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Abstract: A method for simulating quantum spin systems with nearest neighbour
interaction is reviewed. In the framework of a path-integral approach based

on the Trotter formula, the quantum spin system is mapped into the 1imit of

a sequence of classical spin systems with one extra dimension. Numerical
questions connected to this limit are discussed. The role of particle and
winding numbers is clarified. An overview of the problems investigated by

our group is given. In particular, two new results are presented. A simulation
of the one-dimensional spin S isotropic Heisenberg antiferromagnet, S=1/2, 1,
3/2, 2, supports Haldane's conjecture that the mass gap is zero for half-
integer S and nonzero for integer S. For the two-dimensional spin 1/2 xy model
we discuss evidence for a Kosterlitz-Thouless transition. In particular, we
show that the helicity modulus can be computed directly from our simulaton.

1. Introduction

Since the pioneering work of Suzuki [1] there have been numerous attempts to
simulate quantum spin systems using a path-integral approach {see [2,3] for
reviews).

We consider for simplicity the Hamiltonian

_ XX Yoy 2% S
Hy = - 2 (stjsk + 0 SIS+ 0,555, + 3) (1.1)
<j,k>
Here <j,k> is a nearest neighbour pair of lattice sites, 5% (a=§}y,z) are
spin S generators of SU(2) at the site j, J_ are couplings’and B is an
external magnetic field. The lattice will b& denoted by A , |A|=L in d=1
dimensions, |A]=L,x Ly in d=2, L, L, and L, are even. Periodic boundary
conditions are assumed.

The expectation value of an operator 0 is defined by taking the thermo-
dynamic limit: .
Tr 0, exp(-8H,)
<0A>A = 4 A <Q0> ' (1.2)
Trexp(-gH,)

(B is the inverse of the temperature T). Notice that OA is not necessarily
equal to 0, only 0,~ Q0 is required. Now we decompose HA into sums over
commuting local opérators K{r)

_ — f -
Hy = -Ay B, . A= > Kir) , B, = 2_K(r) (1.3)
reS; reds;

*
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S1,, being two sublattices, and we use the Trotter formula [4]

. z = - -
exp(-gH,) = Vim (T, WV, T, = exp(BA,) exp(2B,) exp(BA)  (1.4)

with 3=B/M, M=even. The expectation value <0A>A is obtained as the limit
M/2
Tr OA,M(T )

<0 (195)

ALM H_+A<OA>

AMAM T W72 oo A

Tr (TA,M

Again, OA,M is in general different from OA’ but OA,M QVOA as M. By inserting

complete sets of eigenstates of the 5% operators, & = z or X, a classical spin
system on the lattice AxM is obtained: For h=0, this system will have con-
straints [5]. In particular, if we use z-spins as intermediate states the
configurations can be interpreted as sets of particle world lines [6-8] (in
[6] a preliminary account of our work was given).

In section 2 the classical spin system in d+1 dimensions (d=1,2} is dis-
cussed. The Monte Carlo procedure used to simulate it can update also the
particle and winding numbers of the world lines. Section '3 deals with the
numerical problems encountered when taking the Mse limit and the thermo-
dynamic 1imit. In section 4 questions related to the particle and winding
numbers are discussed. The conclusion is that the finite size effects are
smaller if the particle number is allowed to vary but the winding number is
fixed to zero. If we allow the winding number to vary, then in d=1 it turns
out that in the thrmodynamic 1imit the winding number only ‘takes the value
zero. In d=2 this is true at high temperatures only. At Tow temperatures the
winding number has a smopoth distribution. :

We have used our quantum Monte Carlo method to investigate a variety of
models. In [8] we started to develop the method. For the first time a mode 1
with $>1/2 was simulated. In [9] the continuum 1imit of the Thirring mode]
with Susskind Fermions was investigated. The first high precision quantum
Monte Carlo simulation was performed in [10] for the d=1 S=1/2 isotropic
ferromagnet and antiferromagnet. Our original analysis of the data in [10] was
incorrect, as shown by comparison to Bethe-Ansatz results for the ferromagnet
[11]. The reason was, paradoxically, that our low temperature data had too
small statistical errors, so that the method we had previously used to extra-
polate to the M== 1imit no longer worked. In [12] we showed that the discre-
pancies to [11] disappear when the extrapolation is done more carefully.

