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Abstract

Some recent non-perturbative investigations of the lattice-regularized SU(2)
Higgs model with a scalar doublet field are reviewed.

The lattice regularization makes possible to define and study quantum field theories non-
perturbatively. The main emphasis in recent years’ numerical Monte Carlo investigations
was put on quantum chromodynamics or on related gauge models with only fermionic mat-
ter fields. The obvious motivation is the basic property of asymptotic freedom, which im-
plies strongly interacting infrared physics and hence an immediate need for non-perturbative
methods. The necessity of non-perturbative investigations in the standard SU(2)QU(1) elec-
troweak model is not so obvious. Although the SU(2) gauge coupling is also asymptotically
free, the Higgs mechanism cuts off the low energy growth of the coupling at a scale where
it is still rather weak. The U{1) gauge coupling and the scalar self-coupling in the Higgs
sector are not asymptotically free, therefore have a tendency to be weak in the infrared. The
electromagnetic U(1) coupling is, indeed, known to be weak at low energies. However, the
Higgs sector 1s not yet known phenomenologically, therefore it can, in principle, be a source
of non-perturbative effects. The question of the large cut-off behaviour of non-asymptotically
free couplings is always non-perturbative. These two latter points make, in my opinion, the
non-perturbative study of the electroweak sector interesting (perhaps also unavoidable).

For the question of the large cut-off (or small lattice spacing) behaviour numerical Monte
Carlo calculations are not very well suited: not even the best existing computer is able to
treat correlation lengths much more than 10 lattice units. A reliable study of four-dimensional
gauge field systems with correlation lengths in the order of 100 lattice spacings seems to be still
far away. Nevertheless, there are interesting unsolved problems in the standard electroweak
model which can be studies with present computers:

e The simplest model for a strongly interacting Higgs sector is the standard Higgs model
[1] even if it implies a relatively low cut-off.

e The phase transition between the confining- and Higgs-phase is, both at zero and non-
zero temperatures, presumably a non-perturbative phenomenon.

*Lecture given at the 1986 Brookhaven International Symposium on Lattice Gauge Theory
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» The previous two points imply that in the standard Higgs sector there is an upper and
a Jower limit for the Higgs to W-mass ratio Bgw = mpg/mw. The precise value of R}
and B2 can presumably be obtained only by combining analytical and numerical work

in the lattice regularization framework.

» There i1s a confining (”composite model”) interpretation of the standard electroweak
model [2], which is not yet ruled out by experiment. This would be a genuine strongly
interacting theory, in many respects very similar to QCD (in some other aspects, how-
ever, different from it).

EXPANSIONS AT THE PARAMETER SPACE BOUNDARY. Because of the limited applicability
of numerical methods, analytic expansions are very important to support and supplement
the nnmerical work. The general strategy of analytic expansions is to reduce the number of
coupling parameters by sending some of them to the boundary of the coupling parameter
space. The small parameter in the expansion is the distance from the boundary in some
appropriately chosen metric. In the standard Higgs model there are three couplings: the scalar
self-coupling A, the gauge coupling g (or 3 = 4¢97?) and the hopping parameter « standing
in lattice regularization for the mass parameter of the scalar field. Possible expansions in the
standard Higgs model are:

(a) strong gauge coupling expansion (SGCE) at 8 = 0 [3];
(b) hopping parameter expansion (HPE) at x = 0;

(c) strong self-coupling expansion (SSCE) at A = oo [4];

(d) weak gauge coupling expansion (WGCE) at 8 = oo [5];
(e) inverse hopping parameter expansion (IHPE) at « = oo;
(f) weak self-coupling expansion (WSCE) at A = 0.

The latter two (IHPE and WSCE) were, to my knowledge, not yvet studied in the standard
Higgs model. The difficulty with WSCE is that the Higgs phase is singular for A — 0. At
the intersections one can also define double- or triple-expansions. {For instance, combined
WGCE and SSCE at the line A = 8 = o©.)

