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Abstract

The so-called strong spin matching is proposed as a localised compensation scheme for
spin-orbit coupling, producing spin-transparency not only globally for the ring as a whole,
but locally for each of its many subsections. Distortions of the spin motion will then accumu-
late to a lesser extent, and polarization will be more stable. The method amounts to looking
for a resonant compensation of errors instead of merely avoiding resonant accumulation. It
is shown how Siberian Snakes can be used to obtain strong spin matching independent of
energy as a key to polarised proton acceleration to very high energies. As an example, the
method is applied to the SSC ring, and a preferred snake design is proposed.

Introduction

It is now more than 10 years ago that ”Siberian Snakes”, originally called "spin flips”,
were proposed by Derbenev and Kondratenko (D+K) [1-3,4a,5] for eliminating the intrinsic
depolarising resonances which are crossed by the beam in a proton ring during acceleration.
They suggested two types of snakes, subsequently called the 1% and the 2™ kind, with intrin-
sic spin precessions of 180° and 0° respectively (see chapter 2.2), and showed that such a pair
of snakes inserted between half rings will make the spin tune equal to one half independent of
energy and will thus remove the intrinsic spin resonances. D+K [4a,5] also pointed out that
polarization could even be made much more stable by inserting 2 M snakes, an odd number of
each kind, but it did, to my knowledge, not become generally understood what the optimum
lattice configuration and parameters would be, and which gain factor could be obtained.

Meanwhile people began inventing snakes [4b,6-16,18-20] and thereby discovered snakes of
a more general type [17], with continuously variable intrinsic spin precession (see chapter 2.2),
that could be employed instead of the particular kinds proposed by D-+K initially. Numerical
tracking studies indicated that in a particular ring configuration employing these new snakes
polarization was much more stable [21,22], but a quantitative evaluation of the general ring
layout with snakes has, to my knowledge, not been obtained so far.

It is the aim of this paper to help to fill this need by presenting the concept of "strong
spin matching” and derive from it the quantitative design criteria for an optimum ring firstly
without snakes in Part 1, and then with snakes in Part 2. Here it will turn out that, in
designing the ring for stable spin motion at all energies, the important handle is the intrinsic
snake precession angle which, for a given configuration, must be adjusted to particular values.

In Part 3 of this paper, the rules obtained are applied to an example, where I show how
the next large accelerator for protons, the SSC ring in the U.S., would want to be equipped
with snakes in case polarised beams were considered a worthwhile goal in this machine.



Part 1 Energy-dependent strong spin matching without
snakes

1.1 ”Strong spin matching” for vertical betatron oscillations in the
standard periodic cell lattice

Even in an ideal planar ring without errors, the spin motion is generally coupled to the
vertical orbital motion. A particle performing vertical betatron oscillations sees horizontal
field components which rotate the spin away from its vertical equilibrium position. If the
betatron frequency is in resonance with the spin precession frequency, these rotations will
accumulate, and the spin may approach and precess near the horizontal plane and thereby,
due to energy variation, lose its phase synchronism. An initially polarized beam will thus get
depolarized when crossing one of the "intrinsic” linear resonances

v+ Q. =p, pinteger (1)

But even away from strong resonances, at a stationary working energy, migrations of
the spin away from the vertical will be detrimental to polarization, and the spin should be
prevented from straying too far in one period. Initially for electron rings, Chao and Yokoya
[23,24a] have proposed, with good success, to match the optics such that the spin will return
after one revolution; and for proton rings, tracking results [21,22] have also indicated that
there are large differences in spin rigidity between comparable lattice configurations, probably
again due to differences in optical matching. Therefore, we want to find those particular
optical settings which tie the spin most closely and allow for minimura migrations only.

Quantitatively, in linear approximation in an flat perfect ring, the change of vertical spin
component, i.e. of the polar angle between spin direction and vertical precession axis is given
by the integral over the quadrupole strength k(s) times the betatron oscillation amplitude,
modulated by the spin precession {23,24al:

Ii{e) = j: eV L k(s)y/B.(s)et ) ds = /06 kbe!PE¥2) s (2)

Following Yokoya’s notation [24b], we have written this "spin-orbit coupling integral”
in complex form, with both signs of ., in order to include in its 4 components (real and
imaginary) the two orthogonal phases for each of the two oscillations. If this integral vanishes
over a certain period, then the change of vertical spin component over this period is zero for all
phases, and the period is said to be "spin transparent for vertical betatron oscillations”,
which means that it causes zero spin-orbit coupling.

