
between the transverse and the longitudinal wake potentials no longer holds exactly.

As usual, we eliminate the beam loading terms Wf';’? and WYy* /2. assuming that they are
compensated by the manipulation of rf voltage in such a way that the resulting “renormalized”
synchrotron frequency becomes w.. Added to that, we neglect the coordinate- independent
longitudinal wake potential terms Wl? and WY%? in Eq.( 14). These terms are the source
of the usual Jongitudinal tune shift which. however, we are not interested in in the present
study,

The remaining terms in Eq.( 13) and ( 14}, i.e., Wiy (gis — Z7i) (¢ = 1.2) should be
treated with more attention. for their momentum dependence might change the stability of a
beam. However, since we are looking for the additional real tune shift, we omit these terms
from the analysis for the time being. We wili come back to this problem later in Sec.4, and
reformulate the longitudinal instability, including these terms.-for a more precise discussion.

Now we have a new set of equations of motion. which we actually solve:

d* Y
Pl —~waya = 0, (16)
d? 2 - T
—Yop — Wil = Ky lr — ) = Kbér(yys — —71). 17
d? .
dfe’fl +win = 0, (18)
d’ o .
Efg + b..-“,z_‘."g = Kycﬁa(ym + Yon — a—c'(’i'] - Tg)). (19)
where we use the abbreviations
K= Ny (20)
T2 T
and .
ET = }"’ ( (T] - Tz)dt. (21)
o Jo

3 EIGENVALUE EQUATION

We describe the solution for Eqs.( 16)-( 19) in terms of the phasors. instead of the coordinate
and the momentum, which make the structure of the final eigenvalue matrix more regular.
They are defined by

. ot dyjs
Yie = Yigv+ — :

wp di (22)



1 dyir

Yie = Yir e & (23}
. 1 odiy

Ty = 7, = — ——, (24}
. : w, di

e 7 d’fj . '

T = L= . =1,2 : 25
Po= o oo i=12) (25)

The solutions for y,5 and 7 are simply free betatron and synchrotron oscillations:

—twgat
s

tis = s(0)e (

Yipg = ym(O)e (

7= 5(0) e ™, (28
(

;o= F(0) eV

!‘Lu'_ﬂr

Equations{ 17) and ( 19) can be written in terms of phasors as foliows:

we i oary WE oo o Ky, o .
E(y.‘m - ) - ?(yzﬁ ~ Vo) ~ 260(72 T 75)
}\’ya- -~ ,—r],. ~ We T . ~
= TC(TI + 71) + Kar| §(y1ﬁ ym) T o a('f ~7) b (30)
We 2 K ’w’? s, o Ky . . \ Kynws . .
22.(T:a Ta) 5 (f2 + 73) 5 (J28 + Y2g) + e (F2 = 72)
we N

= Kyl Z{ths + #1s) — (f1— 7)1 (31)

2 27 ac

Besides. we have two supplementary equations which impose the relationship between the
phasors:

wa , . ~
(G26 — B201 = 0. (32)

T

Yps + Ugg —
Fo+ Fo— —?_‘“-(%2 —-%) = 0. (33)
Their matrix form is given in Appendix A for the convenience of the further explanation.
The first step is to solve the homogeneous equations of Egs.( 30)-( 33). The four eigen-
frequencies w; (7 = 1.4) for the vector T = (%24, ¥24- 72. 7517 are determined by the condition
that the determinant of the matrix D is zero: '

. 9 . -on, -
detD(w;) = —waw.{ (wh — wh)iw? —w) — iw;K Yeo | Ky al}=0. (34}

From the structure of this equation, we can say that there are only two independent solutions,
which we call w; and w.. The other solutions are given by the negative of the complex
conjugate of these two solutions: so the four solutions are actually written as

Wy, —ki, W, —Wy.

