DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

‘DE&Y 86-084
August 1986

CUMULATIVE BEAM BREAKUP IN LARGE-SCALE LINACS

by

K. Yokoya

Deutsches ELekironen-Synchrotrion DESY, Hamburg
and ' '
National Lab. for High Energy Physics, KEK, Taukuba, Japan

ISSN 0418-9833

NOTKESTRASSE 85 + 2 HAMBURG 52



DESY behilt sich alle Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX ,
send them to the following address { if possible by air mail ) :

DESY
Bibliothek
Notkestrasse 85
2 Hamburg b2
Germany




DESY 86-084 ISSN 0418-9833
August 1986

CUMULATIVE BEAM BREAKUP IN LARGE-SCALE LINACS

KAORU YOKOYA

Deutsches Eiektronen-Synchrotron DESY, Hamburg

National Laboratory for High Energy Physics, Japan

ABSTRACT
The cumulative transverse beam breakup in large linacs such as the ones for linear colliders
is discussed. Various analytic formulae are derived which allow arbitrary initial condition,
focussing and acceleration. The spread in the mode frequency can be taken into account.
The misalignment problem is also discussed.
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1. Introduction

It is said that the most promising candidate of the high energy electron-positron collider
in the next generation is a linear collider. Several new acceleration mechanisms giving the field
gradient of more than a hundred MeV/m have been proposed. Nevertheless, the conventional
RF acceleration seems to be feasible up to the energy somewhere around 1 TeV, although
much effort should be made for the development of the high-power microwave generator. Such
a large linac is expected to require extrernely Jarge power. One possible way {o save power
is to put many bunches in one RF pulse in contrast to the SLC, where one pulse consists of
only three bunches (including both electron and positron). This also relaxes the problem of
the beamstrahlung during the collision because the charge per bunch can be small. One of
the major problem of such a linac in multi-bunch operation is the so-called cumulative beam
breakup. The single bunch instability is not so serious because of the low charge per bunch.
The multi-bunch mode gives nearly the same luminasity as the single-bunch if the charge per
bunch is divided by the square root of the number of bunches, whereas the total charge per
pulse is multiplied by the same factor. |

The mechanism of the cumulative beam breakup in linacs can be stated as follows. If a
bunch in a pulse is displaced from the central axis of the linac due to some reason, it excites
a transverse deflecting mode in the cavity, such as the HEMy; mode. The following bunches
feel this field in the same cavity and are deflected even if they are on the axis. These deflected
bunches create fields of the same type in the cavities in the rest of the linac, which further
deflect the subsequent bunches leading to a beam loss.

This problem has been studied by several authors. Helm and Loew (ref.1) discussed the
problem by an analytic method for linacs with no or weak focussing. Neil, Hall and Cooper
(ref.2) gave an exact solution and an asymptotic analytic expression for the periodic focussing
structure with no acceleration, putting the emphasis mainly on high-intensity, low energy
linacs. Gluckstern, Cooper and Channell (ref.3) treated the problem more rigorously and
derived the steady state solution for a long pulse with some discussions on the acceleration.
In all these works, only one deflecting mode of the cavities is taken into account and the
beam offset from the machine axis at the injection was discussed as the source of the trigger
of the deflecting mode excitation. |

The linacs for linear colliders have some different features which have not yet been
treated in these works. There, the acceleration is very important (the adiabatic damping
factor amounts to several tens) and the focussing structure inevitably changes as the beam
is accelerated. It is impossible to maintain the same optics in the low and the high energy
portions of the linac because of the large energy difference. This is even unnecessary because
beam breakup is more serious in the low energy portion. Since the number of the accelerating
and focussing elements is large, the misalignments of these elements are also important as the
trigger of the breakup. Another complication comes from the fact that we may use cavities of
various types which have slightly different deflecting mode frequencies in order to damp the
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breakup by dephasing. This is ex'pect.ecl to be a powerful cure to cumulative beam breakup.
We already have the same situation for constant-gradient type cavities. The frequency of one
deflecting mode of the cavity of this type has a spread over a finite frequency band.

On the other hand there are also some points which make our study easy. The local
details of the focussing and accelerating structures are of less importance. They can be
characterized by a few numbers such as the betatron wave length and the impedance per unit
length. The spacings of the quadrupole magnets and the cavities do not play an important
.role. They can be.smoothed out. One more good news is that the focussing should be very
'-.strong so that the breakup during one: betatron wavelength is small. Otherwise, we cannot

accelerate the beam through many betatron wavelengths

- Inthis c1rcumsta,nce, we prefer an approximate but analytic treatment rather than the
exact, discrete methods such as matrices and recurrence relations. Our method is based on
the one employed in ref.1. It is very flexible and can handle the various possibilities stated

"above.

‘ In ‘Section:2 we formulate the problem of the initial beam offset and derive an approx-

_imate i,n'*l_egra] representation of the solution. 1t is applied to the beam breakup by isolated
'f’d'eﬁec_ting modes in Section -3, and extended to the case of the frequency spread in Sec-
tion 4. Section 5 and 6 deal with the problem of the misalignments of the cavities and the
quadrupole fnagnets, respectively.'The main results are summarized in Section 7. Appendix
A discusses the single-bunch 'blowup by the same formalism and Appendix B gives the steady
state solution. Appendix € and D are mathematical notes for Section 4.

2. Beam Offset at Injection

: In Sectlons 2 to 4 we dlqcuss the problem of the beam offset at the injection. In this sec-

‘tion we derive an apprommate integral repr_eSentation of the beam breakup factor in a general
form which allows arbitrary initial condition, acceleration, focusing and cavity impedance. It
will be ernployed' in the later sections. The method was basically first introduced by R.Helm
and G.Loew in ref.1. » |

Let z;{s) be the transverse coordinate (we consider only one transverse plane) of the
j-th bunch when it passes the point s, the length along the linac measured from the injection
point. ‘We treat the bunches as point. charges. We approximate the focusing structure by a
":'sn'looth'focusing function k(s) = 27 /(local betatron wave length). It can be a slowly varying
funct}on of s so as-to allow the change of the optics from low energy to high energy We
. -assurne that every bunch has the same electnc charge Then the equat;on of motlon of the'
4-th bunch is ' '
d.

s (’7(«5‘)%?) f‘f(s)k{s)zxj(s :

eItb

(7 — L& Ik( )-" o (21l

 Here, th‘e_no'tat:ion‘is: h




v(s} the beam energy in the unit of the rest energy mec®. It is assumed to be a slowly

varying function of s. We treat untrarelativistic particles only.

ty the bunch spacing (in the unit of time). We define wy = 27/t;. Every RF bucket
need not be filled but the bunch spacing must be equal.

I the average beam current. The charge of a bunch is given by I-t;.
t; = jtp, the time delay of the j-th bunch from the first {(zeroth) bunch.

W{t) the transverse dipole wake potential by a unit charge per unit length of the linac
in units of Volt/m?/Coulomb. We assume the “causality” W(t) = 0 for t < 0. We
ignore the short-term variation of W (t) with s due to the various structures along
the linac. We do not consider the possible long-term variation by using cavities of
different types in the low and high energy parts. The latter possibility is not difficult
to take into account in our formalism.

If necessary, the effect of alternating focusing in the real linac can easily be taken into
account approximately. To do so, we write the local amplitude functiuvon #(s) in the form
Bosc(s)/k(s). Here, B,s.(s) is a dimensioniess function with unit average, showing the short-
period oscillation of the beta function. Use z:(s)/1/Bosc(s) instead of z;(s} and redefine s
by fos ds/Bosc(s). Then one finds that one should multiply W (t) by 82, with B,s. being the
average value of B,,.($) in the cavities.

Let us define the (discrete) Laplace transform of z;(s) with respect to j;
y(s,p) =ts )_ePzi(s)  (Rp> po)- (2.2)
j=0

Here, p. is the convergence boordinate, which we do not know yet. This equation defines
y(s,p) in the region Rp > p., where y is analytic. For Rp < p., y(s,p) is defined by the
analytic continuation. The Laplace transform y(s, p) has the periodicity

y(s,p + 1) = y(s,p). (2.3)

The inverse of (2.2} is given by
1 +f:‘-'b/2+Pc 7
zi(s) = 5— dpeP*y(s, p)dp, (2.4)
27 J_sunj2+p.

where p. must be so chosen that every singularity of y(s, p) is to the left of p..

Using y(s, p), eq(2.1) can be written as

% (“l(s)j_z) +(s)k(s)*y(s,p) = ;n%y(s,p) DT (L), (2:5)

j=0



We introduce the impedance Z corresponding to W (t);
o0
Z(ip) = ~ity y_ e VW (t;)  Rp> pe. (2.6)
j=0

Thus, eq(2.1) reduces to an ordinary differential equation for each ?;

%(’Y(S)i—g) +(s) [J’c(s)2 - :((:))}y(s,p) =0, (2.7)
with _
f/(I!U’) = i{_? fZ(ip), (2.8)

These variable have the same perjodicity in p as (2.3);

Vip+iw) =V (),  Z(ilp+iw)) = 2(in). (2.9)

Since we assume that the s-dependence of k(s) and ~(s) is moderate, we can use WKB
approximation in solving eq(2.7). The principal solution is

y=(s,p) = {'yz(kz - g)] e exp [:tz'/os \ch — %ds]. (2.10)

We further approximate this expression by the assumption that the focusing is strong. It
holds if the beam breakup during one betatron wave length is small. This is the case in high
energy linacs where the total number of betatron oscillation is large. The opposite case of
weak focusing has been discussed in ref.1. Thus, eq(2.10) can be approximated by

1 [ 14
y=(s.p) = WEXP [:I:zjc') (k — %)ds : (2.11)

Introducing the phase function of the betatron oscillation

ols) = /O k(s)ds (2.12)
and a function ey |
H(s) = /D ey (2.13)
we can write eq(2.10) as
1 . 1 N
va(6.7) = s exp 2i[U(0) - 3 H (Y ()], (2.14)



Now, let us consider the initial condition. If the initial values of z;(s) and z] (s)at s =0

for all j are given, then the initial values of y and y' are calculated by
o0 oo
y(0,p) = 5 Y e ™z;(0),  y(0p) =t ) e zj(0). (2:15)
: =

For instance, when every bunch is injected with the same offset Xo without slope, (2.15) gives

Xoty

e and y'(0,p) =0. (2.16)

y(0,p) =
If only the first bunch is displaced by X and the others are on the axis, we have
y(0,p) = Xots and v'(0,p) = 0. (2.17)

The linear combination of y. and y. that satisfies {2.15) is given by

~oko / 1 ~ v (0,p) . 1 .
vls.p) =\ =g (VO cos(wl) - SHET () + L2 sin(v(e) - S HE (0)) ],
(2.18)

where vo = 7(0) and ko = k(0).