In a periodic lattice, the integral (2) over a string of n identical cells may be written

n—1
I, = Z ek-Qm(uoinQ) kbez(¢i¢z)ds (3)
k=0 1st cell



using the quasi-periodicity of the integrand, with 271, and £27Q, being the phase advances
of spin precession and betatron oscillation per cell. Thus, summing up, .

1~ en-Z‘Jri(uoﬂ:Q,,o)

Le = T mezany " Leu + | (4)

This formula tells how, for a given betatron tune per cell, one can choose certain spin tunes,
i.e. working energies, which make the string of n cells spin-transparent. This procedure is
called "spin matching over n cells”. Technically, it means achieving a resonant cancellation of
spin-orbit coupling, instead of merely avoiding a resonant enhancement by merely considering
the resonant denominator of eq.(4). The modulus of the fraction in eq.(4) is

.si’n%'n.é

1
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and is shown for the example of n = 8 in Fig.1. It has, on the resonance at § = 0 or 27, the
value n and is zero at § = & - 2:”, k=1,2, ...,n-1.}

In order to maintain maximum polarization in a collider ring, the working energy should
be chosen such that the spin-orbit coupling integral I. vanishes over each string composed
of the smallest possible number or at least a small number n of cells. Then, the vertical
component of the spin will return as quickly as possible to its initial value, independent of
betatron phase and amplitude, and the intervening deviations which give rise to depolarization
will be kept minimal. Expressed differently, it means that the beaﬁ_ of the spin-orbit coupling
integral is being kept small. The spin matching over a small number n of cells as compared to
the standard spin matching over, say, one revolution may be seen to be analogous to strong
focusing in comparison to weak orbit focusing. Matching over a small number of cells means
that we have strong "focusing” of the spin, and we thus propose to call this technique ”strong
spin matching”. In large rings, it means a localized compensation of spin-orbit coupling
instead of a global one, and it thus goes beyond the original spin matching scheme that was
proposed by Chao and Yokoya [23,24a] for the ring as a whole and that has meanwhile become
standard. This new localized compensation technique may possibly lead into a qualitatively
new regime where the vertical match will, at the same time, also serve to partly cure the

depolarizing effect of horizontal oscillations in the case of magnet errors, as will be explained
below,

If one wants to compare the stability of various proton ring designs against depolarization,
the concept of strong spin matching permits a quantitative evaluation, suggesting as an inverse

quality factor q the mean square value of the spin-orbit coupling integral (2), taken over one
revolution:

¢ =< Io(s) - T0(s) + I(5) - I"() >ring (6)

In case that q significantly varies with ring position, its average value must be used.

In practice, typical values of the betatron phase advance per cell are ¢ = 90°, 72°, and
60°; i.e. v = 2% with ¢ = 4, 5, 6;i.e. Q,, = 1/4,1/5,1/6, respectively. Considering a string

1We are of course already familiar with related behaviour: In a perfect machine with superperiodicity N,
we only expect linear resonances of the form v = k + @, to appear with k = p- N; p, k integer. If k is not a
multiple of N, i.e. for k = 1, 2, ..., N-1, resonances are suppressed by the superperiodicity.{33]
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of n cells, with n = 1, 2, ..., 20, all possible values of v, for obtaining spin transparency over
this string are given in Tab.1, where v, is the local spin tune per cell. The table shows that
the minimum numbers of cells in the string are n = 3 or 6 for ¢ = 60°, n = 5 for ¢ = 727,
and n = 4 or 6 for ¢ = 90°, but corresponding v,-values may not lie within the energy
range of the machine, and one will then go to somewhat higher n-values. In any case, the
recipe for sirong spin matching is to satisfy one of the matching conditions by choosing the
corresponding number n of cells in the string, the local betatron tune @, and that particular
working energy which, in the periodic cell lattice, will give the corresponding local spin tune
Vs

This holds for the group of strings that can be placed in each section of periodic arc
lattice in the ring. Between these, the insertions must also be made spin-transparent for
vertical betatron oscillations at the chosen particular energy, using standard spin matching
procedures. Thereby, the overall spin tune of the ring can be adjusted to be away from
resonances, no matter what the contribution of the spin-transparent groups of regular cells
to the spin tune will add up to by themselves.