In order to perform high precision calculations, we wrote fully vectorized
programs for general spin S in d=1 [13] and for S$S=1/2 in d=2. Further savings
in computer time can be achieved using a variance reduction technique for
guantum spin systems [14]. :

One-dimensional quantum spin systems have been studied in numerous experi-
ments [15]. Typically the spin and coupling constants of some quasi-one-dimen-
sional material are determined by some fairly reliable method {(e.g. ESR) and
then neutron scattering is studied. One difficulty in comparing theory with
experiment is the lack of a reliable lTow-temperature approximation method.

In [16] we showed for several S$=1/2 and S=1 examples that quantum Monte Carlo
results compare well to experiment in cases where other theoretical methods
have failed.



Haldane [17] gave arguments that the S=« limit of d=1 xxz models is
approached in a different way by integer and half-integer values of the spin
S. In particular, he predicted that for the isotropic antiferromagnet the
mass gap is zero for half-integer S and nonzero for integer S. This "Haldane
conjecture" gave rise to a considerable controversy in the Titerature[18].
On the balance, S>1/2 finite chain diagonalization results seem to confirm
the Haldane conjecture. Doubts remain however since the size of the chains
for which exact diagonalization is still feasible is quite smail. In section
5 we present results for S=1/2, 1, 3/2 and 2. They were obtained at finite
temperatures for chains large enough to be effectively in the thermodynamic
1imit. The T-0 behaviour strongly supports the Haldane conjecture.

In two dimensions, the S=1/2 xy model {J_=0) has also been subject to some
controversy. The results of two calculations®using different quantum Monte
Carlo methods [19,20] do not agree [21]. In particular, the procedure of [19]
is criticized for not being ergodic [271]. In section 6 we describe our preli-
minary results for the d=2 5=1/2 xy model. We establish a connection between
the winding number distribution and the helicity modulus. At low temperatures
our simulation yields a well-defined value for the helicity modulus. This is
strong evidence for a massless phase [22] (i.e. a phase with power law decay
of correlations). The possible interpretation of this result as evidence for
a Kosterlitz-Thouless transition [23] is discussed. The acceptance rate for
the update of the winding numbers in extremely small, and it decreases with
increasing lattice size. Moreover, a simulation with variable winding numbers
produces larger finite size effects than for fixed winding numbers. We indicate
a way to compute the helicity modulus from fixed-winding-number simulations.

Section 7 ¢ontains our conclusions and outTook.

2. The Classical Spin System and the Monte Carlo Algorithm

In order to map the d-dimensional quantum spin system into a d+]-dimensional
classical spin system, we used the following break-up of the Hamiltonian (see

(1.3)):

d=1: A = Z_H(§,3+1) , B, = Z_ H(j,i+1) (2.1.a)
j=odd j=even
d=2: A, = Z__ K(p.), B, = Z__ K(p;) , Jj=(3i,dz2)
A LTI J N T J
J1,J2=0dd Ji,J2=even (2.1.5)

with K(Pj) = H(J,3+1)+H{ 341, J+1+2 4H(§+2,5+1+2)+H(j , §+2)
Here H(j,k) is the link term in (1.1), 1, 2 are lattice unit vectors in direc-
tion 1, 2 (the lattice spacing is one), and K{p.) is the sum over the 4 link
terms around the plaquette p. (with lower left “corner j)}. By inserting com-
plete sets of eigenstates ofd % in {1.5), a classical spin system on the
lattice A x M is obtained. A cldssical spin configuration s consists of spins
s(j,r), jeh, r=1,...,M and s{j,r)e{-S,~S+1,...,5-1,5}. The partition function
is [1, 5, 7,6,8,20]:

d=1: 7, = Z AT f6)  (2.2.9)
i s p=int
d=2: 7, y = > TT fla) (2.2.b)

s c=int
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Here p=int means an interacting plaquette in 1+1 dimensions, c=int an inter-
acting cube in 2+1 dimensions. For p=int the coordinates of the lower-left
corner are both even or both odd. For c=int the coordinates of the lower-
left-forward corner are all three even or all odd (there are LM/2 interacting
plaquettes and L;L,M/4 interacting cubes). With the notation introduced in
fig.1, the contribution of an interacting plaquette or cube to the Boltzmann
weight of a configuration is:

d=1:  f(p) = <sy,sz|exp{-2BH{j,j+1)}|si,s3> (2.3.a)

