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Nonlinear Theory of Coupled Synchro-Betatron Motion

by
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Abstract

In this paper we present a non-linear theory of coupled- synthrbabéfatroh
oscillations which includes as special cases the well-known theory of non-
linear betatron oscillations and the theory of satellite resonances. The
method is based on a 6-dimensional canonical formalism in whichy after intro-
ducing dispersion, all three unperturbed modes are described by Twiss, para-
meters. These Twiss parameters have a more general form than those defined”ipg
the usual machine theory of Courant, Livingstone and Snyder. 'Thé resonances
are then investigated using canonical :perturbation theory in:a way-already
familiar from its application to non-lipear betatron motion. Selected appli-

cations are discussed. . . . G
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1. Introduction

In the usual treatments of non-linear betatron motion in storage rings, energy
variations due to synchrotron oscillations are ignored and the focussing pro-
perties of all magnets are regarded as static,

If the formulation dis canonical, then in the uncoupled linearized theory,
action-angle variables can be introduced and these are. subsequently used to
treat non-linear terms in the framework of canonical perturbation theory. This
leads to the result that the stable region in the tune diagram for an ideal
linear machine becomes criss-crossed by narrow strips where the full non-
Tinear motion is unstable, These are the so-called non-linear resonances and

they occur near!?273:%15,6)

myQx + mzQ; = n . (1.1)

Qy and ‘QZ are the horizontal and vertical tunes for the uncoupled 1linear
machine and m and n are integers,

These resonance effects can also be seen in simulations with suitable tracking
programs7)and also, of course, while running machines, In reality, the betatron
stop-bands (1.1) are accompanied by further stop-bands, the so-called satel-
lite stop-bands defined by the relation

My Qy + mzQ; + Mg Qg = n (1.2)
where Qg is the synchrotron tune’’

These synchro-betatron resonance effects can be simulated by tracking programs
in which energy variations due to synchrotron oscillations and their effect on
the focussing properties of the magnets have been introduced.a’g)

The mechanisms (energy dependence of the betatron frequency, dispersion in
cavities, beam-beam interaction Qith a crossing angle) Jleading to excitation
of synchro-betatron resonances have already been considered individually in
references 10-15.




The aim of the present work is to develop the theory of non-1inear! synchro-
betatron oscillations using methods analogous to those already used for non-
linear betatron motion. Then the various effects can be handled in the same
way as for the non-linear betatron case, This will be achieved using a disper-
sion formalism (Ref. 16) in which action-angle variables can be defined for
describing linearized uncoupled synchrotron motion (with local cavities).

We are . then in the position to carry . over all the usual techniques of cano-
nical perturbation theory to the general non-linear synchro-betatron problem,
This treatment has ‘the advantage that it is fully canonical, that it can be
developed to any order dn the peérturbation expansion (i,e. to any order 'of
satellite resonance) and that it treats all excitation mechanisms simulta-
niously. As a special case, it includes the known theory of non-linear beta-
tron motion,

In this paper this programme will be illustrated by the investigation of
satellite resonances, Numerical results for a HERA-optic will be presented.



2. Equations of motion

As . the starting point for the study of non-tinear synchro-betatron oscil-
Jations we write the (canonical) equations of motion in the form

ds apx ’ ds ax
dz _ o . 9z aH | | (2.1)
as op, = ds az ‘ .
do _ o %o oM
ds epg ’ ds 3g °
g 55 - ce«t(s)
where the Hamiltonian is (Ref. 8}
(Py-ohy)®  (pz-ghAz)?
Hos (14 pg )l - {1+ Kyex + Kpez)e[1 - X" C ) c 172
(1+p,)%  (1+py)?
- (1 + mex + KZ-Z) . Ee-- AS . (2.2)

Th_e quantity
. >
A= (A, Ay, Ag)

is the electromagnetic vector potential and the electric and magnetic fields

are then given by )
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in particular:
For a cavity:

e(s,a) = V(s) »sinlk —2L-“ o * @]

. L
5 2wk

=
1]

- V(s) -cos[k-«%ﬂ- g + ¢]
For a quadrupole:
aB bz

........._.

jws]
N
Q
™~

with g, =

For a dipole bending magnet:

(Ky, K2} # (0, 0) ; Ky=Kz =0 ;

e -

A

e

£ .3 = K

E Z X 3

0

e ! p .
E{;AS_.-E.(1+|\X-X+KZ‘Z) M

For a sextupole:

'asz}

B, = « XZ

X \axz X=2=0
(523

8, = 2 D3 (x® e22)
[3X% Jx=z=0 2

e 1

—E‘; AS - = )\0 hd ‘6— (Xa - 3X22)

228,
with Ag = £ . [ é]
X=2=0

(2.4a)

(2.4b)

(2.5a)

(2.7)

(2.8a)

(2.8b)

{2.9a)

(2.9b)

(2.10)



Using (2.4b), (2.5b), (2.8b) and (2.9b) (we assume that the ring only contains
cavities, quadrupoles, bending magnets and sextupoles and that there is no
beam-beam interaction*!?'®)  the Hamiltonian (2.2) becomes:

py® + pzz]l/z}
(1+p,)2" °

1 1 AO 2
+-2- (1 + Kyox + Ky02)2 = '2790'(22 - x%) + —é—(x‘" ~ 3xz?)

H=(1+pg)e{l - (1 +Keex +Kypz)e[1 -

L eV(s) 2w . om .
+ L] L ] k._" + - + » -~ L
T E {cos[k «=w 0 + 9]~ cos@ + k. 70 sing]
- U.SV—(E.)- - sing + Ln . eV(s) - COSP . (2.11}
Eo ke2m Eq

This Hamiltonian can be expanded in a power series in the variables x, py, Z,
P;, 0, Pg. If the series is truncated at the third order we obtain:

H = % (py? + pz2) + (1 = pg) = (Kyex + Kgez) o py +
g+ L (kg - gg) v2t + BR (x0 - 3
+ %ﬁi}--k-%’l - { -—21—c03cp-02 +-é~s1‘ncp-k- _211_1 o}
-0 . EE\_J'_LS_l « Sing . (2.12)
0

Constant terms in the Hamiltonian have no influence on the equations of motion
and have been dropped.

This form for H is valid only for ultrarelativistic protons., Radiation effects
are also neglected so that there is no energy uptake in the cavities and
¢ = 0.

For electrons,radiation effects must be taken into account. See appendix I,

In this discussion we will for brevity neglect vertical betatron oscillations.




Thus, finally the Hamiltonian in {(2.12) becomes

A
He 20y (1= pg) - Kyox o pg + 5 (Ky? + gg) o x + 220 xo
V4 2 ]
- :l_.—e.\‘.,.(_s.).l.k.gﬁ.{cosq).ga - —]-'~S'iI'ICP'|<'-2'-TL- 0'3]_- (2.13a)
2" T, [ 3 1

and the canonical equations are

qﬁ:—il:l_ : -c-i-'-F—)i(-:——a"li'
ds 3py ds 3x

(2.13b)
dg _ 3 % o

ds 3p; 7 ds 30



3. Introduction of dispérsion'

In the equations of ‘coupled’ synchro-betatron motion derived from equ.
(2.13a,b) the coupling between the Tongitudinal and transverse motions is des-
cribed in linear approximation by the term '

- Kx '/Xl opo_
in the Hamiitonian, This coupling therefore results from the curvature of the
design orbit.
In order to rearrange (2.12) so that it is suitable for treatment by canonical
perturbation theory it is useful to introduce the‘dispersion trajectories

+

b’ = (D, Dy)

o~ N Lard
x

and instead of the variables x, Pxs Cs Pg, 10 use new variables X, p,, T, 55,

where ¥ and ¥, are defined by

~
X=X - pgeDy

| . (3.1)
Px = Px = Pg *Dx .
This can be achieved by a canonical transformation
(Xs Pxs T, po‘) — (/)\(J, ?jxa 6’, 'ﬁg)
resulting from a generating function
Fo (%, 0, By, Bg) = Bx* (x - By *Dy) + By Dy = x -
: . : )
_EDX.D-p02+pU-o (3.2)
The transformation formulae are then
~ 9F, ~ ,
X = =X - D, ' {3.2a)
5361)’(’ Dg* Uy ,
aF ~ A ]
Py = '5';!(- =Pyt Pg * D): ) (3.3b)
af ~
§= o7 - DByt Dy X - TyeDy) +o (3.3¢2)
9P, ' e
oF X
po’ = 802 = ,b/(} » (3 3d)
~ eFE
H=H+ T (3.4)



and one sees that (3.3a,b,d) indeed lead to egu. (3.1).
Taking account of the defining equatijons for the dispersion
Dy = = (Ky2 + gg) =Dy + K (3.5)

