 DEUTSCHES ELEKTRONEN-SYNCHROTRON NEQY

DESY 87-037 7 % )\ \ | S 'ESY
May 1987 [~

" (89-9-2 ?Q]

CHROMATIC CORRECTIONS AND DYNAMIC APERTURE

IN THE HERA ELECTRON RING II

R. Brinkmann, F. Willeke

‘Deutsches Efektronen-Synchrotron DESY, Hamburg

ISSN 0418-9833

NOTKESTRASSE 85 -+ 2 HAMBURG 52




DESY behilt sich alle Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen {nformationen vor,

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX ,
send thern to the following address { if possible by air mail } :

DESY
Bibliothek
Notkestrasse 85
2 Hamburg 52
Germany




DESY 87-037
May 1987

Chromatic Corrections and Dynamic Aperture
in the HERA Electron Ring
II

R. Brinkmann, F. Willeke

Deutsches Elektronen—Synchrotron DESY, Hamburg

ISSN 0418-9833



Abstract

Sextupole distributions for various values of phase advance per FODO cell
(¢ = 60°...90°) in the HERA electron ring are investigated. The chromatic
corrections reduce the changes of the beta—functions to less than 5 7 and the
changes of tunes to less than 0.01 in an energy range between -1 7 and 1 %
The nonlinear acceptance accomodates at least 13 o for a 35 GeV electron beam
in the whole range of ¢.. The scaling of the dynamic aperture with ¢, is found

to be in good agreement with a simple analytical estimate.



1. Introduction

In a previous paperi’ chromatic corrections and the dynamic aperture in the HERA
electron ring have been presented and discussed for a lattice with a betatron
phase advance of ¢$. = 60° per FODO cell. In the present report, we wish to ex-
tend the considerations to lattices with stronger focussing up to 90° per FODO

cell.

The need for the flexibility to change the focussing and thus the emittance of
the electron beam results from the fact that the size of the proton beam at the
interaction point (I.P.) is not very well-known. For instance, the proton emit-
tance depends on the dilution during pre-acceleration, beam transfer and intra-
beam scattering. The lower limit of B at the I.P. cannot be precisely determined
before the proton ring is in operation. In order to achieve optimum luminosity,
the size of the electron beam at the I.P. should therefore be adjustable over a

sufficient range.

Stronger focussing in the arcs of the eleciron ring results in a rapid increase
in the sextupole strengths needed to compensate the chromaticity. This in turn
may result in a severe reduction of the nonlinear acceptance. We will show in
this report, that the good chromatic and nonlinear properties of the ¢, = 60°
optics presented in ref. 1 can essentially be preserved over the entire range

of phase advance up to 90° per cell.

In the next section, we discuss the sextupole correction schemes for the 8 dif-
ferent values of ¢, investigated. In section 3 the results of particle tracking
calculations are presented. In section 4 the results are discussed and some
final conclusions on the nonlinear acceptance as a function of phase advance

per cell are drawn.



2. Sextupole Correction Schemes for Different Phase Advances per FODO cell

Our investigations start with the setting up of the linear optics of the ring
for each value of ¢, in the regular arc cells. The optics matching is done in
such a way that the phase advance through the West quadrant is an integer in
both planes. This results in a quasi-threefold symmetry for the optics. In our
previous report®’> we have shown that this procedure is advantageous with respect
to chromatic and nonlinear distortions. The chromatic corrections are then made

individually for the West quadrant and the other quadrants in the ring.

In order to compensate the chromatic distortions of the linear optics generated
in a section* extending from s = s, to s = s,+L, the sextupole strengths m(s)

must be adjusted in such a way that the integrals

I, = fs°+L ds B(s) [kis) - m(s) D(s)] elndis) (= 0,2) (2.1)
So
vanish for both the x— and z-planes. For n = 0, the integral defines the mean
sextupole strength necessary to compensate the linear chromaticity. For n = 2,
it describes the compensation by sextupole families of different strengths of
the off-energy beat of the B~function and its derivative . The differences bet-—
ween sextupole strengths can be kept small if the phase.advance between diffe-
rent families is close to A = (n + 1/4)m. The existerice of such "orthogonal"

families in one of the criteria for a "good" sextupole distribution.