We use this property implicitly in the formulation.
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Then a solution of the homogeneous equations can be written as

4
=& e (35)
=t

where the vector a; has the form

_ . ws{w? — wh) (w. + w;) wa(w? — wh)(we — wj) 7
a, = . >< H _T_ -‘I —_ L - . 36
3 a’J (t'uﬁ wi’ d "dﬁ o".'l"} Kygowf ¥ Ky?ows ) ( )

The general solution to the complete differential eqs. is obtained by summing the contri-
bution from the inhomogeneous parts:

£ o= 3 e ™" + D7 (~iwg) bing ~ D7 (iwg) b 54
7
+D 7 (—iw,) €7 + D™ (iw,) 4. (37)

The definitions of the vectors b, ¢, and d are given in Appendix A. The explicit expressions
for the inhomogeneous parts are given in Appendix B.

The coefficients a; in Eq.( 37) are determined by the initial-conditions at ¢ = 0: ¥g5 4o¢ =
¥25{0}, etc. The result is summarized in Appendix C. Substituting those coefficients into
Eq.( 37}, we finally obtain the complete solution to Egs.( 16)-{ 19) in matrix form:

s | e 0 0 0 0 0 0 0 \ [ #s0
¥1s 0 e« 0 0 0 0 6 0 14(0)
Yo Mz My, Mz M, Ms M, M; M; #25(0)
Yas | _ | Ma Mz Mg Mg, Mg Mg Mo Mg U24(0) (38)
7 0 O 0 0 e™=' 0 0 0 7,(0)
7 0 0 0 0 0 e~ 0 0 75 (0)
Fa Myu Mg, M M, M M, M, M, 72(0)

L]
N

AMSI ‘M;I M83 ‘MT,H MSE, JM?‘.S J.MS? M'??

All the elements are summarized ir Appendix D.
During the rest of the synchrotron oscillation period, {p <t < 2t;, in which paricle 2 leads
particle 1, the transformation matrix is given by

Yir Mz M, M3z, My Mz, My M3 M ¥15(0)
Yis My Mg Mg Mg Mg M Mg M;; 915(0)
Y2z 0 0 erwslt-t) 0 6 0 0 0 26(0)
e | _ 0 0 0 gwnlt=tol 0 @ 0- 0 ¥35(0)
2 | M Mg, My Mg  Mn Mg My M, 71{0)
7 Mss M;, Mg, M;,  Mey M, M M;, 72(0)
72 0 O 0 0 O 0 7(0)
7 0o 0 0 0 0 0o 0 ittt J R 75(0)
M,

where M,‘J‘ - M,‘j (t - to)



The total transiormation matrix for one full synchroiron period is the product of twe
matrixes:

Yy " 115(0)
Ut @i.e(_U)
Yo 425(0)
(0
Yag M, (to) > M, () > 425(0)

(40)

I

H
~}
-
—
<
sl

L~ -

~r ~} e My

= =3 -

v BY = g
—_—
)
—

L]

———
=)

—

L

The stability of the system is determined by the eigenvalue of the matrix M = M; x M;.

We do not know vet how long one fuil synchrotron period 2tq lasts, because this is one
of the eigenvalues of the matrix which we are solving. Note that the period is a coherent
synchrotron oscillation period. not an incoherent one. However, since a small coherent tune
shift is expected in our case. we simply take the incoherent synchrotron period T. (= %’5)
as 2tn. This approximation would be justified if the resulting eigenvalues for the coherent
synchrotron frequency are not far from the incoherent ones.

4 APPLICATION TO PETRA

We have applied the formalism to PETRA. and have cajculated the vertical coherent {re-
quency shifts as a function of C.0.D. and dispersion. The veriical C.0.D. y... and the
vertical dispersion # in PETRA are correlated with each other by the relation{12|

Vvint = 1404/ (41)

The results of the calculations are summarized in Table 1. The parameters used are listed
in Table 2. The wake potential WY is determined in such a way that the vertical frequency
shift is equal to 250 Hz at y., = 7 = 0. The bunch length o, is the amplitude of particles in the
jongitudinal phase space. Looking at the eigenvector for each eigenvalue, we find that the first
4 eigenmodes include many more transverse components than the later ones, therefore they
should be observed experimentally as transverse oscillations, and as longitudinal oscillations
for the last 4 eigenmodes.