In the ideal flat ring considered so far, the spin motion is not coupled to horizontal orbit
oscillations since the periodic spin direction 7 is vertical everywhere. Magnet errors, however,
will distort the closed orbit, and the periodic spin direction 7(s) will then vary along this orbit
and will locally precess about the vertical with the spin precession frequency, and so will its
horizontal component. If this precession stays sufficiently uniform over one period of strong
spin matching (n cells), the spin-orbit coupling integral for horizontal betatron oscillations will
assume the same form as in eq.(2), since the change in polar angle between spin direction and
7i(s) is again given by the quadrupole strength k(s) times the betatron oscillation amplitude,
modulated by the precession of the projection of 7i(s) onto the horizontal plane:

1 — en-Z'ﬂ'i{yo +Qzo)

~ wp(e) 1, +itfp{s . Wyrtiz) _ . ‘
L. w/e Ve(s)1/Bals)e= =) ds _]kbze ds = mr Ly (7)

Considering here only the simplest case with Q,., = Q., which is often chosen in practice,
we see that strong spin matching for vertical betatron oscillations may imply that at the
same time one also obtains an approximate strong spin matching for horizontal betatron
oscillations in a machine with magnet errors.

Carrying this further, one observes that a similar argument also holds for the horizontal
orbit deviations due to an offset in energy. In this case, the betatron amplitude in the
integral (7) must be replaced by the horizontal dispersion trajectory which, although not
looking quite sinusoidal, can in a FODO-structure effectively be approximated by its main
Fourier component that has one oscillation per cell. Spin-orbit couplingis then approximately

given by
1— en-27ré(uo:}:1)

I, + =

1-— erri(yo:l:l) ’ I’ cell + (8)

and therefore becomes small for non-integer v, = 2; p = 1, 2, ... . Comparing this local
spin tune per cell with the v,-values for strong spin matching composed in Tab.1, it appears
- that in almost all listed cases with non-integer v, the integral (8) will vanish together with
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integral (4), and we may have an approximate strong spin matching also for the effect of the
horizontal dispersion in a machine with errors.

In the vertical direction, the closed orbit deviations generated by errors will, similarly to
betatron oscillations, also cause a spin-orbit coupling. To the extent that, over one strong spin
matching period, the vertical closed orbit will maintain its similarity to a vertical betatron
oscillation trajectory, the coupling of this orbit to the spin rnotion ;Wﬂl also cancel over this
period.

Finally it should be mentioned that even the spin motion due to nonlinear orbit effects
may be subjected to strong spin matching. As an example, let us assume that the field of
the cell quadrupoles has a 12-pole component giving a spin rotation proportional to the 5th
power of the vertical betatron amplitude. Then, in a lowest order approximation where one
ignores the effect of the nonlinearity on the orbit, the coupling of this nonlinearity to the spin
over a string of n cells is given by ‘

1— 8n-21ri(vo_:!:5on)

I:(ES) _ /ei¢kbsei5i¢zds — fkbsei(tb:l:ﬂbz)ds - [ ohieeaw) . c(esl}l " (9)

and therefore is made to vanish at all non-integer values of

Vo £ 5Q,, = %; p=0,1,..

1.2 Particular energies for strong spin matching in the LEP and
HERA electron ring.

As an example for strong spin matching without snakes, we shall select from Tab.1 the
particular local spin tunes that lie within the energy ranges of the LEP ring at Geneva and
the HERA electron ring at Hamburg. Generally, the spin tune v, and the orbit deflection
angle A per cell are related by

E|GeV] A
Yo = 541085 " 2n for electrons, and |,
__E[GeV] A

Vo = o opmat ' 5 for protons, respectivg;ly | (10)

With the deflection angles per cell

A = 0,03020762 rad in the HERA electron ring and .
A = 0,02261280 rad in the LEP regular cell lattice [25],

and the energy ranges of, say,

27,5 GeV < E < 35 GeV for HERA and
45 GeV < E < 60 GeV for LEP, Phase 1




we find from Tab.l the particular energies at which, in these machines, strong spin matching
is obtained over a string of n cells (n < 20). They are composed in Tab.2. At these particular
energies, polarization is expected to be particularly stable, provided that also the insertions
between the regular arc sections are matched to be spin-transparent at these energies.