Another boundary condition is that the nonlinear perturbations introduced by
the sextupoles should be kept as small as possible. A reasonable measure of
the nonlinear perturbations is the amplitude of the resonance driving terms

which are defined in lowest order by integrals of the form

dyone & § ds By %(s) m(s) elndy(s? (n = 1,3) (2.2)
or
Aypan Tf ds Bi’%(s) m(s) eldx(8) * néz(s) (4 = 0,2) (2.3)

* Here, a section is either an octant extending from the I.P. to the centre of

the arc or the West guadrant.



We consider now a section of the ring which consists of N identical subperiods
(e.g. N FODO cells with identical sextupole strengths and periodic B— functions).
The contribution of this section to the integrals (2.2) and (2.3} can then be

written as

3 N_—i . s
dsone = GRaono y elfndy

=0

Facd

1 - elNngy s

= == d0n0o (n =1,3) (2.4)
1 - elhdy
s N-1 S, s
d'.LZ'J.n = d12*1n Z elg(bx !'IN¢Z
£=0
e S s
_ ~1N¢, * nNé
= gs, loe x" 2 (n=o0,2 (2.5)

: N g
1 - eldx T 0d;

where d® denotes the integrals over the subperiod and ¢¥ is the phase advance
between subperiods. For the simplest case in which a subperiod is a FODO cell
with ¢§ = ¢§ = ¢o we obtain from (2.4) and (2.5) that all first order driving
terms vanish if ‘

b = 2 (2.6)

where N is the number of cells and M is an integer. In the HERA electron ring
there are 25 cells per octant and we have investigated sextupole distributions
with N = 23, 24 and 25 leading to the selection of ¢.’s listed in Table Z2.1.
There are two exceptions from the selection rule (2.6), namely the optics with
67.5%/cell and 88B.5°/cell. The reasons for including these cases are the fol-

lowing:

For the 67.53° optics we have M/N = 3/16 and a full arc with 3 x 16 = 48 cells
is needed to cancel the first order perturbations. This is not a problem for
the arcs between IP's South and East and between East and North, but the other
two arcs are interrupted by the insertion of the West quadrant with different
sextupole strengths. However, one can check that due to the integer phase ad-

vance of the West quadrant:



1. the West quadrant itself does not contribute to first order perturbations if

we assume perfect periodicity in the arcs

2. the two "half arcs" adjacent to the West quadrant are connected by a unit

transfer matrix and are therefore equivalent to a complete 48 cell section.

$o/deg. M/N # of families structure of subperiod
60 1/6 6 A-B-C
67.5 3/16 10 A-B-C-B-D-B-E-B
T2 1/5 8 A-B-C-D-B
75 S5/24 10 A-B~-B~C~B-B-D-B-B-E-B-B
78.3 5/23 6 A-C-A-B-A-B-C-A-C-A-B-A-
-B-C-A-C-A-B-A-B-C-A-C
86.4 6/25 10 C-E-C~E-C-E-C-E-B-B-B-B—A-
—D-A-D-A-D-A-D-A-B-B-B-B
88.5 = 1/4 4 A-B
30 1/4 4 A-B

Table 2.1 Sextupole distributions for various values
of phase advance per FODO cell. -

We now consider the case where more than one sextupole family per plane is
used for compensating the off-energy B-beat. The FODO cells are then no longer
identical and the periodicity of the arcs is changed. However, if there still
exist two or more identical subsections of phase advance ¢, # 2nm within a sub-
period of integer phase advance M¢. the same arguments as used above apply and

the cancellaticn of first order driving terms can be retained.
Let us explain this for the example of the ¢, = T5% optics. One octant con-
sists of two identical subsections of 12 cells each. Within the subperiod we

define a sequence with 5 sextupole families for each plane according to:

~A~B-B~C~B-B~D~B~B~E-B-B-



For contributions of each sextupole to the integrals (2.1) the relative phase
between them is essential. This illustrated in Fig. 2.1, where the individual
sextupoles are represented by unit vectors in a complex plane with a phase se-

paration of Z¢..

integral, eq. (2.1} {schematically)

From Fig. 2.1 one concludes that family B does not contribute-to the B-beat
vhereas the differences between families A, D and C, E give orthogonal contri-
butions. Thus, with the constraints my, + mp = Zmg, m_ + mg = 2mg we have three
orthogonal "knobs" (mg, m, - mpand m,. - mg) with which to compensate the chro-
maticity and the sine~ and cosine-like part of the B-beat independently. This

is a very convenient feature of this sextupole distribution.