From Table 2. we can see no significant change in the real tune shift. while some eigen-
modes start to have non- negligible damping rates when the C.0.D. and the dispersion are
considerably large. To be sure. this damping was anticipated from Kohaupt’'s analysis, al-

“though its rate is half the value obtaind according his formula!7". The discrepancy probably
comes {rom the fact that we omitted the self-induced terms W y.,(yis — ;‘"’—T,} out of the eqa-
tions of motion. After all, it is numerically found that the real part of the transverse coherent
frequency is hardly influenced by the coupling with the longitudinal motion. We thus turn
our attention to the detailed examination of the damping solutions.

5 RECONSIDERATION OF INSTABILITY

The source of damping is the momentum dependent terms on the right hand side of Eq.( 19),
namely, the terms which give the momentum dependence to the wake field kick via the
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dispersion. In Sec.2, we left the self-induced terms W-y..(ys — 7 7;) out of the equations of
motion. which obviously contribute to the stability of the oscillations. Here we restore these
terms. and solve the equations of motion again. However. since little effect is expected from
the coupling 1o the transverse motion. we limit the motion only to the longitudinal one.
During the time 0 <t < T,/2 when particle 1 proceeds particle 2, the equations of motion

are
e, .
df27l — W, = meco;“"la (42)
d? .. n,. .
dtqufwfr’z =~ Kyp—T2 — Kyou—(f1 =+ 72). (43)
“ [ L4

2—;(%1*%1) + 5 (F1+ 7)) 5 “C“;-*(':l*Ti)ZUc (44)
(f,=7,) - “;:"(%, ~ ) =0. (45)
We s ox w? oL C omwe,. . Kyonw.,. _.
(7. — 7 ~ (T + 7))+ Kyee—— (72 — = - ——(n -7 ), 46
2?( 2 2) 2 (72 2) ] ¢ 1 ("'2 7;) T e d (71 1). ( )
(:+%) - Zh-5) =0 (47)

Assuming the exponential time dependence 7; = 7{0) €. the solution A. for the differ-
ential equations ( 44) and ( 45) are

K co j K co n
Ay = -l 28Ty (48)
2e 2¢ '
The solutions w. to the inhomogeneous equations { 46) and { 47) are
}( c F K ce
wo = — Yy \f(__E’m_’?)z ol (49)
¢ / ¢ )

Assuming that y.. and 7 are small, we retain only the first-order terms with respect to y., 7
in A- and w.:

wo = —26 4w, (51)
where X
§ = el | (52)
2c

In the further procedure, we retain only the first-order terms of 6.
The general solution for 7, and 7, are given by

- y 6 6

Fo = ae* "t 4+ be* — (1 - i )71(0)e " + LTI (0)e*+, (53)
2w, 2w,

. L W s 16 b . _

o= e -t - (E + 1)be“*! — 2&:571(0)6/\_’ ~ {1 - 2%)71 (0)e+? (54)
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From the initial conditions 72 = #{0) and 7 = 7;{0) at { = 0, the coefficients ¢ and b are
determined as

i s T ..
a = (] = 2—:}:’;(0) - 5w Ty (OJ - 72{0] - :—~-72 (0) {55}

i N P ]
= el £ (- 3 RO - TR0 DL 69

Substituting these coefficients into Egs.( 53) and ( 54}. and expanding the exponential terms
by polynomials, and taking only the first-order terms:
e)\if — eim.t(l _ 6t), (
et = Tl — 261), (

o
-1
—

(]}
(0]
—

we finally get the solution for 7; and 7,

. ot - 6 . .
Fp o= —6te ™7 (0) + — sinw,t7] (0)
26 )
+ (1 —26t)e™™"72{0) + — sinw.t7; (0}, (59)
- LIS 2 6 : ‘ >
7, = —6te™ i (0) + " sin w,t71{0)
NP 26 . -
+ {1 - 26t)er 7, (0) + — sinw,t7,{0). (60)