We get an integral representation of z;(s) by the inverse Laplace transformation (2.4);

'TOkO +1w1/2+Pr . y’(o’p)] +1 (t,b(s)——%H(a)\?(p))+ptj
/ A . {2.19
er Z 4711 [ 1,(_.,), /2+pr y(01 p) :t ?ako € [ )

Since V(p)” = V{p*), which states the wake potential W (t;) is real, we can simplify (2.19) as

(s “twy, [ 24-pe
z(s,t) = . 7&‘;:‘55)&8;&) /ﬂm/;: 50, p)e?Pdp (2.20)
with .
B(p) = pt = H()V (p) (2:21)
and
v'(0,p)

¥(0,p) = y(0,p) + (2.22)

1ko
Here, ® denotes the real part. Eg(2.20) makes sense only for ¢ a multiple of t; and, then,
z;{s) is given by z(s,t;).

Now, if we know the impedance, the focusing function and the initial condition, we can
estimate the beam blowup factor by integrating the expression (2.20).

In practice, it is not easy to carry out the integral (2.20) because the integrand is much
involved and the interval of the integration is finite. However, we can get a crude approxi-
mation in the following manner. We usually define the transverse impedance by |

S . +o00 .
W(t) = / Z(W)e e,  Z(w)=—i| W(t)etdt. (2.23)

- OO



One finds that Z and Z have the relation

o0

Zip)= Y Z(ip+ nwy). (2.24)

n=—oo

It is evident that the impedance Z(w) and Z(w + nuy), n being an integer, give the same Z.
Therefore, we may redefine Z(ip) by properly shifting the argument by tnwy so that Z(ip)
has a singularity only in the region

wp Wp
e gp e g Vb 2.25
g SSp<4 (2.25)

(Sometimes, the interval {0,w;) is better.) Even if Z(ip) has several singularities, we can
often decompose Z(ip) and shift the argument for each component. This prescription may
fail in some special cases, e.g., a long branch cut which extends over more than wp in the

imaginary direction.

If, in the integral (2.20), we can ignore the contribution of the singularities outside this
region, we may replace $(p) in {2.20) with ©(p) defined by

o(p) = pt— LH(V (o) (2.26)

where V (p) is given by (2.8) with Z replaced by Z;
el . .
V(p) = —1Z(ip). (2.27)

mc?

Furthermore, if Z(ip) is smooth enough outside the region (2.25) and if ¢ is large enough, we
may extend the integration interval to infinity because the contribution of the region outside
(2.25) is cancelled out owing to the rapid oscillation of the factor e in w(p). Thus, we have

k 13(s) +ioo+p,
z(s,t} = T0%0 Rl / (0, p)e?®), (2.28)
W(S)k(s) 27 —100+p, .

The formula (2.28) is quite powerful but must be used very carefully.

The same formalism can be used for the problem of the single-bunch breakup. This is
much simpler than our problem because one can use the continuous Laplace transformation.
This is briefly described in Appendix A.

3. Beam Breakup by an Isolated Deflecting Mode

In this section we carry out the integral (2.20) for the case of one single resonant mode
of the cavities. The results can also be applied to a realistic case where several modes exist,
provided their frequencies are well separated from each other in the sense described below.
The wake potential of a deflecting mode can be written in the form

W (t) = Woe “*sinwot. (3.1}
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In the commonly used notation, the parameters W, and € are written as Wy = Ruwo /Q
and £ = wp/2Q (We ignore 1/@%.), where Q is the quality factor, wo the resonant angular
frequency and R the shunt impedance per unit length in units of ohm/m?. (In practice,
R (and W,) must be reduced a little from the value of real cavities in order to take into
account the dilution by the other elements such as focusing magnets and drift spaces.) In
this paper we use Wy and ¢ instead of R and @ for the following reason. As one can see
from the equation of motion (2.1), only the values of the wake potential at ¢t = multiple of £;
contribute in our problem. Therefore, the resonant frequency wo + nwp {n = integer) should
give the same results as wg; i.e., wo makes sense up to modulo wp. We denote the smallest
one among them by |wo] (|lwo]| < we/2). Therefore, [wo] can be negative and it expresses the
distance from the nearest bunch spectrum nws. On the other hand, the original value of wg

must be kept in Rwo/Q and in wy/2Q, which may cause confusion. So, we prefer W; and €.
The impedance (2.23) corresponding to (3.1) is given by

. Wo 1 1
=2 —- ) 2
Z(zp) 2 (p+iwo+s p—iwo—i—e) (3.2)

As stated in Section 2, this impedance gives the same 7 as

269) = 22 (= ) (3.3)

2 p+i[wo]+e p*i[wo]‘-}-s

does. We shall use the latter form, which has poles only in the region (2.25).

Let us estimate the integral appearing in {2.20);

. 1 +iwn/24p. .
F(s,t) = — (0, p)e?Pdp (3.4)
2771 -’:W!:/2+Pc :
with
elH(s) 5. Q(s) 1 1
~ — pt 4 VA = pit r - - — - 3 )9
#lp) =P 2me? (ip) = pt + 4 n__oo(p+z{wo]+znwb+s p— tlwo] + thwy + €
(3.5)
and IH(s\Wo eIW, [° d
€ S 0 € 0 8
0 = = } 3.6
(s) mce? me? /(; ~v(s)k(s) (3-6)

Here, {I(s) has a dimension of frequency and is a monotonically increasing function of 5. It
will play an important role thoughout this paper. If the focusing function k(s) is constant
and the acceleration is uniform, then

elWg ~(s)

Q(s) = F(dE/d5) log o (3.7)

where dE/ds is the (smoothed) acceleration gradient. The expression (3.5) has poles at
p = *t|wo| + inwp. If wo is not very close to the middle between successive multiples of wy,
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or, equivalently, if (wsi/wy is not very close to =1:2. we may ignore the interference between

the poles of different n. Then. instead of (3.4) and {3.5}. we may use

i 1D,

Fl(s.t) = — (0, p)e” ) dp (3.8)
2m f focp,
with 1H () 00e)
€ $ . S 1 1
rmes 4 Pt & p—twpi+ €

which is regular outside the region (2.25). We can obtain z(s.t} by (2.28).

Since we are not much interested in the front part of the pulse where the blowup is not
serious, we may assume Jarge 7 in (3.8) so that the saddle point method can be applied. The

saddle points arc selutions of the eguation

ﬂis)__(( ! b f)ﬁo (3.10)

p- zu,_(” + g)? (pn.—rt‘{w(,] 45)

F(p) -t -

I [wyiis not too small, the interference between the two poles near — ¢ = 7iwy| can be ignored

and the saddle points are given hy

L1 (s SR fQ(s)
pr= € nwni b Al pa s - £ tlwa = ) =
2\ - -—t 2\/ __f (3.11)
L iap) NG
o Tro— g 7wy + IR WA — + ‘w.. E— [t
Pz + PR Vi Pa €+ tiwo| 5 \ ;

When there are two mode frequencies at the distance é.0;. the condition that they do not

interfere can be expressed as
Q{s)

t > —.
2(bwa)?

{3.12)
Thus, we assume that both

buwy o 2liwn ] and bwy == wi — 2w {3.13)
are not close to zero so as to satisfy (3.12). The latter is the nearest distance between the
poles of different n. In practice, the region of wy where (3.12}) fails is very small.

When several deflecting modes coexist. we may ignore the interference between the modes

bug == wl M (3.14)

satisfies (3.12). Here w2\ is the frequency of the a-th mode. Then we can consider each mode
(a} AR
, .

- Wy

separately. Bear in mind that éw,; is not simply w,

The four roots of (3.10) are depicted in the complex p-plane in Fig.1. The integration
path must be to the right of the singularities (poles at p = —¢ = t{iwn!). One can see from
(3.5) that the rightmost saddle point p; dominates in the integral when { is large. Since

olpy) = ==t — tlwo t = /(s (3.15)
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and RNz (ps 4) = —et, the condition that the other saddle points can be ignored is’
Reol(pr) — Reps) = VOs)t > 1. (3.16)
The two conditions (3.12) and (3.16) can be combined to
% < Qs) < 2(6we)’t. (3.17)

Near the saddle point p;, the function ¢(p) can be approximated by

o(p) = plpr) + (o~ p1)%" (m1) (318
with
e"(p1) = 42([2)- (319)

The initial value %(0, p) in (3.8) can be replaced with its value at p = p; = —¢ — ijwg|. When
t is so large that st — \/W > 1, all the saddle points are to the left of the imaginary
axis. Hence, the contributions of these saddle points die away as ¢ — oo. On the other hand,
y(0, p) may have poles on the imaginary axis. For example, if the beam is modulated by a
frequency w;, at the injection, §(0,p) has poles at p = £z[w;,]. (The initial condition (2.16)
is the special case of w;n, = 0.) The contribution of these polesis finite at ¢ — oc. Therefore,
when omne is interested in the steady state at t — oo, one cannot ignore the contribution of the
poles of g(0,p). This is not important for linear colliders but, for completeness, it is briefly
described in Appendix B. Here, we ignore these poles. So, the following formulae are valid

under the condition
VOs)t — et > 1. (3.20}

Thus, we can perform the integral {3.8) with the result

1 0 1/4 .
F(s,t) = zmg(o,—s—ilwo])( t(j)) R G AL S (3.21)

Therefore, substituting this expression into (2.28), we obtain

—
1 / Yoko /(s)\V/4 . Gy —et—iwnltd T (a) 4 /(&)1
L) = Ry(0, —& ~ 1|wo| HWoltriale sJe, 3.22
0 = ST\ S e ) OO =l 322

The oscillation amplitude is

X(s,t) =

1 f’YGkO Q(S) 1/4 ~5t+ml~ ) :
2ver |k ( 12 ) ¢ 19(0, —& — zjwol). (3.23)

11f we neglect the interference between the poles, we can integrate (3.8) exactly for each pole using the Bessel
function of order one (Jy or I; according to the sign of the residue of the pole) without the assumption (3.16).
However, this does not help much because the resulting expressions are rather involved and, moreover, the
only merit is that they also apply to the small blowup part of the beam, which we are not interested in.