N
one obtains {equ. 3.4) the new Hamiltonian H which we write in terms of three

camponents:

+ Hyy ¥ Hy 3 (3.6)

X : (3.7&)
EO
1 ~
HOO: —"KX'DX'DS—}‘M“(""'COSfP‘Uz : (3.7b)
? 2 E,
Hl" _%.E_)-ekogilrocog(p.Oo[pxo DX-A)Z'D;(] + (A)
G

~ 2 ~F A2 ~s3

FT X R+ 30 Ry DTGl e (0) (38)

The new canonical eguations of motion are then

. AL S
ds aPy ds 8%
~ ~ ~ (3.9)
& o . Py _ o
kds %, °~ ds al

In the following, Hyyx and Hgyy will be used as the Hamiltonians for the unper-
turbed betatron and synchrotron motion resp. while H; will be regarded as a

perturbation.



In Tinear approximation the coupling between synchrotron. and betatron motion

only takes place in the cavities (Ref. 8)Itﬁ?6hgh the term

v 2 ——
%—;ﬂé)r-k-—l:ﬁ ccos@+ F[Pye Dy - X~ Dy ]

in H;. For

V(s) « Dy(s) = O

I
[an}

V(s) - DL(s) =

this term disappears {(no dfspersion in the cévities). In this cane i,

fies to:
H1 = 1 gy—gél.[k 2.11]2 «sing - 2
6 E,
1 vz A PV VP 1 12 Ass
- E px ‘po_ - D\( - X . po_ ‘2" Dx pc
AO A Ao At 2 A~ a2 3 g2
+-é_'[x3+3Dx.x2.po'+_3DX.x.pO"* DX.pGJ-l- “

(3.10)

simpli-

. (3.11)
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4. Action-angle variables for the unperfurbed oscillation modes

'

With equs. (3.6-8) we have a representation of the Hamiltonian which enables
the use of canonical perturbation theory. The important boint here is that the
Hamiltonians Hgyy, and Hyg which describe the unperturbed motion can be written
in the general form

Ho = %F(s)-pa+R(s)-y-p+%e(s)-y2 (4.1)
with
(F(S)_l_e_ﬂél.k.gj.coscp.ﬂ :
Eo L
_ voeV{s) 1 ) .
< R(s) = Dy « Dy -—E;ww—-k-lif « COS O ; (4.2a)
— ;2 eVS Z'H
k\G(s) = (Ky + gg) - ~E§—l--k- scosq * Dy
for betatron motion
and
F(s) = - KDy
R(s) = 0 ; (4.20)

G(s) = - %;Lil-k -%Fr-cos¢
0

for synchrotron motion.

With these forms {4,1) it is possible to define action-angie variables. This

will be carried out in the following in several steps.

4.1 Twiss-Parameters

The canonical equations resulting from equ. (4.1) are

P
ds p - p

with
A(s) = " ' (4,3b)
- -G -R ’
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The solution to {4.3) can be written in the form

(y(s)) [ y(sg) |
= M(S:SO) (4'4)
p{s}/ - P{Sg)

where Mﬁs,so) is'a transfer matrix satisfying the equations

M(s,s5) = A(s) « M(s,s,) (4.5a)

Ms,s0) = 1 . (4.5b)

It is well-known that the one turn matrix for pure betatron motion can be
represented in terms of the Twiss-Parameters a, B,y (Ref. 18). However, this
representation may also be used to represent the more general case of transfer
matrices (equ. (4.4)) resulting from the Hamiltonian (4.1). Once Twiss-Para-
meters have been established it is then straightforward to proceed to an
action-angle variable representation. With this in mind we recall that the
transfer matrix satisfies the symplecticity conditions

MT(s,50) * S+ M(s,80) =S (4.6)
with _ | . S | ' :

c . ,/0 -1 _ (4.7)

= 0 " | '

Denoting the left handside of (4.6) by B(s):

B(s) = M7 (s,50) * S+ M(s,55)

one can immediately prove the symplecticity conditions using the relations:

B(sg) = S following equ. (4.5b)

d d
7 BUs) = [ M(s,50)7 = S+ M(s,50) + MT(s,50) « S -
= M'(s,50)[AT+ S + S- AL+ M(s,55) = 0

\___Y——/

=0 following equs. (4.3b) and (4.7)
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Since MPeSeM = S-det(M)

equ. (4.6) is equivalent to the condition
det(M) = 1 . (4.8)
Or the basis of this relation which is also valid for the one turn matrix

M(s+L,s}, we may write the one turn matrix following Courant and Snyder
(Ref. 16) in the form

M{s+L,s) = cosp=1+ sinp-+ J(s) (4.9a)
/m(s) B(s)
with J(s) = (4.9b)
k-‘.’(s) -a{s)
Since det(M) =1
we have Yy B ~0? =1 (4.8¢}

where in addition we require

B20. (4.9d)

These eguations (4.9) are the defining equations for the Twiss-Parameters a,
B, v for the general case. If the matrix elements are known:

M (s+L,s) Mia(s+L,s)
M{s+L,s) =

My (s+L,s) M,2(s+L,s)

the guantities u, o, 3 and y are defined by the equations

_—1;--Sp M(s+L,s) (4,10a)

cos u

>0, if My, >0

sin u (since B 2 0) (4.10b)
< 09 if M12 <0 ’
1
afs) = 2'.'5'1'n'“""[M11 (s+L,S) - Mp(s+L,s)] ; (4.10c)
M
B(s) = _Lil.gf:i.ii) ; (4.10d)

sinp

My (s+L,s)
sinu

~
—
V3]
—
!

(4.10e)
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From the condition

1}

M{s+L,s)

&(S+L:SO+L) ;ﬂ(SO+LlSO) .M(Soss)

M(s,S0) = M(sg*+L,Sg) =M1 (s,5) (4.11)

we also have

cospls) = %--Sp M{s+L,s) = %—-Sp M(so+L,sq) = cosp{sy)

i.e. n = const. (4.12)

and from (4.9a) and {(4.12)

J(s) = M(s.s0) * 3(sg) * MHs,5,) (4.13)

Using (4.13} we can now calculate ofs), B(s), v{s) if the values a(s,). B(sy),
v(sy) have been previously calculated (e.g. using (4.10)).

Furthermore, from (4.12)

dlsg+L)

H

Misg+L,50) = dlsg) =M™ (sg+L,5,)

it

(Lecospu + J(sg) * sinpl=d(sy)e [ L cospu + d(sg) « sinpl™

1]

J(sg) = [lecosp + J(sy) e sinplelLlecosp + J(sy) ° sinpl™!

I(sq)
so that

a(sg+L)

i
2
v

@)

Nt

B(sg+L) = (4.14)

k
w
(%]

o
w

Y(sg*L)

it
<
o
7
o

Thus a(s), B(s) and y(s) are periodic.

Finally,using {4.12), from which

d'(s) = ( | (4.15)
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we can obtain differential equations for o, B, vy which are needed for the
construction of the action-angle variables:

J'(s) = lim —A%-{g_(s+ﬂs) - J(s)}
AS 3 0
= lim Lo (s +as,s) - 3(s) M (s +as,8) - I(s)}
As —= 0
{foliowing equ. (4.12))
- i Lo {lL+ 85+ A(s)] - 3(s) - T1 - a5+ A()] - 3(s)}
As ~—» 0

(following equ, (4.3a) or (4,5))

- YF + BG 2(AR - aF)
= (4.16)
2+{~ oG + YR) ~(-YF + BB,

(following equ, (4.3b) and (4.9b))

By comparing (4.15) and (4.16) one then finds that

a'(s) = -¥F + R (4.17a)
B'(s) = 2(BR - aF) ; (4.17b)
Yi{s) = 2(a6 -~ YR} , (4.17¢)

Remark : In equ. (4.10b) it is assumed that the parameter p is real, Only then
can the motion remain stable since for k turns we can write

M(s+L,s)% = [cosp+1+ sinl- JJk

cos(kp) =1 + sin(kp) «d (4.18)

where we have used the relation

JE{s} = -1

For arbitrary k the matrix &k remains finite only if p is reall®),

In the following we assume that the stability conditions are satisfied. In

addition, the quantities O appearing in equ. (4,34), (4.24), (4.33) are also
real,
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4.2 Action-angle variables for the unperturbed Hamiltonian

Using the‘propertiés of the TWiss-parémeteré established in section 4,1 we are
now in the position to construct the action-angle variables for the unper-
turbed Hamiltonian Hg,. ' |

This is achieved using the generating function

Foly,®) = --)2% ;[t9(®+ 5) + o) | | o (4.19)

to make the transformatidn (y, p} — (0, I).