We

Written in the matix form together with the solutions for 7, and 7], we have

X {1 - 6t)€—i“"i 0 0 0 )
i 0 (] _ O'f)fm'r 0 0 71(0)

g g L2 7 (0) ‘
..] e — —wa! s . w _ 9 —tal o ot ﬁl ' 61
5 bte " sinw, (1 — 2ét)e - SIN wat #(0) {61}
% é " 26 ) I

2 — sinw,t —bte! = sinwd (1 26t)e- 5(0)

At the time t = T,/2. the matrix becomes drastically simple as

oT,

~(1-=7) 0 0 0
% 0 1 6T 0 0 ?(O)
23 1 R RO e
Kk — 0 —(1=6T,) 0 f’{(o) |
75 2 ST, 75(0)
0 = 0 —{1- 6T

L,

The transfer matrix for another half synchrotron period, in which particle 2 proceeds



particie 1. is obtained by inierchanging the index 1 and 2. At 1t = T.. we have

P o &7,
—{1 - ¢é7.} 0 5 f)
X , - 6T, [ 1{0)
> 0 “I{] - é‘T.,) 0 — %'[0) _
| 6 ’ . (63)
2 T: %(0)
i 0 0 -(1 - - 0 -
[ ’ 6Tn ’2( )
i ’ R X

The total transfer matrix for one full synchrotron period is then given by the product of

L2>'L1—_~L

3 6T,
1~ =6T. 0 - 0
2 2
0 16T, 0 0
L= . 2 : (64}
6T, 3,
- — 0 1- 46T, 0
2 2
&T. 3
0 ——— 0 1- -6T,
2 2
The eigenvalues of this matrix are
A = 1~ 26T, ‘ (65)
1- 6T, (66)
which correspond to the following four mode frequencies:
HKyeon :
Wy = W — 67
1 e 7 P ( ‘)
Kyeo
Wy = —w, — S (68)
¢
Ky,
wy = — g dll (69)
2¢
HAyen o
Wy = -~ — ?_52;'— . (J’O)
The eigenvector for each eigenvalue ( 67)-( 70} is. respectively.
1) 0 1 0
0 1 0 1 -
Vi = 1 Vo = 0 Vi = -~ 1 Vg = 0 . (’])
0 1 0 -1

5

In the first two modes, the two particles move together in the same phase. and the last
two modes show the out-of-phase motion. The damping rate of the in-phase motion. which
1s only motjon allowed in the rigid bunch model. now agrees with that of Kohaupt’s formula.

If we again neglect the self~induced terms. and repeat the algebra, mode frequencies are
changed to the following:

h—ycon
2¢

wp = Lv'_‘-"*?:

(72)
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T T | - (73}
2¢ o
Wz = W (74)

The first two modes correspond to the in-phase motion. The reason why the out-of-phase
motions are stationary is obvious on inspection of Eq.{ 43). If 71 = —7;, the right hand side
of Eq.( 43) vanishes, so that there is no wake field effect left. Besides, it becomes more clear
that the self-induced terms attribute to half of the damping rate in the two-particle model.

6 CONCLUSIONS

In order to explain the large discrepancy between the measured coherent tune shifts and
analytical ones in a short bunch in PETRA, we have studied the effects of the closed orbit
distorsion y.. and the dispersion  on a beam instability, with a two-particle model. We
obtained the result which supports Kohaupt’s previous results: they hardly contribute to real
tune shift. while the momentum dependence of the wake force can make a beam unstable. with
the growth rate which is proportional to the product of y., and 7. The numerical examples
for constant y., and 7 over the PETRA ring shows that the growth rate can be large enough
to be observed. However in the real mach'ine, since y., and 7 change sign frequently in the
ring, the effect might be very weak.