10



For the initial condition {2.16) and (2.17), we get

— ﬁ1/2
,‘ . 343 _ 2 i gty : wyln )2
_Xr(s.t) _ XO ‘f"YOkO (Q(S)t)l’"j Ee_gt-}-.\fﬂ(s)t{ [(e 1) 46 (Sln 4‘2 ) } }
2v2r | vk t 1

(3.24)
where the upper and lower part in the curly bracket correspond to (2.16) and (2.17), respec-
tively. The initial condition (2.16) leads to a resonance when wpt; is a multiple of 27 as seen
from the upper factor. Eq(3.22) is the main result of this section. It can describe the behavior
of the beam under the conditions (3.17) and (3.20). One can get the solution for arbitrary
initial condition z,(0} and :c;-(O) by calculating their ‘Laplace component’ y(0, —zwo!) and
y'(0, —7|wa]) and substituting them into {3.22). When more than one deflecting mode come

.in, one can simply sum the contribution of each mode to z(s,t), if the separations between

the mode frequencies, (3.14), are large enough to satisfy (3.12)

The breakup is essentially described by the factor exp(,/f}(s)t). In the case of no ac-
celeration and constant optics, this agrees with the result in ref.2. The maximum blowup
takes place at the end of the pulse { = T and at the exit of the linac s = L (neglecting the
factor e~ ¢'). As one can see from the definition of 02(s), (3.6), this factor exp(\/Q(L)T) is
determined by the total charge in the pulse but does not depend on the bunch spacing (apart

from the resonance phenomena).

Fig.2 to 5 show the comparison with a computer tracking. We solved the equation of
motion (2.1) by the Runge-Kutta method in s. The acceleration is uniform and the focusing
function is constant. The following parameters are used throughout this paper as the standard
values, otherwise stated. Eq(2.17) is used for the initial condition (offset of the first bunch

only).
t; = 10nsec (wp = 27 x 100 MHz)

ny, = 50 (number of bunches)

L = 2000m

wo = 27 x 4.214 GHz (wo] = 0.14wy
mcz'm = 2GeV

d(mc*~(s))/ds = 0.1 GeV/m

k(s) = 0.10m™}

I-t, =3.2nC

Wy = 1.4 x 10 volt/C/m*

c=0 (@ )

Aw = 27 x 6 MHz (for Sectin 4)

These parameters give
: 5
s} = 7.1 F—— MHz).
N(s) = 2z x 7.1 log(1 + 20m) (MHz)

11



The integration step is 2m.

Fig.2a and 2b show an example of z{s,t)/ X as a function of time (bunch index) given by
the tracking and eq(3.22), respectively. In Fig.3 to 5, shown is the logarithm of the amplitude
or, more specifically, log,,(X(s,2)/Xy) where X is the *invariant” amplitude, i.e.,

DR X (s, ). (3.25)

There is some difficulty in defining the amplitude in the computer tracking. We defined it by

X(s,t5) = y/22(s) + (2} (s)/k(s))2,

which, rigorously speaking, cannot compare with the analytic formulae, e.g., (3.23), when the
breakup is very fast. The crosses show the results of tracking and the solid lines the analytic
formula (3.24). The amplitude is plotted as a function of ¢ in Fig.3 and as a function of s in
Fig.4. One finds slight disagreements between the analytic formula and the tracking in the
region of small s and ¢, where the condition (3.17) is not fulfulled. Fig.5 shows the resonance
between the mode frequency and the bunch frequency. Here, [.UO} is varied from the standard
value. The horizontal axis is the fractional part of wo/wy. The initial condition (2.16) (offset
of all the bunches) was used for this plot. The resonance is described by the upper factor in
the curly brackets in eq(3.24). The formula (3.24) agrees with the tracking fairly well even
near the resonance, though a small error is seen near [wo]/ws = +1/2. In all cases, Fig.2 to 5,
our apalytical formula (3.22) (or (3.23)) shows excellent agreements with the tracking except

where the blowup is insignificant.

4. The Frequency Spread

We have considered the case of mutually isolated deflecting modes in the previous section,
but in practice, the modes are more complicated in cavities of the constant gradient type.
The resonant frequency of one deflecting mode is a function of the location in the cavity
unit. Such a mode can approximately be described by many modes each of which has slightly
different frequency. Under such a circumstance we may expect a damping of the beam
breakup phenomena because of the dephasing by the frequency spread. Even if the ‘natural’
spread in frequencies in constant-gradient-type cavities is not sufficient, we can design a linac
consisting of slightly different type cavities with the same accelerating frequency but different
deflecting mode frequencies. The aim of this section is to find the required frequency spread

to damp the cumulative beam breakup.

The impedance of such structures can be written as

cha) [ 1 _ 1 ,
2 p+ i!u.?o](a) —+ E{a) p— T:[E.Uo}(a) -+ gla) ]’

Z(ip)=)_ (4.1)
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Under the same assumption as in the previous section, we use the simplified formulae (2.23)
to (2.28} in this section, too, instead of (2.20) and (2.21). In practice, each mode is asociated
with a different place in the linac but we ignore this fact and treat it as if all the modes are
excited in every cawvity. We shall assume that all the modes in the frequency band have the
same Wy and € and that they are uniformly distributed in the region ((wg]— %Aw, [wo]+ %Aw).
We further assume that the number of the frequencies in the band, ny, is so large that the
sum in {4.1) can be replaced by an integral over wq. The required number of frequencies for

this assumption to hold can be given by the opposite inequality of {3.12);

Aw 0(s)
JE— << -

: 4.9
> ; (4.2)

but this criterion is too crude to apply to practical problems such as how many types of
cavities are needed. It should be determined by computer tracking.

As we stated in the previous section, wp makes sense only up to modulo wy. If Aw is large
and wo/ws is close to an integer, the frequency interval ([wo] - %Aw, [wo] + § Aw) may contain
a multiple of wy. We do not consider such a case and assume Aw < |{wo]|. Otherwise, we
cannot confine the singularities in the region (2.25) so that the simplified formulae (2.23) to
(2.28) cannot be applied.

With these assumptions we can rewrite the impedance (4.1) as

Z(ip) = (4-3)

W p+e+ifjwo) + 3 Aw) p+ & — i({wo] + 3 Aw)
_ [o ; 1 + log : 1 ]’
21 Aw p+ e+ t(|wo] — 5 Aw) p+e—i(jwo] - 3Aw)

where W;; is not the wake amplitude of one mode frequency but the sum of all the modes
in the band. As in the previous section, if ¢ and/or |[wg]| is large (i.e., far away from the
resonance) so that the condition (3.12) holds, then the second term in the square brackets in
(4.3) can be ignored. Substituting (4.3) into (2.27), we get

+ e+ i{lwo] + 2 Aw
o) = prs B Pt e i)+ 340

, 4.4
414w T p+e+if|w) — 1 AW) (4.4)

where the same expression as in the previous section, {3.7), is understood for f1(s). Since
only the vicinity of p = —& — ¢]wo] contributes in the integral (2.28), we can replace §(0,p)
by (0, ~£ — i[wo]) = §(0, ~[we|). (Here, we shall not consider the steady state at ¢ — oc.
- See Appendix B.) The integral

1 +ioo-i—pc
F(s,t) = — / e?P)dp, . (4.5)
2m1 —100+p.

¢(p) being given by (4.4), is evaluated in Appendix C. Here we quote only the assumptions

and the results. In addition to the assumptions (3.17) and (3.20), we assume

Z‘(j}) >1. (4.6)
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(The resulting formulae is valid for finite @} (nonzero €) but we shall omit the factor e *tin

the following discussion except (4.8) because we are mainly interested in the beam behavior

for t less than the cavity filling time.)

The result can be written in the form;

z{s,t) = X(s,1) cos (w(s) — |wolt + arg ¥(0, —& — i[wo])) (4.7)
with
= :okn - 1 /20s ¢ /4 _ 4. 7{s .
X(s.t) = \’i :{(i—jk—(;—)y(o 3 2[&)0])}? AE;)) [] - :&(j))g] e” ' sinh( 4A(w) YAI(—¢),
(4.8)
where
_ 3 t / Q(s) 2/3
¢ = - [Z /%;zl Awdiy 1 — R,Aw)z}
=+ [2 (— 9% cosh™? \/%i + 4V (tAw)? — ﬂ({s)t)r/s t{Aw)* > 0fs)

“_[ﬁj”ﬂ% 4 m‘—l—r/fi

Awdty ! -
v \"i(Aw)"’

L vfi(‘ﬂw)z VAR aR)] T aw)? < ags)

(4.9)
Here. for convenience, the definition of X(s,t) allows negative values. The factor in the fourth
root in (4.8) is always positive and smooth at the zero of the denominator. The important
factors in (4.8) are the last two; i.e., hyperbolic sine and Ai(—¢). Here, Ai{~¢) is Airy’s
function, which can be expressed by the Bessel functions of order one third. It is plotted in
Fig.14 and some formulae concerning it are summarized in Appendix D. The essential feature
of Ai(--¢) is that, for ¢ > 0, it is an oscillatory function with the amplitude decreasing with
¢ and that it is exponential-like for ¢ < 0 and decays rapidly as ¢ — —oo. The relation
between 2.0}(s) and ¢ is depicted in Fig.6, where the contours of constant ¢ are drawn on the
(tAw.0(s)/Aw) plane. Note that N(s) is a monotonically increasing function of s (linear for
constant energy and logarithmic for uniform acceleration, if k(s) is constant). The dashed
lines show the zeroes of Ai(—¢) and the solid line the maximum. One sees that X (s,t) (not
7(s.t)) is oscillatory in the region of large ¢ and small 11 {small s) and exponential for small
t and large (1.