Here we shall discuss in some detail WGCE. In this case the expectation values at an
arbitrary point (), 3,x) of the bare parameter space are expressed in terms of a series of
expectation values at the point (A, 8 = o, ko) with vanishing gauge coupling. This is achieved
by performing the integration over the gauge field variables in perturbation theory, thereby
explicitly displaying the dependence on the gauge field propagators and vertices. In Ref. [5]
the generating function of connected expectation values of some gauge invariant composite
fields was considered in WGCE. For the study of renormalization and large cut-off behaviour
it is better to expand the gauge dependent generating functions in renormalizable gauges. In
order to write down the WGCE master formula for the gauge dependent Green’s functions,
1t 1s useful to introduce a shorthand notation for index repetitions:

(f0 = Fukfn o frn LN =D futa- f (1)
(1] Vi ok
In the master formula the gauge field expectation values < ... > have to be expressed by

zauge field propagators and vertices in the same way as in pure gauge perturbation theory. («
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is the gauge parameter.) The occuring expectation values in the ¢* model at ¢> = 0 contain,
in addition to the original scalar fields ¢, and =,,, (r = 1,2,3), also the bilinear composite
fields

Spp = z(aﬂzaﬂz-i-ﬁ + Wrzﬂ'rm%-ﬁ)
Urgp = 2z(7rrzo-0z+ﬁ — GozMra+i + frstﬂ—az"?ta:-*-ﬁ) (2)

The derivatives of the generating function W h,i] with respect to h = (hgz, hre) and .., give
the connected Green’s functions of the scalar fields (o¢z, T, ) and, respectively, of the gauge
field A,;,. Let us first introduce the notations

_1 n
C[ZJ [rzp]m(yr)a 2m+3nm! 1(1 + iKY )r:z:;_:(l - K"S-)yv
(a)mn _
A[rmp]m[yuln - <(A )r:r:,u.(A A ) >ag (3)

The result for the generating function of connected Green’s functions W is in this notation
(applying the trick (1) twice):

Wihill= Y ¥ % y, elilJilcom)

LMN [X][RYm[Z2M v K [m]gnig ([reulm(vla]x

c

(4)

the contents of the parentheses have to

™m n axjmr K kel K
: (g + A() ) ] ((UU-)i(W-)ﬁIY(S-)gA (C[?‘] )[rwu]m[yyln>

fraep]mfyv]n Arg
In the connected ¢* expectation value < ... >§
be considered as single entities in the definition of connectedness. The same applies also
to { A, Ay ) in the connected gauge field expectation value of Eq. (3). The most useful
way to apply WGCE is to choose the expansion point (A, k) in the vicinity of the critical
line of the ¢* model. In this case it is possible to obtain enough information about the
behaviour of the ¢* Green’s functions by assuming the triviality of the continuum limit in ¢*
[6,7]. By combining the hopping parameter expansion ("high temperature expansion” in the
terminology of statistical physics) and the Callan-Symanzik renormalization group equations
one can, for instance, determine the curves of constant physics of ¢* everywhere in the bare
parameter space [7]. The knowledge of the non-perturbative dynamics of pure ¢* is an input
in WGCE. In what follows, we shall assume the triviality of the continuum limit in ¢*, but
if this would finally turn out to be wrong, WGCE could still be a useful expansion in order
to determine the perturbation due to a weak SU(2) gauge coupling.

CURVES OF CONSTANT PHYSICS. Before going to the Higgs model, let us first formulate
how to obtain differential equations for the curves of constant physics in the general case.
Let us consider a lattice quantum field theory with n bare couplings g1,¢2,...,9-. In order
to define the CCP’s one has to keep (n — 1) independent physical quantities Fy, F3, ..., F,
constant (we are assuming here that the number of relevant couplings is n):

Fig1,--.y9n) = Fo=const.  (j=2,...,n) (5)

The CCP’s are characterized by the constant values Fj3. The points of a singled out CCP
can be parametrized, for instance, by the first bare coupling ¢:: ¢; = g;(¢1) (7 = 2,...,n).