HERA as well as LEP are intended to start operation at a betatron phase advance of
@ = 60° per cell, with the option of changing to ¢ = 90° later, when going to higher energies.
In HERA, the spin rotators for longitudinal polarization at the interaction points must, for
each period of operation at a fixed working energy, be geometrically set for this energy. It
appears from Tab.2 that, to start polarized beam work, 30.55 GeV should be a good choice
since there, with ¢ = 60°, every string of n = 6 cells will be spin-transparent. With 52 cells
in each of the four arcs, 8 such strings can be placed in each arc, provided that there will
remain enough optical flexibility for spin-matching in the insertions outside. The question of
which tolerances on energy and phase advance must be met {31! for an effective strong spin
matching, will not be answered here and needs a separate investigation.



Part 2 Energy-independent strong spin matching with
snakes |

2.1 How to obtain strong spin matching independent of energy?

The spin transparency conditions obtained in the previous section have the principal
drawback of depending on spin tune and thus on energy. They are very useful in a collider
ring with a polarized beam at a fixed working energy, but during acceleration, the ring does
not remain strongly spin-matched. How then can this be achieved?

As a first step in this direction, resonance crossing can be avoided by applying the inge-
nious topological trick invented by Derbenev and Kondratenko (D-+K) [4a,5]. It consists of
introducing into a ring composed of two identical half rings a so-called "Siberian Snake” at
the end of each half ring. Each snake inverts the spin from upwards to downwards or vice
versa such that the energy-dependent spin precession accumulated in the first half ring is
spun backwards to zero again in the second half ring. If, then, an energy-independent spin
precession of 180° is designed into one of the snakes, the spin tune of the ideal ring without
errors will be v == 1/2 at all energies. The intrinsic resonances will thus be avoided if the
betatron tune is not half-integer, and the spin tune spread due to energy spread in the beam
will vanish over one revolution.? But staying away from resonances does not mean that one
has a spin-transparent machine; by itself, it does not even ensure that the spin-orbit coupling
over one revolution be small.

The ingenious second step toward an energy-independent strong spin matching is the
notion of D+K [4a,5] that by increasing the number of superperiods from one to M, with
2M snakes in the ring, the sensitivity of polarization against magnet errors can be reduced
by a factor 1/M. They write in 1978 [5]: ”Using multiple flips of the vertical polarization for
increasing spin stability can be compared to using strong focusing instead of the weak one
for betatron oscillations of the particles. For a storage ring with 2M spin flip sections, ... the
requirements to the magnetic system are M times weaker.”

This points in the direction of strong spin matching with snakes and thus is at the root of
it, but again a localized half-integer spin tune for each superperiod does not guarantee that a
short string of superperiods be spin-transparent; it only ensures that resonance accumulation

of errors in spin motion 1s avoided locally, although with a spin-orbit coupling that may not
be small.

To make the integral vanish in the general periodic lattice with snakes, the snake precession
angle (see chapter 2.2} must be adjusted to the betatron tune and number of cells. In doing
this third and last step we will, as in chapter 1.1 for the case without snakes, write down
the spin-orbit coupling integral for a string of m superperiods that each include a pair of
snakes, and will thereby obtain a quantitative formulation of energy-independent strong spin
matching as a recipe for an optimum ring design with snakes.

1t was pointed out by J. Buon that spin flips by snakes are used in a similar way as the flips of magnetization
employed in the well-known NMR spin echo technique; the underlying principle is the same in both cases[32].