Using the transformation relations

afF, ' Bep o
p :_.53,— T - %O[tg(@ +‘¢’O) +OL]=—'"-———"'> tg(¢+ CPO) = - —'y‘E —JC( M (4.1961)
] = - E.Fji— = li . 1

9 28 cos(¢ + 9,)

Y + tg? (¢ + o4}]
5 (1 + tg®( o)l

«[y? + (ary + Bep)?]

1
%
%'[Y'y2+6'p2+2a-p'y] (4.195)

we obtain the representation

yls) =V 2B(s) * 1 +cos{d(s) + &1 (4.203)

/ isin[@(s) + &5) + als) » cosl®(s) + @ o1}, (4.20p)

—

The new Hamiltonian Hy (@, I, s) is

o= Els) o (4.21)
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with the accompanying canonical equations

d . _ a2 T _F S .
— = = H, o= == ¢ = ¢ + ds
e o] o = 3 (s) (sp) SJO |
d

n

U “i.ﬁé =0 = ]

const.
ds a¢

S
2 (4.224)

(4.22h)

Although the quantity I in (4.22) is a constant, &'(s) varies with s. This is

in contrast to the usual case with action-angle varisbles, where ¢{s) would

vary linearly with s. However, the usual action-angle variable representation

can be immediately obtained by using one more canonical transformation

with the generating function

-~ ~ S ~ -
Rle, I, s) = 10235 . [ g0 .F8)y, 6.7 (4.22)
L o B3(%)
in which Q is given by
Q=~1-—lj_'d'sv- FE (4.724)
27§ 3{%) '
Then
aF S . Y
P =2 = 2ng +s -~ [ dS . F(i + o (4.25a)
o] L C B(S)
aF, -
1= —2=1 . (4.25b)
o
Hoono+ 22 o7 e (4.26)
0 9 a5 L :
and the variable ¥ has a linear dependence on s:
dy aﬁ6 21Q 210
T T= T = U(s) = W(sg) + == e(s - s,) (4,27)
ds o] L L

I is identical to I and is a constant of the motion,

Both ¢ and ¥ can be used in canonical perturbation theory.

Our next aim is to use equs. (4.20), (4.22) and (4.26) to examine the particle

motion. This will lead to an appreciation of the physical significance of 1

and & or of I and ¥ respectively.
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4.3 Eigenvectors for the particle motion

In discussing particle motion we now note, that by using the representation
(4.20) of the orbit vector

for which 1 is constant and &, is a constant to be chosen, two Tinearly indepen-
dent solutions to the eguation of motion (4,3a) can be obtained. We could for

example choose &, =0 and ¢, = - g- (with 21 = % ):
' ' \
JE%-—) - COS &{s) \
Uy (s) = . | . ; (4.28a)
R « [sing(s) + afs) »cosa{s)]
L V2B(s)
/ Q%;l . sinae(s)
u,(s}) = ( (4.28b)
\ V[___ﬂ [cos¢ s) - afs) -sing(s)]
The general solution is then a linear combination of ﬁi and ﬁz in the form
= ¢ o0, *+c, 4, . (4.29)

Given these solution vectors it is possible to replace the quantity u in
(4.9a) by &. From the relation '

(T (s+L) dy(s+L)) = Ms+L,s) - (G, (s) U,(s))
we have

M{s+L,s) = (T (s+L) T,(s+L)) - (T,(s) T,(s))7" (4.30)

and by putting (4.28) into (4.30) and using the periodicity conditions {4.14)
we get

M(s+L,s} = 1ecos[e(s+L) - &(s)] + I(s)«sin[a{s+L) - &(s)]. (4.31)

By comparing (4.31} and (4.9a) we find

wo=afs+l) - afs) . » (4.32)
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Since from (4.22a) and (4.24)

s+l ey
P(s+L) - o(s) [ oF -flél

il
N
=

Poaw]

(4.33)
we can replace (4.32) by
no=2nQ . (4.34)

The quantity, Q, introduced in (4.24)} can, according to (4.33), be interpreted
as the number of betatron or synchrotron waves per revolution.

For further development it 1is useful to introduce in addition the solution
vectors 31 and 32:

O1(8) = Uy(s) = §eby(s) = e e e 170 0) g 35q)
U = | - . U = . : .2o4d
: 1 ’ VoB(sy \-[a(s) + i]

U.1(s) = 31(5) + 9 eU,(s) = VyM(s) (4,35h)

which are eigenvectors of the one turn matri.: M(s4-L,s):

> >

Mis+L,s) vp(s} = Ap e upls) (4.363)
M(s+L,s) D_1(s) = A-7-0_1(s) (4.36b)
with the eigenvalues

A= entt2md (4.37a)
rp = et 2m (4.37b)

and the normalization conditions
Jrf(s) =S +Vp(s) = i (4.38a)
Dopt(s) ¢ SeV.p(s) = -0 . (4.38b)

Equs. (4.36) and (4.38) can be verified by putting {4.35) into the left sides
of (4.36) and (4.38) and using (4.31), (4.33) and (4.9¢).
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We also note that 51 and 3_Iare orthogonal: in the sense that
Ort(s) » S U.pls) = V.pt(s) + S+ Vp(s) = O, (4.39)

Finally, we point out that according to equ., (4.19b) the particles move in the
(y,p) phase space-on the ellipse:

vey2 + Fep? + 2aepy =21 . ' (4.40)
Usually one writes the phase ellipse in the form
yey* +Brp? +2acpy =€ {4.41)
where the area of the ellipse is
J=me (£4.42)
and € is ca]]ed the emittance, Clearly we may put
e =21 | (4.43)

and we then see that (4.22b} the area is a constant of the motion, independent
of azimuth s. This is a manifestation of Liouville's Theorem.

More details on the properties of the ellipse and its representation in terms

of conjugate trajectories can be found in ref. (17 ).
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4.4 Special cases for unperturbed motion

70 complete this chapter two special cases for the unperturbed Hamiltonian
(4.1) will be investigated.

4.4.1 Betatron motion neglecting the influence of cavities

The gereral form for linear betatron motion is described by equs. (4.1} and
(1.2a). IT we neglect the effect of cavity fields cn the transverse motion, H,
becomes (with y = x};

1

Hox = E"pi * %'(K; * 9ol x® L (4.44)

This is even exact when there is no dispersion in the cavities i,e. if

V(s)+Dy(s) =0

V(s)«Di(s) = 0 (4.45)
Thus we have

F(s) =1 (4.464)

R(s) =0 ; | (4.46b)

G(s) = (K + 990 (4.46¢)
and according to (4.3a,b) the equations of motion become

x'(s) = p(s)

px(s) = - G(s) - x (4.47a)
or equivalently

x"(s) = - G{s) - x (4.47b)

Note that in this case p(s) is just the derivative x'(s).
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Furthermore, from (4.17), (4.22a) and :(4.35) -the differential equatiens for
the Twiss parameters reduce to the well-known forms..given by Courant and
Snyder 18),

a'(s) =BG -y o (4.48a)
B(s) = - 2-a(s) ; (4.48b)
v'(s) =26 als) | {4.48¢)
o'(s) = ?571;)" (4.484d)

and from {4.20) and (4.43) the particle motion has the form:

x(s) = Ve » By(s) » cos[o(s) + &3] ; _ | (4.49a)
pyls) 2 x'(s) = - Ef%j. {sin[o(s) + 0,] + afs)- cosld(s) + 2,1} (4.49b)

where B,(s) and ¢,(s) are the usual amplitude and phase functions.