Subperiods within an octant {(or a quadrant) can also be defined for ¢, = 60°,
dc = 67.5%, ¢ = T12° and ¢, = 90° (see table 2.1 for the structure of all
gextupole distributions). The &7.5° distribution has the same features as the
one for 175°. For ¢, = 60° only three sextupcle families per plane are useful
and one cannot define orthogonal knobs for chromaticity and B-beat compensa-
tion. For ¢, = 90° only the sine-~like part of the B-beat with respect to the
sextupolerlattice can be compensated. In this case, the phase advance between
the arc and the I1.P. was adjusted properly in order to be ahle tc compensate
the B~ beat generated in the low—fB~insertion {(which is purely cosine-like with

respect to the I1.P.).

The 72°-case has the disadvantage that the subsections of S cells themselves
have integer phase advance. Then the first order perturbations caused by the
differences of sextupole strengths add up coherently and we expect a bad non—

linear acceptance for this optics.

For ¢- = 78.3° and ¢. = 86.4° no complete subperiods with integer phase advance
within an octant can be defined and the first order driving terms do not cancel
exactly if more than two sextupole families are introduced. However, for these
optics there is no coherent build-up of perturbations (c.f the 722 case) and
with the distributions shown in table 2.1 the cancellation of nonlinear pertur—

bations still works quite well.

Good chromatic properties are obtained with our sextupcle distributions for
all phase advances. The remaining wvariation of RB-functions at the I.P.’s is
kept below about + 5 7 and the tune variation below #* 0.01 for momentum devia-

tions of -1 Z ¢ Ap/p € 1 7.

Fig. 2.2 shows the energy dependence for the 78.3° optics as an example.
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3. Tracking Results

The dynamic aperture for the different optical solutions has been investigated
by particle tracking using a modified version of the RACETRACK?’ code. The pro-
cedire and our definition of dynamic aperture is described in detail in ref. 1)

and here we confine ourselves to a presentation of the results.

For each of the optics an optimum working point with maximum dynamic aperture
is determined by scanning the horizontal and vertical tunes. At these working
points, tracking calculations are carried out both for constant momentum devia-
tion and for synchrotron oscillations. The parameters used for tracking are

listed in Table 3.1.

The results for the maximum stable phase space volume are quoted in Table 3.Z.
There is a strong decrease of dynamic aperture with increasing phase advance
per cell. This is of course expected because of the increase of sextupule
strength needed to compensate the chromaticity (see next chapter). The 72°/cell
case with 8 sextupole families represents a remarkable exception from the mono—

tonic decrease of Ay + A, with ¢ .

Number of turnsg 1000
Number of particles 1

Nunmber of amplitude iterations B8

Range of momentum amplitudes 0.8 7%

Initial ratio of emittances

(for ¢y =0,=0) Eliiﬁjfzigl 10 7
€y ($x=0,=0)

Harmonic number 10600

Synchronous phase 45°

Accelerating voltage 200 MV

Table 3.1 Parameters used for all particle tracking runs.
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The small acceptance (in contrast to the value for the same optics with Z sex-
tupole famllies) confirms the statement of chapter 2 that for ¢, = 72° first
order nonlinear resonances are strongly driven if sextupole families with
different strengths are introduced. We conclude here that this phase advance

should not be used for the HERA electron ring.

The results show that the acceptance is reduced in the presence of synchrotron
oscillations by a factor of about 0.7...0.5. This reduction is mainly due to
the tune variation caused by nonlinear chromaticity and by the off-energy B-beat
which increases the peak amplitudes of the particle in the nonlinear fields.
There is no strong evidence that satellite resonances play an important role.
However, in some cases a dip shows up in the dependence of acceptance on syn—
chrotron oscillation amplitude (Fig. 3.1). At this amplitude (Aﬁ/p = 0.7 %)
the synchrotron frequency Qg is shifted such that Qy - 31Qgl is an integer.
Thus, we interpret these dips as a third order satellite resonance. It has to
be noted, however, that a correct investigation of synchro-betatron resonances
requires fully symplectié 6 dimensional tracking. This will be done in the fu—
ture by using the recently developed 6-D version of the RACETRACK code?®’.

We should add the remark here that for the latter cases we do not quote the
"on-resonance" values of Ay, +A, in Table 3.2 but rather take the mean value of

points adjacent to the resonance in the A, + A, vs.‘Aﬁ/p curves.