In this case we have . aF
dgi{g1) det, ") ( 9)

dg det[1 4 (31:)

(6)
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Here detH (aF ) denotes the (n — 1) x (n — 1) subdeterminant of the n x n derivative matrix
e belongmg to the matrix element %

Another possibility is to parametnze the points of a CCP by the value of some reference
physical quantity F;. (In practical cases Fj is usually some physical mass in latt1ce units.)

In this case the differential equations for g;(Fy) (i =1,...,n) are:

dgi(F) _ deti) (,;_) (7)
dFl detn (*a-'g—)

where det,(---) is the n x n determinant of the derivative matrix.

Sometimes it is also useful to consider curves in subspaces of the bare parameter space
which belong to constant values of an appropriately smaller number of physical quantities.
These ”curves of partially constant physics” (CPCP’s) are defined by fixing (n — k) physical
quantities Fy,...,F, .41 and (k — 1) bare parameters ¢, p42,...,9n. The differential equa-
tions for CPCP’s have the same form as Eqs. (6-7). For simplicity, let us consider here only
the case with n = 3 bare parameters (as we have in the standard Higgs model) and look
at the plane with constant bare coupling g;. Keeping the value of some physical quantity
F3(91,92,93) = Fyo fixed and parametrizing the points of the curve by the reference quantity
F,, the differential equation for the function g,( Fy) is:

. 9F2
JF. ~ \2Eem _omoR (8)
! 991 02 892 891 / g)=go(Fi,92,95)

As an example in the standard Higgs model, one can take g; = k, g2 = A, g3 = ¢° and
Fy = pw (the W-mass), F; = Rgw = my/mw (the ratio of Higgs- to W-mass). In this case
Eq. (8) gives the curves with constant Higgs- to W-mass ratio in the g = const. planes.

As discussed before, in WGCE the expectation values at a point (A, g% k) with weak
bare gauge coupling and arbitrary bare scalar self-coupling are given in WGCE by explicit
gauge propagators and vertices and by scalar blobs representing expectation values in the
pure ¢* model at g = 0 and (A, x9). We are assuming that the continuum limit in ¢* is
trivial therefore, if the point (1}, k) is close to the critical line, the renormalized ¢* coupling
A, in the pure ¢! model is small and the renormalized ¢* Green’s functions can be well
approximated by a low order perturbative expansion in A,. In WGCE we need unrenormalized
g® = 0 expectation values, which are obtained from the renormalized ones by multiplying with
the wave function renormalization factor of the scalar field Z. and with the multiplicative
renormahzat:on factors of the composite fields Z,, Z,,.

Since the g = 0 expectation values in WGCE are given in terms of the pure ¢* renor-
malized coupling .}, it is natural to parametrize the points of the bare parameter space,
instead of (A, ¢%,%), by (A,, 9%, 5). (In this case the ¢* Z-factors have to be considered also
as functions of A, and x: Z,,. = Z;,u(As,k).) In this way the problem of determining the
CCP’s for small bare gauge coupling is reduced by WGCE to the problem of finding the
CCP’s, with A, = const., in the ¢* model at g = 0. The renormalization is also decomposed
in two steps: after going to the renormalized variables at g*> = 0, ), is considered as one of
the bare parameters for WGCE in the Higgs model. The renormalized quantities of the Higgs
model are introduced in WGCE in the same way as in ordinary perturbation theory. (In what
follows only 1-loop graphs will be considered. The renormalization of WGCE up to higher

4



loops have to be investigated in the future.} The CCP’s in the Higgs model can be defined
by the requirement that the renormalized ¢* coupling An and renormalized gauge coupling
squared g% be constant. (Note that capital R denotes renormalized quantities in the Higgs
model, whereas small 7 is reserved for the renormalized quantities at g* = 0.) As a parameter
along the CCP’s, one can take the renormalized ¢-mass squared uh (or 7 = log pgr'). The
differential equations corresponding to Eq. (7) are, in the large cut-off (small p}) limit up to
leading order:

dX(7) 9 | dg*(t) 43

S PUPLII - 4 ...
dr o279 T dr FrRcki

(9)

The dots stand here for higher orders in A, and ¢*. In what follows the higher order terms will
be neglected, although an estimate of their importance can only be given after a more detailed
study of multiloop renormalizatior of WGCE. The solution of the asymptotic equations is:

27
13

(r — To)] ) = e [1 L 4390 To)} (10)

43
4872

g (r) = 95" + 183
Here g2 and ), are the initial values at 7 = 7.