4.4,2 Synchrotron motion using the "oscillator model"

According to (4.1) and (4.2b) the unperturbed Hamiltcnian Hog fOr synchrotron

motion is

em

_..].'_ evg(sokn-—"—
L

scos@-o? . (4.50)
Eq

oo ~ 5> "X

If the cavities are treated as pointlike at positions Sys We put

r

V(s) =V + T 6(s - sy) " (4.51)
u
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We now replace the coefficients of p; and o2 in (4;50) by their averages over
one revolution and make the replacements:

L
K, * Dy —> a:% [ ds K (s)*D,(s) (4.52)
0

(momentum compaction factor) ;

L
eV(S -k 0_2..’]1-(:05@ — J‘. j dS._e__V_,_(_S_).k.E_E. CGS(P
£, C L g 3 C
L
= lckogﬂow L] j’dSoeV(S oS‘in(P
L L sing g Eg
2
- 8 (4.53)
[

(As in Appendix I, for electrons we would have:

~ U

‘QE = r,'_.k ._2.11 . Ctgcpc —,Cl 3 (4_5?)(11)
L L £,
L _

Uy = UJ ds « eV(s) * sing (4.53b)

average energy gained by a particle in one turn

L
£ * Oj ds + C,» K2(s)

average enerqy radiated by a particle in one turn.)

Then the Hamiltonian in (4.50) reduces to:

- ]_A. 2 1 522
Hoo —>  Hog = - St TP =T o® (4.54)
so that in (4.1)
Fols) = -2 (4.55a)
Ro(s) = O : (4.55b)

2
Gy(s) = - (4.55¢)
H
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“and from (4.17) and {4.22a) we have

aé(s) =3+ yy(s) - 2:-* Bg(s) ; (4.56a)
) U
Bol(s) = 2% «agls) (4.56b)
' Q2
Y'(s) = - 2=+ agls) (4.56¢)
%
o'(s) = - — ) 4.56d)
(s) 50s) (
The equations of motion are now
[ R : o
a.;.o' = - wepg {4.57a)
<
d 02
T Pg - —;:--o (4.57b)
or ‘
d2a
a.g.g = L 2% e g : (4.583)

1]

d®pg
Lsz “8Re (4.580)

These have the form of a simple oscillator equation - hence the term "cscil-
lator model"™ for the approximation (4.54). The solution to (4.57) has the

form:
/ afs) o(sy)
= M {s,sq) ; (4.59a)
-\ pgls) Pelsg) |
cos (s - sq) - g- sth(;-sO)
Mgl$,50) = (4.59b)
= »sinQ(s - sq) cos(s-5g)
H

where M(s,s,) is the transfer matrix for the equations (4.57).
In particular for the one turn matrix one has
/cosm - —+sin@lL
M o{s+L,s) = ' ) (4.60)
*sin&L cos &L

Fol )

=0
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By comparing with (4.9a,b), the forms for ¢, B and v can be read off directly:

Bg = = 4,61
o g (4.61a)
ag = 0 (4,61b)
Vo = & (4.61c)
H
These also satisfy the differential equations (4.56a,b,c).
The phase function ¢,(s) can be evaluated using {(4.56a) and (4.61) as:
d5(s) = ¢5(s4) - Qe(s-s5) , (4.62)
where .
QoL
T e e . 4.63
Qg o ( )

This relation can also be obtained from (4.24) using (4.55a) and (4.6la}.

As an example, for a typical HERA electron optic the oscillator model gives

ag = 0 ;
B
Qo

12.505 m
- 0.0537

An exact calculation of these gquantities using localized cavities (SLICKZ“)
dispersion version) gives

Max jas] = 0.03

Max BU

%

.
3

12.480 m ;  Min By = 12,476 m

n

- 0.0537

Thus the oscillator model is a very good approximation in this case,
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5. Canonical perturbation theory

5.1 The perturbed Hamiltonian in terms of the action-angle variables of the
unperturbed problem

Now that thé equations for unperturbed betatron and synchrotron motion have
been written in the above canonical forms we may use familiar techniques for
investigating the nonlinear coupled synchro-betatron motion described by the
full Hamiltonian § (3.6).

We first of all write equ. (3.6) in the form

~ 1 ~ ~
H o= EFX(S)°D§+RX(S)'X°~X +

SRS
p]
>
———
[%4]
—
L]
>
r
+

~ 2 ~
5 Fls) e pg v Ry(s}+ TPy +

BN jr—

+ ) A Xy P HEH T M,

Ulop‘zs“?’nuq trenata

whereby the gquantities Fy, R_y and Gy (y 2 x, o) are to be obtained from
equs. (4.2a) and (4.2b) and the coefficients A“1u2p3uq from equ. (3.8). Then
we introduce into (5.1) the action-angle variables of the unperturbed motion.

In analogy to section (4.2) we achieve this via twc canonical transformations.

In the first transformation
Pys Gy P ) = (3,, L, 95 Ig) (5.2)

we choose as generating function corresponding to (4.19) (where for simplicity
9y can be set to zero) the function

~ 2 . 2
(R, T, 8, 0) = - E’-‘é—-[th +a,] - —2%-—'[’69@0 tagl . (5.3)
X ’ o
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Following equ. (4.20) this results in the representation

Ks) = VZBy(s)« I, » costyls)

o7 ‘ " (5.4a)
Pyls) = - 'Bx(;) -[s?n@x(séh+ ?x(s)‘-coséx(s)] ;
Fls) = V2B4(s)* Iy » cosdy(s)]

It

T (5.4b)
EB(S) - Bo(z). {sinds(s) + ag(s) - cos@o(s)]..

The new Hamiltonian is

H = H + a_—_.l_
aJs
which becomes
- Fy{s) Fes (5)
H= X .1, +.2 <Dy FW(e,, o, I, [, s 5.5
By (s) X B,(s) o ¥xe Yoga lx G ) {5.5)
where
_ My
W= ) Ay pnguq(s)-{ 28y(s) » I, * cosd,}
“11“29“3‘!“;)
| 21, u
- «[sind, + a, » cosd J}"2
X { BX(S) [ X X X }
x {V2 - I, +cos® }p3
x {- «[sindy + oy *cosd ]}p . (5.8)
The canonical equations are
dox oM. dIx | eH
ds oI, > ds g,
dog B . dlg ol

ds ol ~  ds Py
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The final form for the Hamiltonian is obtained from a further transformation

on H .
(qj‘,(’ Ix3 ©U’ Io) —>
using the generating function

_~ -~ . -~
1

FZ(@XS q}o's I)(s IQ’, S).z

in analogy to equ. (4.23).

Q, and Q, are defined as. in (4.24) by

Q, = = Ij:d's" SN
L Fo (3)
QO = -—];-of d'SJ O T
2T o B,(s)
In cokrespondence with équ. {4.25) one finds
af
Vo = = by - X(s) Ty s
al,
af,
Yo = —F = by = Xols) 5 Iy =
BIO :
with
S . F(®) 2nay
K(s) = a2 L SLX
5 By (%) L
5 . (B 2nQ
Xols) = [ d¥. Fooo o .20
o 55(%) L
For the corresponding Hamiltonian
= — an
H=H+ erh
one obtains (putting 1= 1)
= 21 2n{
H=1, P PR N
L L

e

s

(% T, 1)

F(F)
d¥. X204+ o
LR R o
s, F (%)
d’é’-, o ]-{-@ -
s R
F rs
sF, _ i
ad,
aF., -
55, " o

V{9, g, Iy, Ig. S)

A

V—’—_

= w(wx-+xx,w0+xg,Ix,IQ,s)

(5.7a)

(5.7b)

(5.8a)

{5.8b)

{5.9a)

(5.9b)

{5.10)
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The canonical equations are

dyy _af . 9 M (5.10a)
ds al, ' ds v, ° )
<
dvg _ on . o oH (5.10b)
L ds alg 7 ds Y,y )

The form (5.10) can now be used as the starting point for the application of
canonical perturbation theory,.

Before applying it to this particular case we will however, as a preparation,
describe the general technique of canonical perturbation theory.