T
™~
—+
——
9
——
It

<$1,52553,5u lexp{—ZBK(pj)} |si,52,583,54> (2.3.b)

As a consequence of the symmetries of (1.1), the configurations of the
ciassical spin system may+be subject to constraints. For the xxz model, de-
fined by szdy’ "h=0 (or h in z-direction) the total magnetization in z-direc-

tion Siot = 1 s% is conserved and f is zero unless (xxz constraint):

J
d=1:  §,45; = si+s (2.4.a)
d=2: S1+S,+53+S, = Sl+s4+Si+sd _ (2.4.h)

For the xyz model, defined by F=0 (or A in z-direction) the total magnetiza-
tion is conserved only modulo 2, and egs.(2.4) hold modulo 2 {xyz constraint).
The other symmetries do not lead to constraints, but to symmetries of f. Thus
in d=2 f is invariant under the group Dah'

For the xxz model (2.4) implies:

n_ = zi:s(j,r) = constant in r {2.5)
P Jeh
A configuration can be seen as a set of particle T1ines. There are s{j,r}+S

world tines of particles passing through the point j,r of A x M. The particle
lines wind around the torus both in Trotter {Euclidean time) and in space

directions {7,6,8]. The conserved total number of perticle lines is n +|A]S.
Egs.(2.4) also imply conservation of the winding number(s) n, [8,25]:

d=1: n, = Zil(—1)J+rs(j,r) = constant in j (2.6.a)
r .

d=2: n, =2 (-1)777s(3,r) = constant in §i . =(d1.d2)  {2.6.b)
Jz,¥F

and N, is defined similarly, by interchanging j, and j..

p=int

jsr jl&str

Fig.1: An interacting plaguette ( = even or j,r = odd) and an interacting

J»r
cube (J,,32,v = even or ji.ja2,r=odd).



-5 -

For the xyz model the particle and winding numbers are conserved only
modulo 2.

The existence of constraints restrict the class of expectation values
(1.2) that can be_computed using (1.5) [8-10].The general ruie is that OA M
is a product of s% operators or is obtained by taking derivatives of the™’
free energy of Jthe classical system on A x M. Sometimes other quantities
are also accessible. In order to compute x-x correlations however, a new
simulation with J_ and J_ interchanged has to be performed. As will be dis-
cussed later, all*these unantities can be computed both for fixed and for
variable particle and winding numbers.

Let us now describe the Monte Carlo algorithm used to simulate the xxz
model. There are three different updating procedures: a local update that
preserves the values of np and n,» an update of np and an update of N

In 141 dimensions the local update changes the values of the 4 spins at
the corners of a noninteracting plaquette. In the notation of fig.2:

S, + S0, Sz * S2-0 , S3 > S3tog , Sy * Sy-0 , 0 = ‘_'_‘] (27)

The constraint (2.4.a) is not violated for any of the 4 neighbouring inter-
acting plaquettes. In 2+]1 dimensions the Tocal update involves 4-spin changes
for the plaquettes that are not on the boundary of some interacting cube. If
such a plaquette is time-like, then (2.7) is used for the update; if it is
space-1ike, then the 4-spin change is: i

Sy » S1t0 , Sz * S2-0 , S3 > $3-0 , Sy + Sut0 , 0 = i (2.8)

The constraint (2.4.b)} is not violated for any of the 4 neighbouring inter-
acting cubes. In 1+1-dimensions (2.7) can "deform" a particle line locally

in all directions. This is not true however in 2+1 dimensions. In this case
we supplement the local update procedure by offering changes that result from
the formal product of two one-plaquette changes (2.7)-(2.8), such that the
two plaguettes are faces of the same noninteracting cube. It may happen that
a single plaquette-change leads to a zero weight (i.e. not allowed) configu-
ration, but a formal product of two such changes again produces a configura-
tion with nonzero weight. Using this local update procedure, a particle Tine
in 2+1 dimensions can be also locally deformed in all directions [25].