The asymptotic forms of Ai(—¢) for ¢ — Foo are given in Appendix D, egs(D.5) and
(D.6). Using these expressions we obtain the asvmptotic forms of the amplitude X (s,t); in
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the exponential region

X(s,t) :\/ 3”3—%(0, ~ilwo))l \/%t P _”tzjlwz} TR -
X exp[ng sin~! tAﬂwz + %m] (¢ < —1)
and in the oscillatory region
X(s,t) = %[@(o,-z[woJ)I%\Esinh(%) an
' 4.11
X sin[— A5 cosh™! Eé{;f + % (tAw)? — Ot + %H {¢ > 1).

In the transition region ¢ ~ 0 (2 ~ tAw?) we have to use (4.7). One easily finds that (4.10)
agrees with the result of the previous section, eq(3.23), in the limit of no frequency spread
Aw — 0. In this case one sees only the exponential region. The amplitude X(s,¢) {actually
|X(s,t)/Xol) is depicted in Fig.7 as a two-argument function. Fig.7a and 7b are the results
of the tracking and the formula (4.8}, respectively. The s-axis is linear in {1(s). The bunch
index is shown instead of the time ¢. The frequency spread is Aw = 27 x 6 MHz. One can
clearly see the first zero and the maximum of Ai(—¢) in either figure.

Fig.8 shows z(s,t) as a function of ¢ (bunch index) for fixed s. The displacement
z(s.t)/Xo by tracking is shown in Fig.8a and the same quantity by the formula {(4.7) is
plotted in Fig.8b. The short oscillation period is determined by the fractional part of [wol/ws
(=0.14 in our exmple). The shift of the phase by 7 when crossing a zero of Airy’s function
can clearly be seen in both figures. Their agreement is excellent. Fig.8c, shows the amplitude
|X(s,t)/Xo|- The crosses are the results of the tracking and the solid line shows eq(4.8). The
relative error near the zeroes of Ai(-—g) is large because the ignored terms can play a role
there, but this is not important for our purpose. In all cases, our analytic formulae show
good agreements with the tracking in the portion of the beam of large blowup, which we are
mostly interested in.

Now, consider the following practical problem: “How large is the maximum amplitude

of the oscillation in the given linac length L and the given pulse length T'?” The behavior of

X {s,t) as a function of s with fixed ¢ is as follows (see Fig.6 and 7 along a vertical line). It is
oscillatory for small s, becoming larger as s increases, and comes into transition region when

Q(s) ~ tAw?. It stops oscillating in the exponential region and rapidly increases. Therefore,

the maximum amplitude occurs at the exit of the linac s = L. The behavior of X(s,t) as a

function of ¢ js different (see Fig.8¢). It increases exponentially for small ¢, takes a maximum

in the transition region t ~ (s)/Aw? and starts oscillating with decreasing amplitude. This

behavior mainly comes from Airy’s function. The maximum occurs at the point close to the

maximum of Airy’s function Ai(—¢); i.e., ¢ = 1.02, Ai ~ 0.536. In practice this value of ¢ is
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not as important as that of Al So, for simplicity we regard that Ai{—¢) takes the maximum |
0.536 at ¢ &~ 0; L.e., at t &~ Q(s)/Aw?.

If the frequency spread Aw is too small or the pulse length is too short, this maximum
(and, therefore, the succeeding damp) does not occur within the given length of the pulse. In
such cases the spread does not cause significant damping of the cumulative beam breakup.

The condition that the maximum occurs within the pulse length is

/11(s)
Aw?‘v T

(4.12)

At ¢ ~ 0 (t ~ /Aw?), the factor in the fourth root in eq(4.8) becomes

. ¢ _ (s)\2/3 .
oy Q(s)/tAw? (mu,») ' (4.13)

Therefore, when {4.12) holds, X(s,t) takes the maximum at s = L and t = (L) /Aw?

/ 0 . . wy 1/ . T
X omaz zo.ssﬁvﬁ%ty(o,—;[wo])[(%) 34wslnh( 49‘4(5))_ (4.14)

The blowup is mainly determined by the factor of hyperbolic sine. .

Aw ~ \;/ %)w (4.15)

so that the maximum takes place at the end of the pulse, the factor sinh(#(l/4Aw) gives
exp(r/ QT /4), which is to be compared with the factor exp(vQ)T) in the absence of the
frequency spread. The improvement is not enough when {17 is'large and we may need more

If the spread is marginal

spread. As one can see from eq(4.14), if the spread is
Aw ~ (L), (4.16)

then the cumulative beam breakup is almost completely suppressed. One sees that the simple
function 1(s) defined in (3.7), especiaily its value at the exit of the linac, tells us not only
the essential feature of the breakup but also the required frequency spread to damp it. In
practice we can often tolerate some blowup and, in such a case, we should evaluate (4.14) to
get the necessary and sufficient frequency spread. Normally, we shall get a value somewhere
between (4.15) and (4.16).

The following simple argument given by R.L.Gluckstern (ref.4) leads to the formula for
the sufficient spread (4.16). We have assumed the uniform distribution of the mode frequen-
cies in the interval {wo — %Aw,wo + %/_'\w). However, if we use the Lorenzian distribution

1 Aw’

7 (w — wo)? + (Aw)? (mo0 < < oo
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the impedance becomes

Z(ip) WO[ 1 1 ]
ip) = -
P 2 lp+ijwo]+e+ Aw'  p—tlwe]+ e+ Aw')’

which is exactly equal to (3.3) with e replaced by € + Aw’. Therefore, one can use the
results in the absence of the spread. In particular, the exponent of the amplitude becomes
—(é:-f-Aw")t—i-\/m. Thus, if we ignore €, the maximum exponent is 1/4Aw’ at t = 0/4Aw".
When Aw’/(} is of order unity, the breakup is totally suppressed. One cannot directly compare
Aw and Aw’ but this simple argument essentially gives the same results as (4.16).

Fig.9 shows the maximum amplitude X,,,, (actually, log;q Xmaz/Xo) as a function of
the frequency spread Aw/0{L). The arrow indicates the location of the marginal value (4.15),
where Aw /27 = 3.24 MHz. The crosses show the results of the tracking. The solid line is the
maximum of X(L,t;), ( = 1,..ns) given by (4.8} and the dashed line is its approximation
(4.14). The latter is valid when (4.12) holds; i.e., to the right of the arrow. One finds that
Xmaz begins to decrease rapidly at the spread (4.15).

The dependence of X,,,, on the number of mode frequencies, nys, is shown in Fig.10,
where the spread is fixed to Aw = 27 x 6 MHz and L = 1000 m. The dashed line is the value
given by the formula (4.14). One sees that even a small value of three gives essentially the
same damping as the infinite number of frequencies. According to the parameters employed
for this plot, the criterion of the required number of frequencies, (4.2), gives ny > 2.

5. The Misalignments of the Cavities

Another source of the excitation of the deflecting mode is the misalignments of the
cavities and focusing magnets. In this section, let us consider the misalignments of the

cavities. The equation of motion can be written as

eItb
T me2

d dz;

= (1) + k(s 2 (s) = Zm-tk o) - a(s)], (1)

where, d.(s) is the displacement of cavities. The Laplace transformation (2.2) leads to

(%) <10 [k - ZHutsr) = 566.0) (52
- where V is defined in (2.27) and S is given by
S(p) = - 12 () | (53)

In these expressions we approximated V by V.
Let us define the Green's function G(s,s;) by

dci (’Y(S) dG) :((s))

+~(s) [k(s)2 ]G( (s1) = &(s — s1) (5.4)
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with the initial condition \
G(s,s1) =0 for. s< s, (5.3)

where § is the Dirac delta function. The solution of {5.2) with the initial condition y(0,p) =
y'(0,p) = O can be written as

y(s,p) = /OS G(s,81)S(s1,p)ds;. (5.6)

As in Section 2, the WKB approximation and the assumption of the strong focusing lead to
the following expression for G(s,s;);

! 5
vV (s) s1)k(s1)

where (s} and H(s) are defined by (2.12) and (2.13).

G(s,81) =

in[w(s) — b(s1) - %V(p)(H(s) ~H))], 67

Therefore, combining the equations (5.3), (5.6), (5.7) and (2.28), we get

S S S(s1,9). 1
(s,t) = %/ apert [ ds, Rt n(v,b—a,bl—EV(p)(H—Hl))
—100+ P,

+i100+p,.
_ g dpeptfsds VPMer iy, -4V () (H-HL))
0 ,

27 _m“Lp NCT N
+iootp.
:—§R/ pilv— wl)[zdl 0 }_Lf T =iV H-H) P (5.8)
V'Yk”]’lkl OH 271 | _iootp. P

Here, the subscript 1 denotes the values at s = s;.