Since both ¢*(7) and A.(7) tend to zero for 7 — oo, WGCE is an asymptotically free
expansion. This does not, however, mean that for 7 — oo a non-trivial continuum limit
exists. The reason is that on the (7, A.) plane not every point is possible. The triviality of
the continuum limit of ¢! implies that the CCP’s in ¢* with A, = const. are ending at A = oo
near the critical point x..() = co) for some finite cut-off [7]. This means that on the (7, A,)
plane there is a Iimiting curve and the allowed points are below this (at smaller values of
7 and A.). To obtain the exact shape of the limiting curve is a non-perturbative problem
in the four-component O(4)-symmetric ¢* model. In order to have a rough guess about its
qualitative behaviour, one can take for large 7 the position of the "Landau-pole” in one-loop

perturbation theory:

71'2

M(Phmae = - | (11)

magT —
67

The intersection of the curve A.(7) in Eq. (10) with {7 ). determines the maximal cut-off
Tmaz Which belongs to the Higgs model CCP given by (¢*(7}, A.(7)). If the maximal cut-off is
required to be the Planck mass (7 ~ 20), this crude estimate for a CCP with gauge coupling
g% = 0.5, roughly equal to the physical value in the standard electroweak model, gives Ag
about a factor of 2 larger than a one-loop perturbative calculation [8] would give. In order
to obtain this "Planck mass cut-off upper limit” more precisely for A (or for the Higgs
mass to W-mass ratio Rgw = my/mw ), we need a careful non-perturbative study of the 4
component ¢* model to pin down the limiting curve A, (7 )mqz- In addition, a non-perturbative
investigation in the Higgs model itself is also necessary for obtaining the non-asymptotic form
of A.(7).

The above asymptotic estimates determine the qualitative behaviour of the CCP’s for
small g? in the (), ¢?) plane (assuming that the higher order contributions can be neglected,
indeed). For a schematic picture see Fig. 1. Since every CCP with non-zero Ap and g%
is ending at a finite cut-off in the A = oo plane near the phase transition line, the only
. possibility to reach an infinite cut-off is to put Ag = gr = 0. Therefore, the continuum

- limit in the Higgs model on the critical line at ¢ = 0 is trivial, both in the confining- and
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Higgs-phase. The triviality of the g> = 0 continuum limit in the Higgs phase was recently
concluded also in Ref. [11] on the basis of perturbation theory near the Gaussian fixed point
(A = 0,¢° = 0,x = 1/8). Perturbation theory is, however, not applicable for large bare
self-coupling A, therefore Ref. [11] did not exclude the possibility of a non-trivial fixed point
in the combined gauge-scalar system at ¢> = 0 and large A. In any case, the non-trivial
A-independent continuum limit conjectured in Ref. [9] is not possible. The behaviour of the
CCP’s near 3 = oo is different from the picture suggested there. The only open possibility
for a search of a non-trivial continuum limit in the standard Higgs model is to go inside the
bare parameter space to points where also the gauge coupling is non-perturbative. However,
even if such a fixed point would exist, it would not necessarily be adequate for the description -
of the standard electroweak physics.

The framework of WGCE is obviously more general than the specific case of the standard
SU(2) Higgs model. It would certainly be interesting to consider in the future more general
Higgs models, too. In particular, as one can see from Eq. (10), there is an interesting class
of models, where the Callan-Symanzik F-function coeflicients are such that the power of the
squared brackets in A.(7) is, instead of 1—237, equal to —1. In this case the leading asymptotic
behaviour of A,.(7) coincides with the asymptotics of the limiting curve in Eq. (11). The
question of a possible non-trivial continuum limit at A = oo is then decided on the next-to-
leading order level. In any case, even if the strict continuum limit would turn out to be trivial,
such models are interesting, because they can easily allow for very large cut-off’s in a wide
range of physical situations. A simple example of a model with'a 77! leading A,-behaviour
is an SU(2) Higgs model with 1 scalar doublet and 4 vector-like spin-1 fermion doublets.
Namely, in this case the coefficient of the ¢* term in Eq. (9) is equal to —27/(487?). Because
of the vector-like fermions, Yukawa-couplings are forbidden. In cases with Yukawa-couplings
and chiral fermions (as in the standard model) the appropriate lattice formulation has to be
constructed first, and similar questions can be asked only afterwards.