5.2 Perturbation theory

5.2.1 Far from any resonance

The version of perturbation theory presented here is based on that given by
Courant, Ruth and Weng (CRW) (Ref, 5). The starting point is the Hamiltonian

T

i =

o(Ila -{2) +F\T(W1, LPZs Il, Igs S) (511)
where the unperturbed part, ﬁ;, depends only on I, and I, as for example in
(5.10) which becomes

fl:ll ZTTQI + 27TQ2

o= —— 1, 1 (5.12)

Here we identify index 1 with x and index 2 with o. The Term V{¥, ¥,, I,, I,,
s), which is generally non-linear, describes the perturbation and is periodic
in s and in ¥,

(5.13a)
o~ ~J
V(,, ¥, I, I,, s+L) =V(v, ¥, I,, I,, s) (5.13a)
’\T( w1+2‘n’9 wga I]_s IZ,S)'—'V( "pls qus Ila 129 S) ;
Vew,, wvem 1, 1,,8) =V( v, v, I,1,s) (5.13b)

(see equ. (5.6) and (5.10)).
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As a first step we separate off the average of V_

~ 1 L 2m 2T ~
<V(II’ Iz)> = T T I ds - J’dkl»’l'.‘.‘ sz' V(‘Plyq"ZaIlslzaS) {(5.14)
(27)2.L 5 o 5
Py,
and add it to Hy so that.
H = HO(II’ IZ) + V(mls‘q’jzs Ils Izs S) . (5.15)
with
Ho(lyy L) = Ho(ly, L) + < W(1,, 1) > 5 (5.153)

fard

V(w, Y, 1, 1, 8) = Vv, v, I, 1,,s) - <V(I,, L)~ . (5.150)

(We comment further on this separation at the end of this section.)

As s clear from equs. (5.12) and (5.15a) the term < V(Il, I,} > results in

a tune shift of the form

{ - . .2 v, .
sQiY) = I V(I,, I,) > (5.16a)
L o W
sQ 1 = 5w " aT, < V(I,, L) > . (5.16b)

IfF <V> depends nonlinearly on I,, I,, the tune shift is amplitude depen-
dent.

In a second step we make a further canonical transformation
(q}]_i wza Ils Iz) s (w]_, Lpzs Il_, Iz)

using the generating function

- -

Fo (v, ¥, I,, I,,8) = Yo Lo+ 9,0, 6w, vy, I, I,s)

s0 as to introduce new variables ¥, , ¥, fl, fzz
A BF
Wl = ‘*;2‘ = ‘J-’I + Ga s
BI I1
1
N F
tpz = aAZ = wz + GA L]
GI 12
2 (5.17)
af, -
I, = === 1,+6 ;
Y, Y,
':-"F ~
= \’—.-.—2 = +
I, 5%, I, Gw
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for which the corresponding Hamiltonian

-~ BFZ
H=H+ —2
‘ - 3§

Ho (1, + Gy, »Iz* Gy, ) V(yy, W, It Gy, I+ Gy, ,8) * Gg (5.18a)

is in first order only dépendent on fl and fz. In equ. (5.17) and below we
use the notation Gy = %% etc.

For this purpose, fo]]owihg CRW, we rewrite (5.18a) as

- Ay, T ey - Feaud, B sy, b
PV, v, I, + Gy, f% t Gy, oosh - Vlw, v I, L,ob -
P20y, T e ¢ Teau(, T by, t 0
L 1 L 2
sy w, v, 1, 5, s).} | (5.'1%)

where for brevity we have written (see (5.17), (5.15a), (5.161)

aIl L Ql( 1> 2) ( )

aHo (I, I, 2
e = —_——. _[ - I “ 5.19b
312 L 02( b 2) ( )

We now reguire that the generating function G satisfies the partial differen-
tial eguation

%‘H'ul(fl- fz)'Gwl + gg‘gz(fis Tz)'G\UZ + G+

-~

+ V(v Y, I, I,.8) = 0 (5.20)
<0 that

H= H(1,, I,) + V' (5.21)
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where .. .
oo L 20 T Ge 1 2, T e
2 of2 M2 o1z *2
a2 (1, 1
* ?.( — )'Gw'Gw *
1 2
ol; 3l,
+ GW " ;g— lv( LP1: st fls;f?s S) +
toal, _ &
* GlIJ ¢ —'4-?"- V( qu’ wz, flls T29 S) + o . (5.2?)
2 3l

[f the perturbation, V, in (5.15) is small compared to H,, then we expect
according to (5.20) that G is small. It.His then clear from (5.22) that V' in
(5.21) is only a second order correction compared to H.

For convenience we also requiré that the solution of (5.20) is periodic in s

G( wls sz‘lfla f25 S+1“) = G( w},s ¢23IT13 IZ: S) V (5-23)

~ . ‘ .
so that V' is also periodic with the same period L. In this case, the calcula-
Cion ombodied in equs. (5.14-5.20){and in the Fourier expansion below) can be

. ) o~ .
repeated in a second iteration step, in which V' replaces .V in equ. (5.14).

S
In particular we can use the average of V!

N'A -~ 1 L ETT 2‘” . A/| fr. -~
<V'(L,, I,) > T (J)'ds g dy, C{ dg, = V' W, %, I, I, s)

to calculate the contribution to fhe Q-shift in the next order

(2l L 2 o -
GQI = "é""' * —:_ < V (JI]_; 12)> »
Tk | (5 .74
(2) L = Nr -~ -
0Q," = = o o < V(I, L) >
2‘FT alz

A periodic solution to equ. (5.20) can be obtained by writing V and G as

V( Y1, wQ’T19f2’S) = E Umlmz(‘flsi.z;s)'e-[[ml Vit me LpQ] X (5.25)
ml va
- - -~ -~ 5 1
G( Lplg WZ, II’IZ'S) = z gmlmZ(IllIZSS) .e1[m1 Yptmy, ¥, ) (5.26@)

Mi,Mo
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where Vm,m, is periodic in s and where according to (5.23) we require
gmlmz(llv IZ)_ S+L) = gmlmz(‘flg Tz, S) » . (5.26b)

On substituting (5.25) and (5.26a) in (5.20) we get the differential eguation
connecting the coefficients g and v:

. ZTF o~ - 21’1’ -~ -~ -~ -~
{1.[—[— Qully, 1) em, +TQ2(11912) smpl + 5%} gmlmz(Ilslz,S) =
= = Vam, (1, I, s) (5.27)

This may also be rewritten as

. 2T
a ¢ 3120 {m,Q, +m .5 P
5’§{e L L 1Q; 2Qz] .9"'1"’2(11’ 12, s)} =
3 .2']r » - -
sl E [mQ, +myQ,) »s | UnndTis T2, s) . (5.28)

By integrating (5.28) from s to {s+L) and using {5.26b) we then obtain

i i ..er . .lzﬂ L)
gl‘nlmz(Ii, I,,s8) - " T (M Q1+ myQ ] (s+L) et T [m,Q,+ m,Q,] )
S+L ~ 1,2E[m Q + m Q].g N R "
=- f e8! M MLy, (T T, (5.29)
S

from which

1.,1,,s) =
gml m ( 1 2 ) 2 'S'ian[mIQl * mZQZ]

s+ o “ o~
X £ ¥+ V(15 15,%)
. ei.?.l:"l [m,Q,+m,Q,] -(g—s-%) (5.30)
so that (5.26a) finally:
G(w,, ¥, 1,0 1,,5) = ]
Cons s Ty Ts s) m};mz 2 «sinmm,Q, + m,Q,]

s+l o . -~ .
X f ds * Umlmz(I].’ 12’ S)

S

X ei'{[ml Wy #m, W1+ 'Z'L"r‘r‘[lel'*szz](ﬂS'-S-%) . (5.31)
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If the function Un ym, in {5.31) is furthermore expanded as a Fourier series in
S: PR ’

Onymy (B T2y 8) = Donna (Ts Tpp ™70 0 - (5.32)
172 n ‘1 2 .

then G takes the form

. 2n .-
= & - Jalm, ¥.+Em, Y a2 .5
Ummn(la 2)'e [ ! 1 2 L J

s 2 . L 1M2
G(wh \92,11,12,5) = 1}'2"_’-; E - T e T
: T Tmymgn (m,Q, + m,Q, - n!

- (5.33)

-~

~ Since H is in first order independent OF‘QI and @2, the canonical equations

di, _ & . 4L __of
ds aq'jl ’ ds a(ﬁz

-~

prédict that fl, I, are constants'o# motion which together with equ, (5.17):

R T LTI SRR PR
. | (5.38)
- a ) -~ - .
I, = L+ == 6(y, Y%, I;,1,, s} -
z 2 awz ) 2 1 2: ‘

define an invariant surface.