Kohaupt's model 7] says that the damping (antidamping) of transverse oscillation should
happen in conjunction with the longitudinal instability (stability). with a damping rate of the
same strength. but opposite sign. In the present model. we do not have such a counter effect
in the transverse oscillation. The reason is that the Panofsky-Wenzel relation( 7) between
the transverse and the longitudinal wake potentials was no longer fulfilled after linearizing
the nonlinear term (7 — 72)(y1s — Z%71) in Eq.( 12).
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APPENDIX A

" Matrix form of equations of motion

p-Zt + =2 0 0
1 " 7 o A 3 7 o~
vop wh _wep e Ry K b
20 2 207 2 2, 2 Yzp
0 0 D- == D= 72
d , ! 7
Ky.o0 Ky, W w? nwe W w? Nw, 2
- el 4 D+ 2+ Ky, ~Z=p+ 2 K
2 2 2 2 Veoloar T 2 2 Yool cas

11



(" 0 0 0 0
Kar Kar Ky, Rhbarnw, Ky.. Kby e
= 2 - 2 Y- 2 o 21 {3 . 2 ac 20 |z
0 (451 0 yl;_ 0 1 0 1
Ky..o Ky.a _ Ayeonw, Ky.nw
2 / 2 ; 2ic 2ic
———————— —_—
E %) 3 d
(76)
where d
D= —, 77
= (77)
APPENDIX B
The contributions from inhomogeneous parts
@25 inhomo = T]( W, u.e)ylﬁ T L;[ ((-u'ﬁ wp)Tl - L] (wb —w,,)'?]', (78)
Qée inhomo = T] (wf«.w,)qu. L; (wg —--.m,)r"] - Ll (u.g w )a;]', (79)
7 inhomo = JTzlws.w.}ihe+ To(~wg.we)try — Lo(ws swe )1, (80)
2 inhomo = T7(~wa.wo}ing + T: (wa wo ¥ + Ly(w we )y (81)
where
AT N . . n
Twe.w.) = p— Wi wE — twaA Y- ) — 1, 82
]( / .) I\y_*ta( ! & 1 Y (') ( )
Ao (ws — w, p 6—"1"'—.'
L} (u}_f-g.w'_‘-) - tA W, ( & '“" )}U(y ‘ 2;1::; ) : (83)
wo( Ky, — t{wi — wf)w,,‘a—;)ac
wa oWy A
To(ws.w.) = LL__lj (84)
Zwﬂyco -
Lg(wg,w.) = —1+ 2K - (yc? — A;Z::) (85)
) Ryco—z(wé—wfjm%
APPENDIX C
Coefficients a,

J a; ) -HT(WE),;'JJ,,,W]) “'HT(WﬂgJ-M ) ‘F‘!(wﬁe"'-‘".":"‘)]"wZ) EQ‘(WL&,W:, w],u.?2)
as —Hr(ws,we. —w]) —Hp(ws,w,,w ) Folwa.w,, —w;.wy) F(wg,we,wy,we)
as ~Hy{wa, we.ws) _HT(wg We, —ws)  Folwg.w,,ws,wi) F(wsywe, —w),wi)

ag —Hr(wg,we. —wi}) —Hi(wsywe,ws)  Fulwp,w, —wi,w1)  Fy (wa,we,we,wi)