Notice that for $=1/2 eqs.(2.7)-(2.8) can be replaced by a simple flip
of all 4 spins.

The particie number update is performed by offering:

s(j,r} = s{j,r)+a , o = 1 , for all r=1,...,M (2.9)

This ammounts to inserting or removing a straight particle line: The winding

number is updated by {update of n, and n_ ):
) 1

S3 Sy Fig.2: Notation for the 4-spin changes (2.7)-(2.8)

S Sz



d=1: s(j,r) » s(j,r)+ (-1) ,0=+1, for all j=1,...,L (2.10.a)

d=2:  s(j,r) > s(j,r)+ (-1)3 »o =+, 3= (Ji,de) (2.10.b)

for all j.=1,...,L:

Interchanging j; and j» in (2.10.b) we get the update of N, -

2

For the xyz model, the local update is supplemented by offering a one-
spin change:

s(j,r) » s(j,r)tc , o =42 (2.71)
For S=1/2 this is not necessary.

In 1+1 dimensions (2.7)-(2.10) define an ergodic Markov process for the
xxz model. Unfortunately we could not proove that this is true also in 2+1
dimensions. However, since the particle lines can be deformed Tocally in all
directions (if 2-plaquette changes are included), we are confident that (2.7)-
(2.10} define an ergodic process in this case too.

Egs. (2.9)-(2.11) define an ergodic Markov process for the xyz model,
both in 1+1 and in 2+1 dimensions.

In section 4 it will be argued that the nonlocal parts (2.9)-(2.10) of the
Monte Carlo algorithm can be dropped sometimes. Furthermore it will be shown
that an optimal procedure is to update n_ but to keep n =0. This is extremely
important in view of the typically very P small acceptaﬁce rate for {(2.10) [8,"
25 ,26]. The acceptance rate for the local and the particle number update is
usually reasonable.

3. Problems Concerning the M -~ = and the Thermodynamic Limits

It was noticed by several workers that the linear correction in 1/M to the
M =+ e« 1imit vanishes-{see [2,3] for reviews). In particular, in refs. [8-10]
we observed that

+ 3% 3 3 (<0B.> . (3.1)

<{ = <0,>»
A jeh J A

A,M>A,M = ~<O>A<B.>

It J A)

where Bj are local operators obtained from double commutateors of AA and BA'

Suzuki [27] gave a one-line proof that the r.h.s of (3.1), considered as
a function of B {B=B/M) and B, is even in B (one must be careful not to
introduce odd powers of B by an unhappy choice of OA M). :

As T > 0 one has to take larger values of M in order to be numerically
close to the M » = Timit. In [7] it was argued that the size of the correc-
tions to the M + = 1imit only depends on the value of B. Our investigations
however [8-10,12,16,25,26,28] do not confirm this as a general rule. In the
important case that T=0 is a critical point, the coefficients in front of
the even powers of £ (see (3.1)) sometimes have a nonnegligible dependence
on 3, and they may behave differently for different physical quantities.



At the beginning [8,10] we extrapclated to the M + « 1imit by taking
values of M high enough such that the r.h.s. of (3.1) was effectively linear
in B. This is however very dangerous, as discussed in [12,26]. A correct
procedure is to fit (3.1) with polinomyals in 3? whose order is increased
until the extrapolated result stabilizes. The fits must be done for every
quantity for every temperature and for every set of coupling constants sepa-
rately, and goodness-of-fit tests should not be ommited.

Suzuki argued that the thermodynamic limit A » « and the "Trotter Timit"
M + « can be interchanged [29]. His proof however does not seem to hold for
the systems (2.2) that interest us here. In {12,26] we checked numerically
that the two Timits can indeed be interchanged. For various one-dimensional
xxz models we compared the results obtained by first taking the M + « Timit
and then the L +~ « 1imit with those obtained by taking the M = L + « limit.
Within errorbars they were always the same.

4. Role of Particle and Winding Numbers in xxz Models

In [7] it was argued that, similarly to the equivalence of canonical and
grand-canonical ensembles in the thermodynamic Timit, the expectation values
of local oprators should not depend on particle and winding numbers:

Tim Yim <OA,M>A,M,n chon e independent of n and w (4.1)
Avoe Moo 0D W

As far as . particle number is concerned, the idea for a proof can. be found
in many Statistical Mechanics textbooks. Let us discuss the reason why we do
not expect (4.1) to depend on w . The winding number is defined by counting
the particle Tines that go arcund the torus in space directions. Therefore,
fixed and variable winding numbers should correspond to different types of
boundary conditions. In the thermodynamic limit the boundary conditions
should play no role.