First, consider isolated resonances. The impedance is the one given in (3.3). The integral
over p appearing in (5.8) has already been introduced in Section 3, eq(3.4). We have only to
replace 7(0,p) by 1/p and H(s) by H(s) — H(s,) in the result (3.22);

d ) 0 -0 4 fro—o
m/ t{‘(,[) wl)dcl 1 : ( - 1) e-—-:[w()]‘t-!- (Q—Ql)t. (5.9)
\/"fk’hk1 OH \/2r|wo] ¢

Here 1 and 1; denote (1(s) and 2(s;) defined in (3.6). They contain H and H,, respectively.
Therefore, 8/3H operates on {l. We have ignored £, the damping factor due to the finite

st

quality factor. We made some assumptions when we derived {3.22). One of them, namely
(3.17) with {1(s) replaced by 01 — 1;, is not satisfied here because the integral over s, in {5.9)
requires the information at sy close to s, i.e., f}(s} close to f2(s;). However, when the beam
breakup is significant, we may ignore the contribution of this part because that of the part
s1 ~ 0 is much larger. The effect of the misalignments at s; ~ s has not yet grown up at s.
The partial derivative d/0H gives two terms, one from the { in the fourth root factor and
the other from that in the exponent. When (02(s) — 2(s;))t > 1, the former can be ignored

and we get

.st

gv-vg ./ elWo

Va- nl mc?

) [ e
Yky1k1
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2- (ﬂ - ﬂ])l/"ie—iéwnit—l»\/(‘ﬁ—r)])t. (510)

x —_— - -
2'\/27T[WOJ t
Let us define the “normalized Courant-Snyder invariant” by
2
e(s,t) = (a.rnplitude ofx(s,t)) ~v(s)k(s). (5.11)

Then the expectation value of ¢(s,t) by random errors is given by

/ dsy Y dsy t(,’bq_%)(eIWo)?
et(¥2
wo'2 Vmiky Jo Vzks me?

~1/4 -1/4
% < derdes > ((n - Ql)t) ((a- Qg)i) V-t (5 49)

< €(8.d) >ear=

The subscript 2 denotes the values at s = s3. We assume that there is no correlation between
the misalignment errors of different cavity units. By this assumption, {5.12) can be greatly

simplified as

# { d? IWgh\2 1 SOt
< E(S,t) >Cav: _———1-*——-5/ dﬁ} 6(31) < C(sl] > (e O) 82 (Q-‘*Ql)t’ (5.13)
87 [wa] Y1k mez / /(01— M)t

where, {., which can be a function of s, is the length of a cavity unit aligned independently.

(Rigorously speaking, it is the center-to-center distance between ajacent cavities.}) This inte-
gral states that the misalignments near the injection point are more important than those at

the linac exit by the factor exp /Q(L)T.

Changing the integration variable from s; to 2; = £)(s1), we can easily integrate (5.13),
with the assumption that I, and < d? > are independent of s;

l <d >eIW

8n{wp|? me? / \/(ﬂ—ﬂ
_l < d? > eIWO( 2/T0e)E 1)

8miwal? mc?t

2y (-0t

< €(8,t) >eav=

The second term in the parenthesis can be ignored because of the assumption (3.17). Thus,

2 W,
< €(8,8) >cqv= b < d; > elWo 2V ()t (5.14)

87 |wpl? mcit

we obtain

Note the resonance behavior shown by the factor [wg]. One sees that the breakup by misalign-
ments is also characterized by exp(+/(2t) as in the case of the injection errors. It is interesting

to compare these two effects. As in this section, we can define ¢;,; by

€(5,8)ins = w(s)k(s)(X(s,t))z, - (5.15)

where the amplitude X(s,t) is given by (3.24). For comparison we adopt the initial condition
of the whole beam offset {the upper factor in the curly brackets in (3.24)). Then we have

€(s,t) v < d? > 1, s}t < dz > |, Q(s)t

= = 4 . 5.16
E(S,t),‘nj Xg ’70’60 H(-S) Xg ’Yoko fO ds/'yk ( )
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If v(s)k(s} is constant, then this relation states that the cavity misalignment

V@? ~ number of cavity units X, (5.17)
VL)t

gives nearly the same blowup as the injection error X does.

Fig.11 shows a comparison of (5.14) and the computer tracking, where ten machines
(ten sets of Gaussian random numbers) are simulated. There, log,, €{s,t) (in meter radian)
is plotted against the bunch index for fixed s (=2000m). The adopted parameters are l, = 2m
and \/Fg?d?m; = 50um, and the rests are the same as given in Section 3. The crosses are
the results of the tracking and the dashed line is their average. The solid line shows the
formula (5.14). The agreement between the solid and dashed lines is excellent except for
small t, where the assumption (3.17) fails. Also, one finds a large statistical fluctuation in the
results of the tracking. This can be explained as follows. The displacement z(s,t) is a sum
of many Gaussian random numbers and, therefore, ¢(s,t) x (z(s,t))* obeys an exponential
distribution exp(—¢/ < ¢ >). Hence, if one wants to be safe, one should multiply (5.14) by

some factor, say three (e~ = 1/20), to get a probable maximum value of €(s,t).

Next, let us take into account the frequency spread. To do so, we have only to use
in eq(5.8) the impedance given in (4.3). The integral over p has already been evaluated in
Appendix C. The only changes here are that the factor 1/p in (5.8) is replaced by i/|wq] and
the function H(s) by H(s) — H(s1). Thus, we obtain

s dS] f oy _ BIWO o) 7
e [ et (g, Ve O T
#le) /0 VAR ( e aﬂ)lwoi

-0y /2000y Q- v
g Smh(f{ Aw ) t {(me — - Q])t] Al(=¢(1 = 1)), (5.18)
where ¢(1 — §1,) is given by (4.9) with Q(s) replaced with 1 — ;.

By the same assumption of the randomness as before, we can evaluate the expectation

of the ‘normalized Courant-Snyder invariant’ as

<o) peam [ LHZI 2 (AT AIBYY T sag)

o Tik1 ([wojt)? \ me? an
where a 0 »
£(0,6) = V20t sinh = [ (mi()z)- m} Ai(—c(0)). (5.20)

We again assume that {, and < d? > are independent of s. Then, by changing the integration

variable from s; to ¥/ = 1 — 1, we obtain

(5.21)

4l < d® > eJWy [ AF(Y . 1)\ 2
< €(s,1) >oap= — c > eWo dﬂ’(_f( ’)).

(lwolt)?  me? Jo on
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Consider the two cases ¢(2) < —1 (exponential-like region) and ¢(£1) > 1 (oscillatory
region). The integration for ¢(f1} in the transition region can hardly be done but the two
asymptotic cases above are sufficient for us. The integration path of (5.21) in the (£.Q2’) plane
shown in Fig.6 starts at ) = 0, goes up vertically and ends at )’ = (2(s). Hence, when the
upper limit 0(s) is in the exponential-like region, the path also goes through the oscillatory
region. As one can see from Fig.7, however, its contribution is extremely small. Therefore, if
(s) is well inside the exponential-like region, we may use the asymptotic form of Ai(—¢('))
for ¢(Q¥) <« —1, (D.5). Thus, we get

1/4 1 A2
Q1) = %2_\?2? exp[%(%sin_l t("’;,) N (m))] (5.22)

We have approximated ({2t —t2 Aw?)Y/4 by ((1't)!/4 and sinh(r /4 Aw) by exp(7 (' /4 Aw)/2.
The derivative of the factor (12't)1/* with respect to (1’ is much smaller than that of the

exponent and we have

(;9(}]")2 = 32;/(22;)2 (sirf1 \/Kzl—%?)zexp[j; sin™? \/ f('?;))z + \/m]

The region near the upper limit 2" = ((s) dominates in the integral. Therefore, we may
expand the exponent up to the first order term in 1; = Q(s) — Q' and put ' = Ofs)

elsewhere. Thus, we have

(ﬁf;)z = ———\/—Q—’E——(sin_1 t((jw)z)zexp[ﬂLsin—1 t———(?;j)z + \/_ﬂ't——m]

o 327 (Aw)? 194 Aw
X —— .
exp|—— ~sin 0

Then the integral in (5.21) can be estimated by

Q oo
[ (55) = [ e = [ em ()"

whence. we obtain, for the exponential-like region

le < d?> eIWo VOt ., [t{Aw)?

t cav — ;
< elst) > 87 (lwot)? me? Aw s 19
/ A 0
X exp[-{a sin” ) + 4/t — (tAw} } (t < (_A:F) (5.23)

This expression agrees with (5.14) in the limit of no frequency spread Aw — 0.

Next, consider the case when (¢,02(s)) is in the oscillatory region. In this case, we can

use the asymptotic form of Ai(—¢) for ¢ > 1, (D.6) and we have

/4 ! ’ w
flv,t) = (@) exp il sin[% (Mﬁ—cos}f t(";‘z,)z +4/ (tAw)? — ﬂ’t) + ﬂ (5.24)

AY 27 4 Aw Aw
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The derivative of (£2t)!/4 can be ignored but those of the exponent and the argument of sine
cannot. After differentiation and taking the square, we approximate sin® and cos? by their
average value 1/2 and neglect the cross term sincos. {In practice, the number of oscillation

may not be large so that this approximation is very crude.) Then, we obtain

YYRY)
(20" = 17 (comh 2]y 7

In the same manner as in the previous case, we have

f2{s) af Vi 2 t{Aw)? 2 0
() S (ot Ty 20
/O (anf soan [ (om0 ) e s

Thus, we obtain, for the oscillatory region,

I. < d% > eIlW, vVt 2 t(Aw)?y2 7
< €(s,1 = < 1+ {2 cosh™! ]
() > e0v= G007 me? Aw [ * (wws 0 ) Jexp 24w
t> ——). 5.25
(t > (Aw.)2) (5.25)

The formulae (5.23) and (5.25), which are valid in different regions, disagree at the
transition point t = 1/(Aw)? by a factor two. This discrepancy of a factor two is beyond
the accuracy of our formulae. In practice, however, this is not serious. We may use either
formula up to the transition point.

As one can see from these formulae, < €(s,t) >.4, is a rapidly increasing function of
tint < /Aw? and slowly decreasing in the region t > 1/Aw?. As a function of s, it
is monotonically increasing. Thus, the maximum takes place at the linac exit and near
t &~ 0/Aw? (if this is within the pulse length T). The maximum value is given by (5.25),
putting ¢ = 1/Aw?;

I, < d? > elWy QL) (L)

(L)
8ol me? (Aw)? ¥ 2Aw

(a0)?)