Remark: In separating off the average of V.

o~ - -~

§:V( s 12> F Uy,

in equ. {5.15b) we have ensured that the term (5.33) for which m;, m, and n in

the denominator, m,Q, +m;Q, - n, are all zero, does_no@fappeqr.
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5.2.2 Resonances

The above treatment'of perturbation theory relies on the assumption that the
perturbation G in (5.17) is small, From (5.33) it is clear that this condition

is not valid if
m;Q; + m,Q,

is close to an integer,
At these resonances the above treatment cannot be used,
In order to obtain results at isolated resonances
MaQy + p2Q, = ng (5.35)
we use equs. (5.15), (5.25) and (5.32) to write the Hamiltonian in the form
ilmy $y+myW-n e 2n + 5]
H= Ho(I1, 1) + I vy poo(ly,Ip) e "0 727 22 L (5.36)
12
m;myn

where (by inserting (5.,25) and (5.32))

1 2m 2n L
Um1m2n= W. O[ dwl. 6[ d‘Pz'&c dS'V(\pl, wz: II)IZQS) X
~i[m, g, +m, Y, -ne gﬁ-s]
X e Y1 2 72 L - (5.37)
For the exponent in (5.36) we find
d 2 dy dy 2
‘E[mlwl"'mzwz-n"tﬁ's:]=m1'—d"'§'+m2‘_a‘ég'-n"[l
dHa(I; , T dH.(I,, ]
R My -9£J-»51-+ M, e __Eé_ii_,il,_ an---z--lT according to (5.15)
dI, d1, L
= ZLE.[leI +m,Q, - n according to (5.19) , (5.38)

The terms in (5.38) for which m Q, + m,Q, - n # 0 lead to rapid oscillations
whose influence averages to zero (Bogoliubov's averaging technique).
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It is then only necessary to take into account the slowly varying terms
(mls My, n) = (“1: Hos no) ’
(m]_! mgt n) = ('pp 'uzs 'no)

in {(5.36}. Thus, the Hamiltonian H simplifies to the form

; 21
iy W +p, W, -ng e S5 es]
H(W, %o 1), 1,,8) = Hy(I,,1,) + {Uuluzno‘ g tH1 VLT Ha ¥y )

. 2m . '
b ooy o eeT W R ng s FResTy g
Ui M2y

Because the perturbation V is of the form

) Cnyngngn, (5) = 31 32 %32 B3¢ (5.40)
nyn,ngn,

(see equs. (5.6) and (5.10)) the quantity UUle”o can now be represented as

1 ia
U!-hpzno ='§u.f(11s I,)-e (5.41)
with
L S §
(I, I,) = 1.2 12 . ' (5.42)

The factor » is called the "driving term" of the resonance,

Then we have (5.15a):
H(w1sw2’11912:s) = ﬁo(IlsIZ) + <V(Ilslz)>+
+ *VI;+«1,4cos{ + Yy = Ny gﬂ--s + O]
Vit 4, Hy W T M % - ng L - (5.43)

Two canonical transformations will now be applied to this Hamiltonian,

In the first

(Y, Yoo I1y 1) —> (P1,9,, Iy, I,)
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with the generating function

~ I 1
F (9, g, 1, 1,8) = Wl 4 Yo 1, - HolI;,1z2) s T N ) (5.44)
2 b Mo
one has .
aF. aH
cpl = ---E— = '411 - -.---—O- L + E - _].:— ;
ol, oL, 2
oF ol
¢2 = 2 = wz - __El « g + 9.- ~;# ;
-9l al, 2 M2
H ﬁ— o+ SFZ
- - 3%

= wf(I,, I;)+[cos p, @ + Mo @y 4 %%[-A- s] + N> (5.45)

where we have used the notation

L i, L o,
A = @ e —m— + - — -
My o ol, Ho o1 31, Mg {(5.46)

to represent the distance from the resonance.

A further transformation
((101, (-023 Il, 12) —> ((Pl, q)zs 119 Iz)

using the generating function

I I p
T TR TN TS T A e R (5.47)
then gives
~ oF
9, = -z = ¢, +}_[_\‘.5.g..11..,ld :
911 Z L H
~ _ 8F 1 2, 1
¢ = “E = @ +ZAeSe—eT—
2 a1, 2 2 L bz
— IN ~ p— 82
Ho—s> H($,%, ,1,, ) =H* 3£

I 1 P b ~ :
= }-A-(_l-+ -2) L2y wf(l,,1,) »coslp, @+ pp Ppl+<V> (5.48)}
2 25} Y L
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whereby the canonical equations for H are

% - 5‘2?; = ..21. {A.ZL_“HI: * oy e cosfp, @+ p, e 9,01+ 3<3;1> ;  (5.49a)
% = 5%* = él—{fl\ gl_-ﬁ"&; tonfy ecosly, o8+, § 0+ a<§1: 5 (5.49)
%é? = - gg? =upc w f{I, L) esin(p 9 +p,-9,) ; (5.49¢)
%ﬁ?-z - §§§ =My w (L, I,) esin(u,-8, +u, - 8,) | (5.49d)
Since E is not explicitly s dependent:
W, , 8,, I,, 1,) = const. (5.50)
From equs. (5.49c) and (5.49d) it follows also that
L const. (5.51)
My 2

From the last equation we see that for a ”differénce resonance" for which

sgn(py) = - sgn(p,)

the motion remains stable whereas for the "“sum resonance" for which

sgn ;) = sgn(p,)

the variables I, and I, may in principle become arbitrarily large so that the
stability of the particle motion is no Tonger guaranteed,

We note here that other treatments (e.g. ref. 10) find that for ultrarelati-
vistic particles, it is the difference resonances which turn out to be un-
stab]e; However, there is in fact no inconsistency with our treatment: the
frequency Qg used here is negative (see equ. (4.63)). We recall also that
beTow transition the stability conditions become interchangedlz).
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Equations {(5.48), (5;49) and {5.51} cohtaﬁn all the information necessary for
a detailed investigation of the synchro-betatron phase p1ane; For example, for
the unstable resonances, the stability limits (i;e; the rescnance widths) for
the amplitudes I,, I, can be investigated by applying the fixed point condi-
tions:

oH . 3 g, (5.52)
aIl,Z 3@1’2

This correspond to setting the right hand side of equs..(5.49) to zero and
solving.

From the resonance width one easily derives a growth rate on the stability
Timit,

Furthermore, we can easily take into account the effect of the amplitude
dependent tunes (detuning) which are produced by the term < V> in the
Hamiltonian.

The presence of weak detuning leads to an asymmetric resonance width, For
stronger detuning the rescnance is stabilized and if the detuning becomes very
strong the stabilized resonant trajectories begin to overlap. This in general
leads to chaotic behaviour ).

Remark:

We have used Bogoliubov's averaging technique to cancel the high freaquency
terms in equ. (5.36)19). Another way to eliminate these terms is to hodify the
perturbation technique described in chapter 5;2.11). In this case we write the
perturbation term V in equ. (5.15) in the form

27
_ i y F Y,- Nye —=5S
vV = Vo + U“l“znu' e [“1 17 Ha % 0% L }

. 2
“ilu, ¥t U, W, - n o == S]
Vo, -p,-ng v © . SR

where we have excluded from V the dangerous terms vy .. n, and (SURTRT R P
Then, using the function V, instead of V in equ. (5.20) the generator & in
(5.33) remains small (even in the neighbourhood of this resonance:
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mQ, + 1,Q, =n,) and for the Hamiltonian H in (5.18b) we get in first order

. 2
-~ -~ -~ -~ A -1 + - * —
H= Ho(I,, I,) + UH1U2no(II’ I,)+e [gl V7 b ¥, - Ny [ 5]

s - 3 2'11
+ 1,, 1,)- e‘1[U1 i+ pp ¥ - Ny e [ * 5]

-

U'Ml,'U2s"”o(

-~

Ils TZ

instead of w;, w,, I,, I, . In this way we arrive again at equ. (5.49) and

We then proceed in the same way as in equ. (5.43), but writing @1, @2,
the subsequent development of this equation proceeds as before.