/ @13(_0_)
] 1440}
"HL(J-R We. W) —HI:(LJ[.LGF‘—J,}) GS(W@',w‘.‘.,QJl.WQ) G;(wﬁ,o:,.,.—w;,wg) @Zf‘(o)
AHL(““)( w ﬁ"’"]) ﬁHi(u}ﬁ:ws "VI) Gs(wﬁ:“*"hw@‘]’ruﬁ) G;(wﬁﬁwsawlawﬂ) 3}55(0)
—Hp(wp.we,wa)  —Hjlwg,we, —ws) Gelws we,we,wi)  Grlwa,we. —wsy,wi) 71{0)
—Hp(wg,we, —wy) —Hp(ws,w,,ws) Geo(we, we: ~wp,wi) Gi(wg,Ws. o, wr) 7{0)
72(0)
72{0)
(86)
APPENDIX D
Elements of matrix M;
‘M31(t) - _Jﬁl(wﬁ g t) - J%I(Wﬁswsat) + Tl(wﬁ‘rwt')e—wmv (87)
"Mﬂ(t) = %Jfl(w»@'wut)+JTI‘1(wﬁ:“"3:t)= (88)
4’\433(1:) = fIR(W[q,w t) -+ f{ (Ly”@,w‘g,t), (89)
M43(t) = flR(w»@?‘*’ t)_f;(wﬁ7w?=t)’ (90)
Mas(t) = —JF(ws.we,t) = I (ws.wert) + Ly{wg,w.)e ™" {91)
Mi(t) = ~Jf(waswet) + ] (wewe,t) + Li(—wp we)e ™, {92)
A{ST(” - gf(“"ﬁ w t) fQ{(Wﬁ,ws,t), (93)
—'M47(t) = gf(wf w t)vgir(u‘ﬁ!wmﬂs (94)
where
4
Jiwaewet) = 3 waHr(ws,we,w;)e ™! (95}
=1
4
J;—l(w’g,u.'a l') = ZWJ'HT(W,G W Luj.) —hwyt (96)
7=1
4
Jfl(wﬁ,u.i‘q,f) = ZwEHL(wg,w,wJ)e twt (97)
=1
Thweewe.t) = > wiHp(wa,we,wy)e ™, (98)
=1
4 i
f]‘q(w@,w_,,t) = Zu.rﬁF(wg,w.,,wj)e_‘“’-’f. (99)
i=1
f‘{(wﬁf"")ut) = ijp(wﬁ!werwj)emwﬂr (100)
i=1
gF (wa,we,t) = ZwﬁG(wS,w,,u‘j)e*"“it, (101)
i=1
C |
g{(wﬁ,w,,t) = Zw;,-G[wﬁ,ws,wj)e_wi’t, (102)
i=1




and

where

where

where

Mu(t) = —Jf(ws wet) — Jho(wanwent) = Tolwg, w.)e ™",
Mg](t) = —Jﬁz(w,g,ws,t) - J}z(wﬁ:wmt) - Tg(&)ﬁ, )e““‘“’t,
Mys(t) = 3 (wg,we,t) = [ (ws,wot),
Mes(t) = 3 (wpswest) = f1 (ws, w0, t),
Mis(t) = —J{ws,wet) = Jip(waswest) + La(wp, we)e ™
Mss(t) = —Jly{ws wet) + Jip{ws,we,t),
Mu(t) = g7 (wpswert) + g3(wp, e t),
Ms:(t) = gF(ws,wet) — gd(ws. we, t),
4 2 2
| wplwj — wp) e
JE (wp e ) = z Hr(ws. we,wy)e s
lont) = 2 b )
J’j ( t) i wﬁ(w.? _wg) H fw,t
Wray e, = w { w !
T2\Ws 2 Ky, s Hr(wg, we wy)e
4 2 2
wg(w? — wj) iw
T went) = 3 g Hy s, wewy)e
F=1 Yool
 we(w? — wi) .
Ji (we,we t) = > ! 2 Hy (wg,we, wy)e st
i Kyeows !
4 wap(w? -~ Wi .
ff(wg,u,‘p,f] = Z ﬁ[_'? £ w,F(w@,ws,wj]e"’“’f’.
y — Ayc(?wé’
i=1
4 we(w? — wi ‘
fg(u’!ﬁai"!satl) — JZ::I ﬁ;ﬁ.;cowsﬁ)W‘;F(Wﬁgw wj)eﬁiwjt
R 4 wﬁ(wf — w:‘;) .
ga (w.ﬁa“-"ut) - Jzzi Kyqu WFG(wﬁs wsawj)e—let'.
4 2 2
I Wﬂ(*’; - wi) it
woywe,t) = ;G (ws, we, w; e
lonsnt) = 8 oGl e
HT(wﬁ,w..,wj) = F(w[-;.w‘.,,w‘j)T] (i.dﬁ w‘,)
- G(.«,-j. )Tz(wﬁ )
-+ G(w@ .«.J)Tg(wf; - )
HL(wﬁ,we,wj) = F(.ﬂ;,w‘ L )L](wﬂ we )
- F( Wwa, W, wj')Ll(—-i.u’ﬁ We )
+ G(-Lg,wo .»J)Lz(u)ﬁ We )
Flwp,wew;) = Fowg.we,wj wy} for w; = wy or ~w;