(T > (5.26)

< € >max,cav:

If T < Q(L)/Aw?, the maximum is at the end of the pulse and is given by (5.23) with
s=Land{=T. In the former case, i.e., when the frequency spread Aw is large enough to
satisfy (4.12), one finds that the frequency spread can cause damping of the beam breakup
due to the cavity misalignments as it can in the case of the injection errors. The formulae
{5.23) and (5.25) are compared with the tracking in Fig.12. The frequency spread of 6 MHz
is adopted. Other parameters and the captions are the same as in Fig.11. The two solid
lines represent (5.23) and (5.25). This time, the agreement is not very good because of
the crude approximations employed to get the analytic formulae. An oscillatory behavior is
seen in the tracking but it is not expressed by the analytic formulae because we have put

. 2 . . .
sin® ~ cos® ~ 1/2 and ignored the cross term. Moreover. our tracking parameters are not
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far from the transition region. Nevertheless. our formulae still describe the average behavior

quite well.

6. The Misalignments of the Focusing Elements.

The misalignments of the focusing magnets can also enhance the cumulative beam
breakup. The effects of other dipole fields on the axis such as the steering magnets can
be treated in the same manner. The equation of motion can be written as

i(q( )@i) + y(s)k(s)?z;(s) = ety ZW = te)zi(s) + v(s)g(s). (6.1)

ds ds me?

Here, g(s) is the orbital curvature due to the misalignments of quadrupole magnets and other
dipole fields. By the Laplace transformation we get the same equation as (5.2) but, now S is

s(9) = 2g(e) (6.2)

given by

Therefore, instead of (5.8) we get

+ro0+pe ‘
=0y 0 L [T pevia-n g g

/ \/’Yk’hkl N9 ox —ico+p. p’
The subscript 1 denotes the values at s = s;, as in the previous section. This is valid for
arbitrary g(s) but here we shall consider random errors only. We do not study the problem
of the orbit correction. (This can also be taken into account by g(s) but it’s not random.)

First, consider isolated resonances. The integral over p in (6.3) can be carried out with

the reﬁult

z(s,t):v-ﬂ?[s ds, Gili—vy)_ Vig1 (ﬂ—ﬂl)1/“6_1-[“;(,]1:4,»,/(9—91):_ (6.4)
o VYkvik 2/ 27w t3

The expectation value of €(s,t) by random errors is given by

1 ¢ dsy / 2 i{da—vy)
< t) >q= AR ”
f(S; ) q 87{-!“-)0]2 o \/’flkl o \/’YQ]‘CQE TRee
- 1/4 - 1/4
X (Q tsﬂ]) (ﬂ tsﬂz) eV (-ttrVia-a.)t (6.5)

Assuming no correlation between the misalignment errors of different quadupole magnets, we
get
< €s,t) >g= ;/ dsl g1 < 62 > f 2V (-t (6.6)
8r|wo)? fo k
where n, is the number of the quadrupole magnets in unit length and f, is the kick angle
by a misaligned magnet. If the focusing structure is FODO (one quad in a half cell) and the

phase advance per cell is p .y, we have

ce 2k
0, =~ akd, sin Zeetl 2kd, and ng & , (6.7)
#cel! 2 Keell
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where d, is the displacement of the quadrupole magnets. Then, eq(6.6) can be written as
1 s k? TR
< €(s,t) >4= ————2/ dsy < di > 1%’M\/(ﬂ — )t 2V 8-t (6.8)
W([wo}t) 0 Heell
For an arbitrarily given k(s), this expression must be numerically integrated, but in order to

have a rough estimate we assume that the focussing strength varies as k « v~ %; i.e.,

Ko = ko (D)™ 0 ax), (6.9)

The constant optics and the constant field gradient are given by @ = 0 and 1, respectively.
The actual design will be somewhere in between. We shall call an optic with small & (close
to zero} ‘hard’ optic and that with large o (close to unity) ‘soft’. The hard optic is the one
where the focusing is kept strong up to high energy.

Further, we assume that g..u, < dg > and the acceleration rate dv/ds are constant.
Then, after some manipulation, we get

< d* > ('}foko)z
t) >q=—
< €(s,t) >4 m{lwolt)? peenr(dry/ds)

x K3(8) /1 dé(1 + a.'cl(s)f)(2—3“)/“\/ﬂ(.;)t(1 - E)ez\/”(s)*(lmﬁ)
0

_ <di> (qoko)?
- 7{[wolt)? weenr(dy/ds)

VIO, () [1+ (3a - (6.10)

K1 =1
2) L]

VI
with

1(8) oy \ a—1 gy %[(7/70]"‘ - 1] (0<a<l)
Ki(s) = (—) — = { } (6.11)
~ Yo o log(~/v0) (e = 0)

where we have assumed (3.17). The last factor in the square brackets in {6.10) comes from
a crude approximation k3 < /Q(s)t, but it does not give a big error even for k3 ~ 1/Q1(s)t.
For a large value of k;/+/12(s)t, one has to integrate (6.8) numerically. However, one must
be careful if the last factor is negative or has a very small positive value, which can happen

0

when a < 2/3. In such a case the major contribution in (6.8) does not come from s; ~ 0
but some large value of s;. Then, we cannot use (6.4}, which is valid only for large 0 ~ 1,
and our formula (6.10) fails. Physically speaking, the situation is as follows. When the optic
is hard, the kick angle by a given misalignment dq is nearly the same in the low and high
energy part of the linac but the high energy part contributes to < ¢ >4 more than the low
energy part because of the adiabatic damping factor. Thus, (6.10) is valid when

K:I(S)

1>(30 — 2) —mie > — 1. (6.12)

~ Q(s)t

In the absence of the wake or, equivalently, in the limit of low current, the misalignments
of quads give rise to the orbit distortion

i dS] ; .
oa(s) = —R | ————¢'(¥¥1) : 6.13
Zcod(S) /o —_vk71k1e 1y19(51) (6.13)
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The same assumptions as before give

& - J2 g
Tg™Y1 B<ds > -

< €(8) >q,cod = i < 9:;’ >dsy = —2— | kimidsy
o ki Heell 0

8 < d7 > (yoko)*

- Heet(d/ds) % (s) (6.14)
with 1 .
"2(s) = 55 [(%) - 1}- (6.15)

Comparing (6.10) and (6.14), we have

1 < e€fs,t) >q exp(Z\/ﬂ—(SW) k1(s)

< f(s’t) >gq,cod B SW(!wo}t)z ;{2(5)’ (6'16)

where we have ignored the correction factor in (6.10). When the optic is hard, the high energy

part contributes to < € >4 o4 very much and, therefore, the ratio «£; /2 becomes small.

Now, turn to the problem of the frequency spread. Instead of {6.4), we have

m/ T T IR - ), (6.17)

where f is defined in (5.20). This leads to the expectation of the ‘normalized Courant-Snyder

. 8 s k*y < d% > _ 2
< e(s,8) >o= W[o ds1 [#L s - a0,0]" (6.18)

Changing the integration variable from s; to §13, by using (3.6}, and applying the explicit

St

invariant’

form of the optics (6.9), we get

e(5,8) >q= Sd:d;;:::O(igZ?)éilﬁ()dp (70)23 Lﬂn-—nl¢ﬂ2. (6.19)

When (t,0(s)) is in the exponential-like region, we may use the asymptotic form of f, (5.22).
The same method which was employved in order to derive (5.23) gives

< d2 > ko’yo Q s) 1 /
< o) 2= [vuo]t) peeri(dy/ds) exp[ Aw ﬂ + VA - (14s)? ]
, AW)2 '61(3) 0(s)
x nl(s][ o (s)t] (t < (Aw)z)'(ﬁ‘m)

This coincides with (6.10) in the limit of Aw — 0. The last factor must be treated in the

same way as before; namely, if it is negative, this formula fails.
Similarly, when (¢,0(s)) is in the oscillatory region, we get, by using (5.24),

2 < df > kg3 9 (s)
ex
7([wot)? et {dy/ ds) Y.

< €(s,t) > =
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. 7 | (s) ki(s) 177 (s)
< m](s)bv Ay * a2 NI (t> o) (62)

where we have used the approximation sin® ~ 1/2 in f2(1 — 02;,t). Again, one finds the
discrepancy between (6.20) and (6.21) by a factor two at t = 1/ Aw? but it is not important.
Comparing (6.20) and (6.21), one finds that the maximum takes place around t ~ 2/Aw?, if
this is within the given bunch length. The maximum value is

2<d; > kivg (Aw)t  wQ(L)

< efsit) >q = miwol2pcetr (dy/ds) Q(L)? exp 2Aw
x k(L) g + (3a— 2)5%‘—;3 TS &(j))z). (6.22)

If the spread is small so that (4.12) is not satisfied, the maximum occurs at the end of the
pulse and its value is given (6.20) with t = T and s = L. One again finds the same factor
exp(nQ(L)/2Aw) under the sufficient frequency spread as in the case of the injection errors,
(4.14), and of the cavity misalignments, (5.26).

7. Summary

We have investigated the problem of cumulative beam breakup in a way suitable for
large-scale linacs and have derived several formulae. The solutionis to the problem of the
initial beam offset were given in Section 3 and 4. If there is only one deflecting mode, the
behavior of the beam is described by eq(3.22) with the initial condition {2.16) or (2.17).
Even if there are several modes, the solution is a superposition of (3.22), provided the mode
frequencies are well separated from each other so as to satisfy (3.12) with (3.14).

When several mode frequencies are concentrated within a narrow frequency band Aw,
the beam behavior is represented by (4.7). If Aw is large enough to satisfy (4.12), this
frequency spread can cause considerable damping of the breakup phenomena. The maximum
amplitude in such a case is given by (4.14).

For the problem of the random misalignments, we have expressed the results in terms of
the expectation of the ‘normalized Courant-Snyder invariant’ defined in {5.11). The misalign-
ments of the cavities are discussed in Section 5. If only one mode is responsible, the solution
is given by (5.14). The effect of the frequency spread is expressed by (5.23) and (5.25). If the
frequency spread is so large that eq(4.12) is fulfilled, the maximum Courant-Snyder invariant
shows damping, as expressed by (5.26).