From the tune scans performed for each optical solution we notice that resonances
driven by terms quadratic or cubic in sextupole strengths become more and more
important with increasing ¢.. In particular, the 90° optics shows very strong
4th and 5th integer resonances, see Fig. 3.2. It is interesting to note that the
influence of Sth integer resonances is reduced when changing ¢. to 88.5°. This
results in a larger dynamic aperture in a certain range of tunes, but on the
other hand first order driving terms do not cancel and this results in a rather

gtrong 3rd integer resonance which is almost absent in the 90° case.

The existence of 3rd integer resonances even for sextupole distributions which
fulfill the criteria of driving term cancellation described in section 2 is
due to the fact that the periodicity'of the optics is destroved in the matching

‘sections at the end of the arcs, as was already pointed out in ref. 1.
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Optics |¢o/deg.| Qx | Qp |Ax*Ay (%f = 0)| AgtA, <%f =6 %)
[mmmmi-ad ] [ nmmmrad]

HE60Q3S6%>| 60.0 |47.16|47.28 53 37
HE67Q3S10 | 67.5 {51.16(51.28 36 24
HE72Q3S22>| 72.0 [54.16{54.28 24 14
'HE72Q3S8 72.0 |54.16 |54.28 3.4
HE75Q3S10 | 75.0 |55.14/55.28 19.0 10.2
HE78Q3S6 18.3 |57.79|57.89 18.0 12.9
HE86Q3S10 | 86.4 |59.18(59.23 11.2 5.5
HE88Q3S4 88.5 163.11/62.39 10.4 7.1
HE90Q354 90.0 |63.11|62.31 7.0 5.5

Table 3.2 Stable phase space areas obtained from tracking calculations.
The total acceptance (Ay + Aj) is quoted for on—energy par-
ticles and for Ap/p = 0.6 Z synchrotron oscillation amplitude.
13 Results taken from ref. 1
2y 2-family sextupole distribution

Ay  Axr Az
T mm mroad
25
20
15 -
10 — HE67Q3S10
Ox = 5116
Q:z: = 51.28
5 4
T T i I T [ T T T
1 2 3 A 5 6 7 8 9 ABIpr1073

Fig. 3.1 Dependence of the nonlinear acceptance on energy
oscillation amplitude for the &7.5° optics.
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T mm myad

12

10 -

HE 88Q354
&~ 02=62.39

1 T ° T |
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Fig. 3.2 Nonlinear acceptance vs. horizontal tune for
the 90°/cell and 88.5°% optics.
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4. Digcussion

The results presented in the preceding chapter show a rapid decrease of non—
linear acceptance with phase advance per cell. However, since the emittance
also shrinks with increasing ¢., the dynamic aperture divided by the equili-
brium beam size {(thus giving the number of standard deviations, ng, available
for the beam) is a more relevant parameter than the absolute value of the

acceptance. Fig. 4.1 shows the results for
Nglde) = (Ay($e)/enldc)) 2 (4.1)

for each of the optical solutions with Ap/p = 0 (€4(¢.) is the equilibrium emit-
tance for given phase advance). The space available for the beam decreases slow-
ly from ng = 26 (at $. = 60°) to ng = 17 (at . = 90°). Since we expect a value
of ng = 10 to be sufficient for a beam storage of several hours, our first con-
clusion is that the acceptance of the electron ring is sufficiently large over

the whole range of phase advance.

A reasonable interpretation of the scaling of nonlinear acceptance with phase
advance per cell can be obtained by an analytical estimate of ng vs. ¢,, based
on simple arguments. In order to judge the ’quality" of a sextupole distribu-
tion, we first need to Kknow what is the effect of the change in sextupole

strength for a given distribution and optical structure.

The starting point is that one expects the onset of instability to occur if
the relative perturbation Ac/c of the Courant-Snyder invariant reaches a cer-

tain critical value. Theory then predicts a scaling behaviour like
ng ~ [VEg(do) W) 17" (4.2)

vhere m($.) is the mean sextupole strength for given phase advance ¢, (see
Appendix). From the equation of motion we therefore get a simple scaling law
which relates change of the sextupole strength with change of the dynamic aper-

ture.
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55 63 71 79 87 95

!
¢cﬁ/deg

Dynamic aperture divided by equilibrium beam size (at E = 35 GeV),
vs. phase advance per FODO cell.