= F(wa,we,wyi,wr) for wy = wp or —w;,
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(119)

(120)

(121)



|

v c .
slwa.weiwy Wy TOT W, = Wy OT — W

Glus,wens;)

G ;
! (1221
= Gelwp.woowjowy) for w, =wy or ~wy, e
where
Fs(\w.f“ws-wth) = e (LUL:: —‘Ul)(wz - wﬁ)(wff’ T_wi)? (123)
2wp (wsy — wi)(wr — wi)(w] +wi)
Ky, Wy — Wy — We — W .
G‘q Wea, e,y W2 - - - - " . 124
( 1wz) 2w (ws =+ wy)(ws — wi)(wy + w) (124)
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The vertical tupe shift in PETRA for various y.. and 7.

Yeo = 0.05mm.n = 0.007Tm Yoo = Odmm.,n = 0.07Tm
| 4 (Hz)/mA | 8 (Hz)/mA
mode ’ Real Imaginary mode Real Imaginary
1 -250. —0.33 x 10710 1 ~250. —0.111 x 1073
2 | 250. —0.33 x 1071 2 250. —0.111 x 1073
3 —250. —0.358 % 107 3 ~-250. —0.979 x 1074
4 250. —0.358 x 107* 4 250. —0.979 » 107*
5 | —0.459 x 107¢% -—0.138 x 10°* 5 ¢ —0.726 » 10720 ~0.138
6 | 0.459%107° —0.138 x 10~ 6 | —0.78x 10" ~0.138
71 -0.962x 107" 0.288 x 107 7 | -0289%10"%  0.145 x 10°*
& | 0.962x107°  0.288 x 107° 8 | 0.289» 1077 0145 x 10°°
Yeo = Do, = 0.Tm Yoo = 20.mm,n = 2.8m
| % (Hz)/mA ‘ %+ (Hz)/mA

mode Real Imaginary mode  Real Imaginary

1 ~250. —0.13 107 1 -250. -0.536 10°°

2 250. -0.13 x 10°°% 2 250, —0.536 » 1077

3 -250. —0.443 » 10°F 3 250, —0.564 » 107*

4 250. —0.443 » 1077 4 250. -0.564 = 1074

5 —0.11 » 10! ~13.8 5 ~28 —220.

6 0.11 x 1072 ~13.8 & 2.8 —220.

7T —0.963 x 107! 0.28 » 10°* 7. -154  0.265 > 3107

8 0.963 » 10! 0.2& > 10°° & 154  0.265 x 107}
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Tabic 2

Parameters Tor PETRA.

‘."’".ﬁ Ffll'.d@

we ’." W

&y f‘ 2%

wo

beam enrgy (GeV)

betatron tune

synchrotron tune

revolution frequency (kHz)
momenturn compaction factor
transverse wake potential

(0 -m~? - Hz?)

bunch length (cm)

[

{

18.4
0.0665
130.
0.0027

3. » 10%
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