5.2.3 A special case: linear sum and difference resonances

The equations (5.49) can be easily solved for a Tinear resonance (lu] =
ol = 1)2°) . To achieve this we note that:

f(I;, I,) = VI, 1, , <¥> =0

and we introduce the intermediate guantities

uy = VI »cos® ; ou, = VI, - cosd, :
v = VI, - sin&& DUy s VI, e sin&% ' (5.53)

We treat the sum and difference cases separately.

1) Sum resonance

For the 1linear sum resonance with

My =y =1
we have ((5.52})
] 1 2TT
UI: E'[K.UZ-A.T.UI;
T R PP L
(5.54)
‘U;: -%-’[H,'UZ +A'2LTT.U1:|,
u£ = %-- [ueu, + A--%? < U, ]

so that for the quantity

UJ=U1 +i‘uZ (5.35)
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we get
wh =y; +1-u,
1 —% 2T
=z Z[jenrw - Ae=—ey
2 : L ]
1 — 13k 27 '
w'= =[ienus(w ) -4 TT.(ﬂ 1
with
W=y +ieu ;
W' =l e v,
= l[iouow*'}'AOZW‘m}o

2

By substituting (5.57) in (5.56) this results in

w'" = -Q% e w
with
1 .,2m
522=__ ____.AE__Z .
7 [(L )2 - n2]
The solution for equ. (5.58) is
w = As eiQ-s + 8 ,e-iQ-s

However, from equ. (5.59) and (5.60) we see that if

L
A > ———
2] 21 *

the motion is stable and if
L

IAI<—'—.K
2T

the motion is unstable,

he quantity
|U11n |
Q

G S ;
° \/11'12

-y
2T

L
m

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

thus provides a measure of the stopband width of the Tinear sum resonance.
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2} Difference-resonance

For the linear difference resonance with

wy =1, pp=-l

equ. (5.52) gives:

u{=-%'{n°u2+A'U1];
[ 1 7 .
U2-—"2—'[M'UI“A‘U2_,,
(5.62)
vl = %--[u- U, = Aeu,] ;
_ 1
Uz- E"[M‘ul“A'UZ].
In this case we obtain for the quantities
LU1=U1+1'U1;bI1°eT(p1 M
e (5.63)
W, =U, +irv, VI, e1cp2
the differential equation
g-T—r-A H Wy
d (wl i L
ds 3
Wy " -g-T—T-A Wy
L
with the solution
UJI " S0y . -H _30 .
= A - ) 1S 4+ 5. N
W, 2¢0-58.p 2e0+ Sme
L L
(5.64)

where Q is given by

02 = 7.11' [(-2.[?71-13)2 T (5.65)
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To extract information on the resonance behaviour we consider the case

wi(0) = 0 w,(0) # 0 (5.66)
s0 that
w, {0
N-p - ,0) ’
4Q
and we obtain
Max|w,(s)] = Max VI, = '%5' w,(0)1

z % - VI1,0) . (5.67)

1

From (5.67) it is however clear that the gquantity Max er? which 1is equal to
yfT;T6T at &4 = 0, approaches zero monotonically as the distance from the reso-
nance, |A|, becomes large and has the value % V1,07 at la] = -551/3- w. The
oscilliations for the linear difference resonance thus remain stable in
agreement with equ. (5.43) and the guantity

L |
0 2nm ?T‘ o ‘ (5.68)

can be interpreted as the width of the resonance,

The starting condition

wl(o) # ¢ s mZ(O) = 0 3
of course iecads to the same result.

This is an example of a coupling resonance {at A = 0, Max VI, (s} = Max¥1,(s);
see equ. (5.64)) in which there is a large exchange of energy between both
degrees of freedom but in which no instability appears.
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5.3 Consequences for Synchro-betatron oscillations

We now apply these results of canonical perturbation theory to the special
case of synchro-betatron motion. For this purpose, we consider that the func-
tion V of equ. (5.11) is given as in (5.6) and (5.10) by

V( wl: q’z; Ils Iz; S) = w( wl+ Xlsw2+ xzs Ila IZs S)

= 2 Av, v, vy, (8)
VisVy Vg,V ‘

{V28,(s) =1, v cos( v+ X1 x

X
21, _ | N
{- 3.05) s [sin{ 9w+ X} + ay(s)-cos{ v+ X))} 2 x
X {‘/m-cos( Y, + XZ)}Vs X
X1 ;.212.[Sin(ku+x)+o¢(S).Cos(erx)]_vq
T Bg(s) 2 "2 0 , T X,
= Hy(X, Py, &, Tgs S) (5.69)

with the coefficients A (s) defined by equ. {3.8).
ViV, VsV,

Using equ. (3.8) it can be shown that the average, <V{Il, I,)>,is zero

s

<V(L, L)> =0 (5.70)
so that the function V (5.15b) is identical with ¥ and the Q-shifts 60&” and
50" (5.10) disappear:

50 =0
W (5.71)
805" =0

Thus the Q-values remain as defined in equ. (5.7):

Fy (%)

1 :
B, (3)

27

Qy = ds . (5.72)

O b=

(v = x, ).
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For synchro-betatron resonances the dinteger coefficients gy and p, in the
relation (5.35)

UI'QX * UZ.Qg: Mg
are confined by the condition

Al + lpy| £ 3

since the Hamiltonian (2.11) was developed only up to third order (see equ,
(3.8)) in this treatment.

For the Fourier coefficients Uiin, Which determine (5.61) the stopband width
Ag*) of the 1linear sum resonance we obtain ((5.37), (5.69), (3.8)} after
carrying out the integrals in &, ,:

L . 2m
Viin, = % [ ds se'Mor s --% I, 1, X
5 _

>

fcosXy(s) + i+ sinX,{s)]« [cosX,(s) + i+sinX,(s)] x

{Aioyo (5) VBX(S) * Bols) -

>

Bals)

- Aguyo (s)* [—im s [0+ ay(s)]) (5.73)
with
Alogp (8) = evis) sk o 2T cos® « D.(s) ,
By L
(5.74)
Agrie (s) = - %giil « k L 2T cos @ « Dy(s)
0

Note that only the cavity term (3.8A) contributes here,

In a similar way, for the Fourier coefficients Ul,_l,no of the Tinear diffe-
rence resonance with resonance width Aé'):

L i 20
;_ f ds » e1no. ) - S,
0

1 VI
Vi,~1,n5 7 L 2 Iy« I, X

x [cosXi(s) + 1 «sinXy(s)) = LcosXy(s) - i+sinX,(s)] «x
x {Ajorp (5) * VBX(S)' BO(S)' -
R .
- Agr1o (5) - () - [-1+ ax(S)]]’ . (5.75}

By (s)
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As an example, for a typical HERA electron optic:

(+) -3

Ay = 610 :
(-} -3

AO ~ 6 d 10 .

We have chosen to illustrate the perturbation theory in some detail only for
the case {u,| = lu,| = 1. We should point out, however, that for this case,
which has to do with the term (3.8A), the equations of motion are 1linear;
hence the use of the term, Thus, for this example the problem can also be des-
cribed non-perturbatively and hence more precisely by using the eigenvalues of
transport matrices as was originally done in Ref. 10,

As has been pointed out previously !9s%2)

» the Fourier coefficients LITERTI and
the accompanying resonances can in principle be made to vanish by suitable
choice of phases between the cavities and of dispersion values in the cavi-

ties. See for example equs. (5;37), (5;73), (5.75).
Higher crder synchrotron sidebands can receive two kinds of contribution:
a) those originating in the sinusoidal (non-linear) form for the
cavity voltage which is expressed by the series expansion in equ.

(3.8) of the cosine term in equ. (2.4b), and

b) those caused by chromatic effects as for example in terms {3.8C)
and (3.8D).
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Remark :

Particle motion may be described ((3'6) (3.7)) using the variables X, px, g,
pU Sikce the variables & and pO vary slowly in comparison to X and px, we can
make the approx1mat1on that pG is constant so that the perturbation terms

1~ ~ }\ ~
- 5 Px Py - Py and 2 Dy » X2 P

in Hy (3.8) lead to a Q-shift for the x-coordinate, AQy, proportlona1 to Py.
From equs. (5.16), (5.14), (5.4a) and (5.8a) we obtain

L 2m
AD. = LS 1 d de. « [- £ + 2 =D F21
L .