In a Monte Carlo simulation the problem of finite size effects is very
important. In general, finite size effects are smaller if we use a grand-
canonical ensemble. Thus in a simulation with variable particle number the
thermodynamic 1imit is approached faster than in the case of fixed particle
number. Moreover, we are often interested in nonlocal quantities {e.g. suscep-
tibility) that cannot be computed if the particle number is not allowed to
vary [8,10,21].

Let us discuss the shape of the particle and winding number distributions

pp(n) = <dn-n)> o (w) = <s(n -w)> (4.2)
(8§ is the Kronecker symbol). In all the models we have studied, p {n) is a
smooth curve, even in the thermodynamic limit. If at T=0 there is"no z-magne-
tization, the peak at n=0 becomes narrower with decreasing temperature. If we
are interested in obtaining T=0 results, it might be useful to keep the par-
ticle number n =0 {9,10]. If at T=0 the spontaneous magnetization is nonzero,
then py{n) brohdens and tends to a constant as T - 0 [8]. The winding number
distrigution behaves differently. In one-dimensional systems we find the
following behaviour [12,26]. In a finite volume, pw(w) will be of course a
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a smooth curve. As the volume is increased however, p (w) - &(w). Thus it is
to be expected that simulations with "w=0 give smaller finite size effects
than in the case of variable winding number.

For the one-dimensional xy model (J =dy J_=h=0), we confirmed th1s con-
clusion using exact solutions [12]. Notice tha% the n =0 exact solution was
obtained by diagonalizing the transfer matrix in space (as opposed to the
usual transfer matrix in Euclidean time) direction. The original winding
number was mapped into the particle number of this new transfer matrix [26].
Monte Carlo simulations for J,#0 {(d=1) also confirmed the fact that the finite
size effects are smaller for n =0.

In the two-dimensional xy model we found a different picture for the
winding number distribution. The model has a phase transition at finite tem-
peratures. In the high-T phase we found again that p,(w) + &{w) in the thermo-
dynamic 1imit. In the low-T phase however, p, (w) seems to converge towards a
smooth curve [25]. Nevertheless, at all temperatures the finite size effects
are smaller for n =0 than for var1ab]e winding number.

In section 6 a connection between p,(w) and the helicity modulus will be
established. This is in agreement to our general statement that different
winding numbers mean different boundary conditions.

We conclude this section by restating our main conclusion: the most effi-
cient simulation of an xxz system is with variable n. and with n =0. Fixed ny
is useful if we study T=0.-properties and there is no magnet1zat1on at T=0.
Variable n, is useful in computing the helicity modulus, aithough in section
6 a fixed n  method will be also proposed.

5. Quantum Monte Carlio Test of the Haldane Conjecture

We performed a h1gh precision caiculation for the d=] 1sotr0p1c antiferromag-
net with § = 1/2, 1, 3/2, 2 [28]. In order to extrapolate to the thermodynamic
and M - « Timits, the largest lattices we took were L=M=120.

If there is a mas gap, the s?_s? correlation function should decay expo-
nentially even in the limit T=0. Its Fourier transform, the static structure
factor I(g), will, in a small region around the peak at q=m, converge towards
a Lorentzian curve as T -~ 0. If on the other hand at T=0 we have a power-law
decay of the correlation function, then I(w) will diverge as T - 0.

In fig.3 we present our results for M) as a function of temperature.
The behaviour is very different for S = 1/2 and 3/2 as compared to S = 1 and 2.
If I(r) diverges we have a power-law approach to T=0

1(r) %T"YI‘ | (5.1)

and in fig.3 we should get a straight line with slope y;. For S = 1 and 2

this is evidently not the case. For S = 1/2 and 3/2 a fit with a straight

line is possible, giving the values v;=.22+.03 for $=1/2 and y;=.70+.05 for
$5=3/2. For $=1/2 it is known that v,=0 and that I{w) diverges as the logarithm
of T (see [7] and references therein). This is not inconsistent with our data
since it is very difficult to distinguish between a small power and a 10g.