Random misalignments of the quadrupole magnets are treated in Section 7. The final
formula for a single mode case is given in {6.10) and those for the frequency spread in (6.20)
and (6.21). The maximum in the presence of the spread is given by (6.22). These formulae
are valid when (6.12) is satisfied.

In all cases above, we found that the function 1(s) defined by (3.6}, in particular its
value at the exit of the linac {1(L), plays an essential role. The amplitude in the absence of
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frequency spread is characterized by the factor exp(\/ﬁ—t), { being the time delay from the head
of the pulse. The critical frequency spread above which the damping is significant can also
be expressed by ((s) as shown in (4.12). Above this critical spread, the amplitude blowup
is characterized by the factor exp(r()(L)/4Aw). It turned out that frequency spread is a
very poweful cure for cumulative beam breakup, although it does not work for single-bunch

blowup.
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Appendix A. Single Bunch Blowup

In this appendix we apply the same method as in the text to the problem of the transverse
blowup of a single bunch in order to demonstrate the usefulness of the method. The result
has already been given by A.Chao, B.Richter and C.Yao (ref.5).

In the case of the single bunch, we don’t need the subtle interpretation of [wo] and we

can start with the equation of motion of the continuous beam;

%(7(8) i;':) ~ y(s)k(s)?z(s.t) = ﬁ% /0 Wt —t')z(s,t")dt’, (A1)

where z{s,t) is the transverse displacement of the portion of the bunch specified by ¢t and
the location s. We define t = O at the head of the bunch. Eq(A.1} is valid for uniform
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charge distribution in the bunch with the constant current I. In contrast to the case of the

multi-bunch we can define the Laplace transform of z(s,t) in the continuos form;

y(s,p) = /:O dt e Pz(s,t) (Rp > p.). (A.2)

The inverse transformation is

z(s,t) = R R dp e y(s, p). (A-3)
’ 27y o0y

We get the same differential equation of y(s,p) as (2.7) with V replaced with V in (2.27),
defining the impedance Z(zp) by the usual expression (2.23). The initial condition of y(s, p)

15
oo

o |
y(0,p) = | dte P'z(0,t),  '(0,p) = / dte”"'z'(0,1), (A.4)
0 0

instead of (2.15). The solution is given by (2.28);

_ | ~Noka _eiv(s)
z(s,t) —\{ (5)K( )?R .

~ s 2m

+ico+p.
/ ﬁ(O,p)e‘P(P) (A.5)

—100+p..
with p(p) defined by (2.26) and (2.27).

We assume that the bunch is so short that the wake potential W(t) can be approximated
within the bunch by

Wit) = Wit (t >0,W; > 0) (A.6)
which gives
W .
Z(ip) = uz‘;-;. (A.7)

,CI.H(S)W1 1 R C
W(P)=Pt*1W5§:Pt—ﬁﬁ, (A.8)
where TH (YW
= ng ! (A.9)
There are three saddle points;
oN1/3 CN1/3 C\1/3 _
Pl = (?) e_ﬂ-t/ca p2 - (T) e+1”/23 pu = (-t_) 8_21“/33 (A]'O)

of which p; dominates at large t. We assume that the whole bunch is offset by X at the
injection. This leads to the initial condition

Xo
y(0,p) = et (A.11)
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Since

2 - - '
SO(PI) — 5Cl/3t2/ue—rr1/6 and (p”(Pl) _ 3t4/30w1/3e7r:./6= (A.12)
we get
o 0.p)e?Pldp nv — [ LT, _ 2]
xR y(0.p)e”Pdp = — o y(0,pa) exp | (p1) + 59" (p1){p — p1)" |dp
Xo ,_ _ 3 ot e
— ¢ 1/30 I/Gexp(—cl‘/3t2/3€ wi/6 + _)
v B 2 1277
(A.13)
where we approximated y(0,p) by y{(0,p;). Then we obtain from (A.5)
Yoko  Xo  _is6 V3 s ( T3, 3
(s, t) = 4| — s — + - == ) A.14
(s,t) TORE Vor" exp(—=n""") cos{¥(s) + 15— o7 (A.14)
where TH(S\W
n(s,t) = Ct? = f——%tz. (A.15)

This result exactly coincides with that of ref.5.

The present method is very flexible and can be applied to various cases. For example,

one can estimate the effect of the wake
W(t) = Wit(1 + wat), (A.16)

if w, term is not as large as the first term in the given bunch length. Instead of (A.14) we

obtain, up to the order of w2,

){— —
ko X 3 /e 3 3v3 7
I(S,t) :vﬂfo ¢ 0 —1/6exp inlfu + (1 _ \—'/:77_1/3)'!1)2t _ ( ;/_n—l/3+ _n~2/3)w§t2:|

"]lk \fﬁg.’n 4 2 2

T 3 43 1 _ys 3 _1/3 73 —2/3y, 2 2]
X b e - - t— (- 4 t A.17
cos [w(s) + 5 477 27] wo (4?} 3 n Jws ( )

This may be useful for the short-wavelength linac for future linear colliders with a relatively
long bunch length to relax the problem of the beamstrahlung. One disadvantage of the
present method may be that it cannot handle an arbitrary charge distribution in the bunch.

Appendix B. Steady State

As can be seen in (3.22), our solution damps away in the limit ¢ — co due to the factor
e~ %t coming from the quality factor of the mode. However, if the whole beam is offset at
the injection, this result is obviously incorrect. This is because we have ignored the possible
singularity of §(0, p) in the integral of (3.8). For such a limiting value of ¢, all the saddle points
in Fig.1. are to the left of the imaginary axis and their contribution dies away as { — oo.
On the other hand #(0,p) has poles, in general, on the imaginary axis. Their contribution
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i~ iinite at t - oo, We are not much interested in this case hbecause the pulse length Jonger
than the filling time does not lead to the saving of the electricity. However. it can still be

ntersting in the case of CW linear colliders using superconducting cavities.

For exarnple, if the beam offset at the injection is modulated as

7;{0) = X cos{lwin |ty = din). I:;[O} X s lwant, - 0h,). (B.1)
their Laplace transform (0, p), defined in (2.15) and {2.22}. is
. City
= e - 9
y(U,p) Z 1 — e (PFifwiniin (B*‘)
X’l dad!
_r"_e*z'dttn) [B.B)

with
C 1 (}( =idh
o T — e G
- 2 O k:(;

1wy, nobeing any integer. In practice, we

The poles of y(0, p) are located at p = =7lw,, 4

rmay ignore the terms with n =# 0 and put

p{0.p) = N — E
y{0.p) zf””' il

(B.4)

(When w,, ;ws is near 1/2, i.e., near the midway between two resonances. this approximation
gives wrong results by about factor two. If one needs more accurate values. one should take
up te n 1 or — 1.} The contribution of these poles can easily be evaluated as
] +roeT . - Lol
] e lap = Y cent=in (B:3)
27TT —"LOO':“P:' i
3- Q & :\'.A/‘U‘
el 1 ag

- § Caexp Hiluialt = 5o O

where we have used (3.9). Let us ignore the contribution of the deflecting mode to the phase

of the oscijlation and retain the contribution to the amplitude only. Then [B.6) becomes

o s nllen, 2 ]
e P - (w17

2—_' Cxexp [ﬂgw"n:ﬁ T
s 00 0). Thus, z(s. 1) in (2.28)

Therefore. at large s, the term C_{C. ) blows up if w.iwyy
is given by
;";’)‘l}ko iy R)IIW' ]t) Q(S)Ef [P UL.“-)- 1
{s,t) = 4 §R(C:e (W) F|wen )exp{ P el
\‘I Tk v (52 - (w;m - iiﬂ‘f]‘)" (_" T Iy )“)J
(B.7)
0 0)

where the upper (lower) sign is to be taken for .wiiw,,!
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It is easy to find the steady state at t — oc even in the presence of the frequency spread.
We have only to use the impedance {4.3} for p{+i|w;,]) in (B.5). We have

f :
Yoko . L is)
i = 4+ i —
z(s,t) \(f Tk S?Z:E:Ci exp{nf;(s) + fjwint A
.o ‘ -‘; i l o . _ . l
X [lo :H.!wmf + ° 1.(1,“01 i ?Aw) + log Ii.[me i Z.([wo] a wa)] } (B.8)
Tilwin] + € + 1{jwo] — 5 Aw) +ilwin] + € — 1{[wo] — 3 Aw)

- Q(s) . 4(1&)6{‘00]1(&’:'11} ;
A oo o 10) (- ol = 3a)

The sign convention is the same as in (B.7). We have ignored the contribution of the wake
to the oscillation phase. It is easy to see that this agrees with (B.7) in the limit of Aw — 0.
This expression is valid when w;, does not resonate with the cavity; i.e., [win] is not in the
frequency band ([wg] — Aw/2,[we] + Aw/2). (Otherwise, the pole of §(0,p) is close to the
branch cut of (p) and we cannot simply extract the contribution of the pole.)