~ ) 1 2y 1 1 1

= ® e & —— dS. - e B — —_ ___,)\ - . -

Po * o1 aIx{g X (2 2“"“2 o Dx* Bxr Ix]}

1 L
Pyt o é ds = [-vy + Ag* Dy By (5.76)

Furthermore, from equ. (4.17a), if we put F = 1, so that the influence of
cavity fields on the betatron motion is neglected (equ. (4.2a)), then:

L L
fdsel-vy #+By* 6= dseay(s)
0 0

where

G=K>2(+gO
Then instead of (5;76) we can also put

Q 2
7:5.: s [=(Ky +9g) + Age D18y . (5.77)
P

O —r
[N

1
4y

This is the usual expression for the linear chromaticityZ2!s?22),
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6. Influence of cavity fields on betatron motion

In separating the Hamiltonian H into unperturbed parts H,, and Hoy and the
perturbation H; (equ. (3.6)-{3.8))we have included the term

U(s)=--i;e—\éjs—)-k-%-FEX-DX-Y'DQJZ (6.1)
O

in Hyyx. The equation of motion for unperturbed betatron motion is then

g [ X X
vl = [A(s) + SA(s)1-| _ (6.2)
S px pX
!
with
0 1
ﬂ(s) = . ; (6.2&)
'(Kx+go) 0
Dy(s)* Dy(s) -0y (s)?
SA(s) = e;(s) . %E'k-cosw- . (6.2b)
° Dy{s)? -Dy(s) + Dy(s)

The usual treatments of uncoupled betatren motion are based on the egquation of

motion
~ ~
d X X
——— = A . .
= CYCOT N (6.3)
Py Py

The term 8A(s) in (6.2) would then be treated as a 1inear perturbaton.

We demonstrate this here for the calculation of the Q-shift. The first step is
to write the one turn transfer matrix as

M(sg+L, sg) + SM(sy+L, sq)

where M(sy+L, Sq5) refers to the unperturbed motion (equ. (6.3)).
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This is achieved by considering the perturbation 8A(s) in the intervals
$s s sythsy (u=1,2,...,p)

50 that we can write

Mlsg*L, so} + M{sg+L, so) =
= M(sy+L, sp)- M’I(sp+Asp,sp)- [.f_‘/l_(sp+Asp,sp) + éﬂ(sp4bsp,sp)] X
X MCSpaS(po) = M5 (p1) #85(pon)s S(por))* TMIS(poy) *85(p_ 1), S(poy)) +

tOSMIs(pay) *AS{pe1)s S(p-1)]

+As“, Su)° [ﬂ(s“+ﬂsu, s“) + éﬁ(sp+As“, su)]

X M(sy, so). (6.4)

According to egus. (6.2} and (6.3) we have

Mis+as, s) =1+ AseA(s) ;

M(s+s, s) + M(s+hs, s) = 1+ s+ [A(s) + 6A(s)] |
so that the factor

_nvl'l(:suﬂxsu, sp) s [Misy+idsy, sy) + SM(s, + b5y, 5,01
can be written as |

ﬂ"l(s+As, s)+ [M(s+4s, s) + SM(s+As, s)]

——

1

[1~4s «A(s)+[1 + as- A(s) + bs- 65_(8)]

1+ As - 8A(s)
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Then equ. (6.4) becomes

M(sg*+ L, sg) + M(sq+L, s4)

= M{sq+L. Sp) {1+ Asp G_f;\_(sp)}

x Msps s(p-1)* {1+ as(p.y) - SA(s(p_1))}

*
*
*

x M(s(e1)> Sude {1+ a5 8A(s,)]

*
*
*

X M(s,, S} {l + A5y . 5_'0\_(51)}

x M{s,, Sq)

and the expression for &M is in first approximation:

Sott ~ ,.. ~
§M(sg* L, sg) = [ods e M(sg+ L, S). SA(S) - M(S, s,)
50
= Mlsg+ L, sot e [ dS«M MT, s5)« SA(T) . (T, s,), (6.5)
5o

The Q-shift is then calculated by considering the eigenvalues of the perturbed
one turn matrix M + M (see equ. (4.36))23):

M+ SN (O + 80;) = (Ap + SA) (U + 80p)
Using the fact that ﬂﬁl = J\IﬁI we obtain in first order
MedBp+ 6Me0p = Ap+80; + Shpev; . (6.6)
The tune shift is defined by (equ. (4.37)):
i

A T e s G . 6.7
Qx o5 . }\I I ( )
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-> . . . > >
vy can be written in terms of the eigenvectors vy and v_;:

> - -5
GUI =ap*urta_* vy

and by multiplying equ. (6.6) from the left by 5£* S and by using equs.
(4.38a), (4.40) and (4.36) we obtain

UFS-6M 0= &xp -1
Recalling
NIT(Sls 52)._5_.M(Sls Sy) =35
.__.> >+ = 7+ il ! T
= Vi{sg) S Mlsgtl, sg) = ui(s)e [N (sg*L, 551 =S

MO, = = e F(s, ) S M(s +L s)SO}'L dSeM™" (8540 SA()-M(S, 5} + 0, (5,)
X oA IVog/ 2 820 TR0 .s - 7o/ PL RS 20
- 0
> SO+L ~ ot ~
o I C I dSe M7, 50) + S - SAR) + T (D)
2n SO
S+l
- 5;. o1 g7 VFE) s S+ 6A(R) -0, (3) (6.8)
S
AQy is real:
| My = 80,F

since (6.2b)
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By substituting these expressions in equs. (4.35a} and (6.2b) the final expres-
sion for the Q-shift generated by the cavities is:
1k Sotl eV!S) ' 12 z ;
My = - 5T "cos9 §[ ds » E. «[By+ Dy + vy* Dy + 20, +D,0, 1 (6.8)
)

The same result is obtained when the prescription in equ. (5.16)

L 2
A 7 e <UL} >
O 21 9l (L)

is used in conjunction with the average of the perturbation in equ. (6.1)

L 27
<u(1,) > L Tas | dyy, (- 28Us)l . 2my
2l 5y 2 g, [

=

21
{-Jﬁi‘[sinwx X))+ oyt cos(wy + X)) - Dy
X

o
- V2B, I, scos(wy + Xy) e Dy}

As is already clear from equ. (6.1) the Q,-shift vanishes if the dispersion
vector (D,, Dy) in the cavities is zero,

Even for the case when (Dy, Dy) # (0,0) in the cavities, 4G, is normally so
small that it can be neglected.
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7. Summary

We have demonstrated how the well-known techniques for applying canonical per-
turbation theory to non-Tinear betatron oscillations can be generalized to the
case of coupled synchro-betatron motion.

For this purpose we have utilized a dispersion formalism for the unperturbed
oscillation modes. This enables us to introduce action-angle variables which
can be represented in terms of appropriate Twiss parameters.

The Twiss pafameters themselves have a more general form than those used in
usual machine theory (Ref. 16). For numerical calculations, however, it is
usually sufficient to use Courant-Livingstone-Snyder forms for the transverse
motion and to use an oscillator model (equ. (4.70)) to describe the longitu-
dinal motion.

In order to simplify the presentation we have suppressed the z-motion and only

considered transverse motion in the x-direction. Inclusion of motion in the
z-direction presents no difficulty and proceeds just as for the x-direction?s)
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Appemdix I

The Hamiltonian for Electrons in the Preserice
of Radiation Losses

R e e R ey A i o e T W R e e M AR MR W M W W b WA A AR

to describe the energy loss by radiation in the bending magnets. In this case,
the cavity phase in (2.11) is determined hy the need to replace the energy
radiated in the bending magnets. Thus

seti sgtl . .
[ ds.eV(s)-sing = Joods e By e €y [K(s) + K3(s)T . (1.1)
5o Sq
\“““*-—-—v—-———--"/ N—— ~ —
average energy uptake average energy loss due to radiation
in the cavities ; in the bending magnets.

In addition to the guadratic and cuhic terms in x, Pxs Zy, Pz, O, Py inH, a Yi-
near term
- g+ Cy(s)

appears with

Cols) = =« {eV(s)e sing - Eg- €, - TKE + K21} (1.2)
el

The additional linear term only produces a closed orbit shift. The average of
the coefficient c,(s) disappears according to equ. (I.1):

+L
SOI ds s cgls) = 0 \ (1.3)
S0

The o+ cy(s) term only accounts for the average energy loss. Deviations from
this average due to stochastic radiation effects and damping introduce

non-symplectic terms into the equation of motion and cannot be handled with-
in a canonical framework.
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