MONTE CARLO CALCULATIONS AT WEAK GAUGE COUPLING: The SU(2) coupling in the
standard electroweak sector is weak: at the W-mass scale we have g% ~ 0.5 (or asyz) =
g%/(4mr) ~ 0.04). Since the Monte Carlo calculations are done in a region where the W-mass
in lattice units amw is of the order 1, this implies for the bare gauge coupling a value of
about  ~ 8. A numerical Monte Carlo calculation in this 8 region is feasible and it can
yield interesting information about the non-perturbative behaviour in the strong self-coupling
regime [12]. Such calculations are complementary to the information one can obtain from
WGCE. The shape of the regions where Monte Carlo calculations are interesting and where
WGCE can give a good approximation 1s schematically shown in Fig. 2, on a A = const.
plane. The figure is optimistic in the sense that the MC and WGCE regions touch. In reality
there may be some no-man’s-land inbetween, where the correlation lengths are too large for
a numerical investigation but not large enough to make the couplings small enough for a low
order WGCE. The phase transition line shown in Fig. 2 is given in the small g* region by
WGCE as

Ker{X, 67) = Ken(X,0){1 + ¢%0.04358 ...} (12)

The Monte Carlo calculation at 3 = 8 was restricted in Ref. [12] to two points at A = 1.0.
To explore the A-dependence in the large bare self-coupling region, the same calculation has
been repeated recently on 12* lattice in a few other points at 3 = 8 [13]. The points were
selected in such a way that the link expectation value L was nearly constant. This is known



from previous studies [9] to minimize the A-dependence for a given #. A sample of the
numerical results is given in Table I. (For the notations see [12].)

Table 1.

Sample numerical results in the standard Higgs model at 3 = 8.0 on 12* lattice.
P K L P amw amyg ag%T:)) Ryw
0.1]0.177 | 0.3816(1) | 0.09592(1) | 0.208(10) | 0.96(5) | 0.0511(15) | 4.6(5)
1.0 | 0.280 | 0.3695(1) | 0.09599(1) | 0.190(10) | 1.21(5) | 0.0521( 8) | 6.4(8)
oo | 0.370 | 0.36919(4) | 0.09600(1) | 0.198(12) | 1.49(6) | 0.0525(15) | 7.5(8)

As it can be seen from the table, the renormalized gange coupling is, within errors, the
same in the three points. The Higgs- to W-mass ratio Rgw is monotonously increasing. The
value of Rygw at A = oo can be considered as a first rough estimate for an upper limit [14] of
the Higgs mass: .
mez 754 0.8 (13)

Of course, our 12* lattice is not big enough for A = oo, we need many other points to check
the A- and 3-dependence of Rygw etc. Nevertheless, R can be determined in the future to
a good precision, with reasonable amount of computer time on existing computers.
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Figure captions

Fig. 1. The qualitative picture of CCP’s in the standard Higgs model projected
on the (g?,A) plane. The small g? behaviour is the result of WGCE. The extension to
larger g° is a guess supported by some approximate numerical Monte Carlo calculations at
A =00, §=2-31[9,10]. Note that in reality there is a two-parameter family of CCP’s, but
here only a one-parameter subset is shown for simplicity.

Fig. 2. The schematic lay-out of the regions where interesting Monte Carlo calculations
can be done (MC) and where WGCE can be expected to give a good approximation (WGCE).
The uninteresting region of dominant lattice artifacts is denoted by LA. The confining-Higgs
phase transition is at the dashed line. The whole picture is for A = const..
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