Appendix C. Integration of (4.5)

In this appendix we evaluate the integral F{s,t) defined in (4.5);

+ioo+p. ; LA
F(svt) = L/ exp [pt + ﬂ log prey z([wO] - ? w)]dpa (Cl)
271 J_iootp. 41w p+e+i(|wo) — 3 4w)

where the integration path is to the right of all the singularities of the integrand. Rewriting
p. + €+ t[wo] by pl, we can simplify this expression as

0 '+ LAw
logp Z

F(s,t) = _ .
(5,1) vl

e—tt—t[wa]t /+ioo+p:_

2w

exp [p't + Jdp'. (C.2)

—i00+p!,
There is a branch cut on the imaginary axis between *%Aw and %Aw and the integration
path runs on the right of the imaginary axis. Since the integrand is exponentially small for
Rp’ — —oo, we can close the path by adding the left hemi-circle of infinite radius, as is shown
in Fig.13 by the dashed line. It can be deformed so as to enclose the branch cut as shown
by the solid line. The imaginary part of the logarithm is 7 (—=) on the right (left) of the

imaginary axis. Hence, we get

‘“Et—iiwo]‘t +iAW/2 ﬂ I’+ '!"A(-L’i " .
F(S,t) i—-—-—-—/ exp [p’t L —_— logju_i] (84‘;““’ — e_4Anw )dp’

—et—t|wol|t 0 )
= E—-—Aw Sinh(_ﬂ'“*”') [ ’ e_zq)(Z)dzv
27 4Aw/ J_4
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with

a 1 -z b
Plz)= - log - -z C.A4
()= 1og ) 7 (1)
and o
0 = -~ b jonil f_ﬁu\,’ {ﬂ.b P 0)
Aw

We shall not employ the saddle point method here because of the reason to be explained

later, but it is still suggestive. The saddle points, i.e., zeroes of ®'(z). are given hy

2. —-_t\/l - %. (C.5)

When a;b -7 1. they are on the real axis and become closer 10 each other as a/b increases.
They coalesce when a/b = 1 and split again to the positive and negative imaginary axis for
a’'b > 1. The simplest function which shows a similar hehavoir is

w(s) - (C.6)

23] e
fn
o
™

where ¢ and ¢ are constants to be determined later. The zeroes of WI(S) are S == 44/¢,
which are real (pure imaginary} for ¢ > 0 {¢ < 0). l.et us change the integration variable
from z to & defining the latter by ®(z) = W(&}. We fix ¢ and eso that £ &, when z = z..

This can be achieved by ¢ == 0 and

b 1

—lnm - by I . C.7
b2V b (1)

or. more definitely.

3 . ey 1273
¢ =+ [4 (“acosh_' V’ — + b ab)] (a < B)
> ¢ - (C.8)
- 3 RPN | Ih ;".6. h'f =13 b
= — h(.acos \/Q— \oab - ” {a = b).
As a function of a and b, ¢ satisfies
¢ 1 b
22 = cosh ] \f ! (e - )
da LAY n _
; (C.9)
1 0 fr ( .
Tt = ; 0
2.0V :

and o
dc 1 b a
A .10
ob 2\ b (€10

These expressions look singular but in truth ¢ is smooth at o - &
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Now, the relation ®(z) = ¥(£), or

1+ b &
E]og z——zzf——Ff (C-ll)

determines £ definitely. The points z = 0,2, %1 correspond to £ = 0, £., + o0, respectively.

The function z(¢) is smooth in —oc < £ < oo and monotonically increasing.

Thus, the integral in {C.3) becomes

/1 e 1) = /+me_iw(f)§5d6 = /;mexp[—i(f?’/?» —¢£) f-ijdﬁ. (C.12)
-1 —oa d& ) — o0 v dE

This expression is exact. All the complicated properties are pushed into dz/d¢, which is
nevertheless smooth. Since only the vicinity of the saddle points £+ contributes to the
integral, we expand dz/d£ around these points. At the saddle points, we obtain

& =V Gt c13)

Therefore, using the integral representation of Airy’s function (see Appendix.D, eq(D.3}}, we

get
1 ! —143{2:) _ l% g 1/4 . 1 1
2n )¢ #T \/T(b(b - a)) A=)+ 0. 2] (C.14)

Whence, the integral (C.1} is given by

—et—tiw : 7l /Eﬁ ¢ 1/4 . 1 Aw
F(s’t) = g t—if n]fS}.nh(m)‘V -t— {m} {AI(-S‘) + O(m, -ﬁ)], (615)

with ¢ given by (C.8) or {4.9) in the text.

For large |¢| there are asymptotic forms of Airy’s function which are given in Appendix
D, eqs(D.5) and (D.6). They lead to more transparent forms of the solution as given in the
text, (4.10) and (4.11). Without the help of Airy’s integral, we can obtain these asymptotic
formulae directly by applying the saddle point method in the integral (C.1). However, as
one finds from the fact that egs(4.10) and (4.11) contain 0 — t(Aw)? in the denominator,
these formulae cannot be used in the region ! — t(Aw)? ~ 0; i.e, ¢ ~ 0. (This zero of
‘the denominator is not cancelled by the numerator in contrast to (C.15).) In fact, ©"(p1)
vanishes there and the saddle point method fails. Nevertheless, this region is the most
important because the maximum amplitude occurs there. This is the reason that we did not

employ the saddle point method in this appendix.

Appendix D. Airy’s Function

We summarize some useful formulae for the Airy’s function Ai{—¢). The most formulae

are taken from ref.6. See it for detail.
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The second order linear differential equation
d* f
dg?

has two independent solutions, which are oscillatory for ¢ > 0 and exponential for ¢ < 0.

+¢f=0 (D.1)

(This is easily seen qualitatively by comparing df/d¢? + const. x f = 0.) The one which
decays exponentially as ¢ — —oo is denoted by Ai(—¢). (We changed the sign of the argument
for our purpose.} It is plotted in Fig.14. It can be expressed by the Bessel functions of order

one third as

I

/e 2 2
N?[Jl/a(gs"s/z)+J—1/3(§S‘3/2) (¢ > 0)

1 “_‘g 2‘ 3
B el YN EANC .
V3 K]/s(gwi ) (¢ <0)

As one can see from the differential equation, Ai(—¢) is an entire function, although eq(D.2)

Ai(-¢)
(D.2)

looks ugly. It has an integral representation, called Airy’s integral;
1 [t t2 1 [ 48
A=) = 5 [ e[S —ja= 1 [ oG -mdt (co<g<w). D)
0

27 J_ T 3

The Taylor expansion at the origin is

. 1 k[T +1/3) hvrya an , LE+2/3) xio/a akes
—) = A el Wiy ) il AT
A=) = o757 k;( Y [I‘(3k+1)3 S TEE+2) ¢ ]

- % )3 r}?,ﬁ) Sin(%)n?“/%“‘l ic| < o0. (D.4)

The asymptotic forms for |[¢| — oo are

) 1 _ 2 2 -

Ai(=0) = 5 2 (-0) P exp[-3(-0F] x (14 O(7/) = 7 < arg(-) < = (D3

Ly (2T 372 _2 2
= \/T?g [sm(3§- +Z)+O(\g\ )] g7 < arg¢ < o (D.8)

The value at the origin is
32/3 dAi(—¢) 3-1/3

i = = (.3550 d —_— = = 0. D.7
Al(0) 1(2/3) an [ de L:o T(/s) = 0288 (D-7)

There are infinite number of zeroes of Ai(—¢)} on the positive real axis. The first few are
¢ =2.338, 4.088, 5.521,.... (D 8)
and the n-th zero for large n is given by
o = [ (4n — 1)+ O(n~47). (D.9)
The maximum of Ai(—¢) on the real axis is

Ai(—¢) = 0.5357,  at ¢ = 1.019. (D.10)
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Fig.1 The singularities (circles) and the saddle points (crosses) of the integrand of eq(3.8)

- in the complex p-plane.
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Fig.2 Beam breakup in the absence of the frequency spread. Plotted is z;(s)/Xo by the
tracking (2a) and by the formula (3.22) (2b}) as a function of the bunch index j. At

s=200m. Other parameters are given in Section 3.



log.0 X (s,1)/Xo

bunch index j

Fig.3 The growth of the oscillation amplitude in the absence of the frequency spread.
Here, log,o(X(s,%)/Xo) is plotted as a function of ¢ for. some fixed values of s. The

crosses and the solid lines are according to the tracking and the formula (3.23),

respectively.

log,o X (s,1)/ Xo

s(m)

T
1000 2(}00

Fig.4 The same as in Fig.3 but as a function of s for some fixed ¢t (bunch index).
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Fig.5 The resonance between the mode frequency and the bunch arrival frequency in the
absence of the frequency spread. The horizontal axis is [wo]/ws and the vartical
log,0(X (s,t})/Xo) {s = 1000m, 50-th bunch). Eq(2.16) (whole beam offset) is used

. as the initial condition.
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Fig.6 The relation between fI(s), t and ¢. The horizontal axis is {Aw and the vertical
Q1(s)/Aw. The dotted lines are the contours of constant ¢. The solid line and the

dashed lines are the maximum and zeroes of Ai(—¢).
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Fig.7 The amplitude {X{s,t)/Xo| as a function of s and t, by the tracking {7a) and the

formula {4.8) (7b) in the presence of a frequency spread. The s-axis is scaled linear

in Q(s).
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X(s,t)/ Xo
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Fig.8 The behavior of the beam as a function of ¢ (bunch index j) for fixed s {1000m) in
the presence of a frequency spread. Fig.8a and 8b show z(s,t)/X, by the tracking
and the formula (4.7), respectively. Fig.8c is the amplitude log;o(X(s,t)/ X0} -
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0.10 a.

Fig.9 The maximum amplitude X,.,./X0o as a function of the frequency spread Aw
(Xrmar = MaXocs<L,0<t<T X(8,t)). The crosses shc;w the traking results. The
solid line is the maximum of the formula {4.8) and the dotted line is the simplified
formula (4.14). The location where (4.15) holds is indicated by an arrow. Eq(4.14)

applies under the condition {4.12); i.e., to the right of the arrow.

/Xo

loglo Xma.z
1

ng i0
Fig.10 The dependence of Xma: on the number of mode frequencies ny. The total spread

is Aw/27 = 6.0MHz. The vertical axis is log, o Xmaz/Xo-
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Fig.11 The misalignment effect in the absence of the frequency spread. The normalized
Courant-Snyder invariant log,, €(s,¢) (in meter radian) is plotted against the bunch
index for fixed s (=2000m). The crosses are the results of the tracking for ten
different sets of random numbers and the dashed line is their average. The solid line

shows the formula (5.14).
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Fig.12 The misalignment effect in the presence of the frequency spread of 6MHz. The solid

line on the left representse the formula (5.23) and that on the right (5.25}. Others

are the same as in Fig.11.
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Fig.14 Airy’s function Ai(—¢).
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