Dots: tracking results

Curve: analytical scaling law (see text)

Open circle: 2-family-distribution (see chapter 3).
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The sextupole strengths m, and m, needed to compensate the horizontal and ver-

tical chromaticity, respectively, are obtained from

_ BEy * BEy __BEx * BE
D(BZ - g2y D(B2 - B2)

m,, (4.3)

A W Fa v

where B, B and D, D denote the maxima and minima of the periodic beta- and

dispergion function, respectively. They are given by (see e.g. K. Steffen in
ref. 4):

AL 1+ singo/2)%72 v g 1 - sino/2)1/2
B = sing./2 |1 - sind./2 , B = sing./2 |1 + sing./2
(4.4)
N L2 1. v 1.2 1.
D = psinZeo/Z 1+ > sing./2) , D = psinZoos2 (1 2 sing./2?

where L is the half cell length and p the bending radius of the dipole magnet.

The total chromaticities consist of the sum over n FODO cells and the contri-

bution from the straight sections:

¢
E = nEc + Egg = 7 tan o * Egg (4.5)
For HERA, we have
Ess,x = Egg,z = 0.2 1 (4.6)

Combining eqs. (4.5) to (4.8) yields, after some algebra:

npZsin3¢./2
m,,, = [1 + 1.26 cot¢./2] 4.7)
4mi3(1 + 1/2sind./2)
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The equilibrium emittance €, for a machine with a perfectly periodic FODO

structure scales likeS’:

€oléc) ~ (1= 3 sin2pc/2 + o=

4 0 sinf$./2)/(sin2$./2 sing;} (4.8)

Inserting this expression and the mean sextupole strength from eq. (4.7) into
eq. (4.2) yields the desired scaling law for ng vs. ¢,. This curve is shown in
Fig. 4.1 together with the tracking results. The points obtained from the
tracking simulation lie close to the expected behaviour, indicating that the
"quality"” of all sextupole distributions is comparable. The largest deviation
occurs for ¢ = 90°. We believe that this is a hint to the fact that for this
particular rational value of ¢ the build-up of higher order perturbations is
worse than for the other cases. This interpretation is supported by the results
for ¢. = 88.5° (see chapter 3) which show weaker higher order resonances and a

better nonlinear acceptance.

S. Conclusion

We have shown that for the HERA electron ring good chromatic correction schemes
exist for a large range of phase advance ¢, per arc cell. The use of lowest order
resonance compengation in a periodic FODO structure proves to yield satisfactory
nonlinear acceptance especially for lower and intermediate values of ¢.. For the
particular case of ¢, = 20° the concept is less advantageous because higher order

sextupole—driven resonances become more important.

With a dynamic aperture of > 13 standard deviations (for Aﬁ/p = S50, at 35 GeV)
over the whole range of ¢, = 60°...90°, we conclude that the electron ring will

not be operated at the chromaticity limit.
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APPENDIX I

Scaling Law for the Dynamic Aperture with Sextupoles

Given a lattice with a certain distribution of sextupole magnets: How does the
acceptance A or the dynamic aperture change if the strengths of the sextupoles
are changed by the same relative amount? This question can be answered by looking
at the equation of motion. In the following this is demonstrated for heorizontal
betatron oscillations but it can be easily demonstrated for 2 degrees of free-
dom, too.
If one writes the equation of motion in presence of sextupoles

¥ quadrupole strength
x" + k(s)x = g(s)xz m sextupole strength

s coordinate along closed orbit

x horizontal betatron amplitude.

in action and angle variables €, ¢ using the solutions of the linear equation
of motion

x(g) = J2¢ JR cos (gl{s) + ) B envelope functicn
' ¢{s) betatron phase advance function

one finds

(3 ) 1 g 3/2
e’ = 3-8 © 3 [ 2 ] m-£ €372 gin(R¢(s) + £¢)
£=1,3 * 2 "’
(3 ) 3s2
o’ = 3-¢ . % [ % ] m %Eifzcos(ﬁm(s) + £$)
g=1,3 ¢ 2 ’
thus €’'/e = f($, met 2 s)

<
It

g($, mer 2, g}

This means that if m is changed but mfe; is kept constant (where €; is the ini-
tial value of €) ée/¢ must be the same for all s and all values of ¢. Thus, the
phase space trajectories have the same shape and only the measure.of € changes.
It also means that the acceptance changes only as the measure of € changes.
Expressing the acceptance for an electron beam in terms of the equilibrium emit-
tance €, at one standard deviation of the Gaussian distributed beam and the num-
ber of standard deviations n; we find the simple scaling law

1
m Je,

DC;N
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