We also computed the staggered susceptibility, which in the case of
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zero mass gap should diverge with the exponent v=vy,+1 [30]. An analysis simi-
lar to that for I(r) gave the result y=1.05+.06 for $=1/2 and v=1.70+.06 for
S$=3/2. ‘

From our data it seems that for half-integer spins the exponent v, grows
from 0 to 1 as S increases from $=1/2 to S== (y goes from 1 to 2). In [31]
however, it is argued that v;=0 for all finite half-integer S. For $>1/2 this
wouid mean that at very low T there is a crossover from v; close to 1 to v,1=0.
In the S=» limit the crossover temperature would go to zero. It is not clear
whether a quantum Monte Carlo simulation could decide which alternative is
correct.

6. The Two-Dimensional Spin 1/2 xy Model

For this model we performed two simulations, one with variable winding number
and one with n,=0. The behaviour of the winding number distribution and of the
finite size effects was discussed in section 4. Here a connection between
o(w) and the helicity modulus will be established.

In the classical case, the helicity modulus was defined in {22]. Consider
the partition function Z{€) with a twist of 6 in the angle variables across
the boundary in 1-direction. Then [22]

7(8) 2
7107 = exp(-6°RTL2/2L ) (6.1)
£{0 8/Ly=small ‘ 1

T is called helicity modulus . In the low temperature phase we expect a non-
zero value of T, while for T>T. T=0 in the thermodynamic Timit. Notice that
(6.1) depends very sensitively on the values of L; and L,.
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For the quantum xxz mode]l we define the twisted boundary conditions by
changing the Hamiltonian across the boundary as follows:

H(j,i+1) = EXP(WS?) H(j,j+1) exp(-iesé) s 3=(31,32) » Ji=L, 6.2)
j2:]s---9!—2 ‘

It is easily seen that for S + « the correct twisted boundary conditions are
obtained. The path-integral method described in sections 1 and 2 immediately
leads to:

(e s ;
z%ﬁ%-: <exp(1enw)> = E%;eXP(TBW) DW(W) (6.3)

Z{9)/Z(0) can thus be computed directly in a simulation with variable winding
number, and it is the Fourier transform of pw(w).

In the Tow temperature region we could fit our data well with the form
(6.1) for 4 x 4, 4 x 8, 8 x 4 and 8 x 8 Tattices (the highest value of M was
32). This strongly suggests that T#0 for T<T. and therefore the low-T phase
is massless [25ﬁ-

We interpret this as evidence for a Kosterlitz-Thouless phase transition
[23], i.e. a transition from a massive to a massless phase such that the
correlation -length blows up exponentially as T » T, T>T_, and such that there
is no symmetry breaking for T<T.. Other groups have also found evidence for
a massless phase at T<T. [20, 325 However, in {19] it is argued that for T>T
the data show a power- Iaw divergence of the correlation length. No model is
known in the literature where this T>T_ behaviour is combined with the Koster-
litz-Thouless behaviour for T<T.. It iS therefore very important to do further
investigations. '

Notice that if we take 6=n in (6.3), only the winding number modulo 2 is
important. Then the formula holds also for the xyz model.

Because of a very low acceptance rate, it is very difficult to compute T
for large lattices using {6.3). Manipulating (6.3) it can be shown that the
difference between the energies for n, =1 and ny=0 is a numerically simple
function of T. Using this method, the he11c1ty modulus could be computed for
much larger Tlattices.

7. Conclusions and Outlook

In this paper the quantum Monte Carlo work done by our group has been reviewed.
In particular, we discussed the various Timits carefully, as well as the pro-
blems connected to the particle and winding numbers. We argued that it is safe
and even desirable to keep the winding number zero.

In a high precision simulation we gave strong numerical evidence for the
validity of the Haldane conjecture. For the d=2 S=1/2 xy model we computed the
helicity modulus as the Fourier transform of the winding number distribution.

The work on the Haldane conjecture will be continued in order to see how
the S= 1imit is approached for half-integer spins. Qur main effort in the
near future will be in d=2, in the investigation of the S$S=1/2 xxz model.
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