2.2 General properties of snakes and snake configurations

By "snake” we mean any composite system of magnets that, in the orbit-following spin
coordinate system. rotates the spin by 180° about an arbitrary axis that lies in the horizon-
tal plane. Then, the overall rotation of the spin can be thought to be obtained by the two
consecutive rotations

1st rotation: by 1807 about the transverse horizontal axis

21ud rotation: by an angle o about the vertical axis

If both rotations are combined into one, the effective rotation axis is at an angle a/2 with
respect to the transverse horizontal axis. a is called the precession angle of the snake
[17]. Snakes for any positive or negative value of a can be designed [17], and examples are
given in Part 3. o,
X2

In the most general ring with 2M snakes,
as shown in the sketch for 2M = 4, the
equilibrium spin direction between snakes
will alternatingly point upwards and down-
wards, and the spin tune is

1
360°

= ST+ ) (1)
i=1

where the 1;, the spin precession angles between snakes, depend on energy. while the snake
precession angles a; do not. The alternating signs in eq.{11) account for the fact that the
spin coordinate system is flipped in every snake, and the direction of the spin precession is
reversed. To make v independent of energy, the places for the snakes must be chosen such

that

(=1 =0
and then the spin tune is the alternating sum of the snake precession angles:

v=3(-1)a (12)
The next chapter will show how the positions and precession angles of the snakes must be
chosen for strong spin matching.

2.3 Strong spin matching for vertical betatron oscillations in a pe-
riodic cell lattice equipped with snakes

Since we are first of all interested in the periodic lattice that makes up most of the ring,
we will here ignore any insertions and assume a "circular” ring made of a periodic lattice into
which, between cells, M identical pairs of snakes are inserted, at constant intervals between
individual snakes. The ring is thus broken down into M superperiods which each contain a
pair of snakes.



Denoting by n the number of cells per half superperiod, i.e. between snakes, and by a3
and o, the spin precession angles of the snakes at the end of the first and of the second
half superperiod, the spin-orbit coupling integral over the superperiod (SP) is, for vertical
betatron oscillations, given by

Isp L = f . eV . k\fﬁzeii"”ds -’rf

n cells

i 2mve—an b} /ﬁze:i:-i(nanzo-*-v’)z)ds (13)

In this notation % and . are chosen to be zero at the beginning of each half superperiod.
In the first half superperiod, the spin precession phase increases by n - 271, and the first
snake adds the precession angle —ay, and in the second half superperiod, the phase decreases
again by —n . 27v,, spinning backwards, before the angle «; is added by the second snake.
Therefore, the energy-dependent part n - 271, cancels and the spin precession phase advances
by oz — 1 = 2ma per superperiod, independently of energy, while the betatron phase advances
by £2n - 27Q,,. Over a string of m superperiods, the spin-orbit coupling integral may thus
be written as

1 — em-Zﬂi(a:}:2nQ,o)

. m—1
I, = Z ghimifazin@eo)  Fop =
k=0

1 — e2ri(at2nQ:,) ) ISP + (14)

In analogy to chapter 1.1, we can now make the string of m superperiods spin-transparent at
all energies by choosing for the "snake tune” a = .-(@; — a1) one of those values that make
the integral {14) vanish by fulfilling the conditions

max2nQ,,)=p ; p=1,2,.. but

4
a:i:Zano:;#_q : g=1,2,... (15)

For maximum stability of polarization, one will here again apply strong spin matching
by choosing a sufficiently small number 2n of cells per superperiod, i.e. installing a sufficient
number of snake pairs in the ring, and by then making the number m of superperiods in the
matched string as small as possible, or at least small, in accordance with conditions (15).

The combinations of parameters a,m,n eligible for strong spin matching are composed in

Tab.3 for a phase advance of ¢ = 90° per cell, and in Tabs.4 and 5 for phase advances of

72° and 60°, respectively. Selecting the snake tune a = 2%( oy — 7)) means, in practice, that
the two types of snakes in the pair will be so designed that the difference of their intrinsic
precession angles will assume a certain value. Since only the difference matters, one of the
individual values may be freely chosen to get, for example, a compact design and maximum
stability of snake performance, as shown in Part 3. To ensure that the matching conditions
(15) are satisfied at all energies, it may be necessary to regulate or program the spin tune

since (), generally wobbles a little during acceleration [30].

After the polarized beam has been accelerated in the ring so equipped with snakes, the
ultimate strong spin matching will then be achieved by choosing a particular working energy
such that each half superperiod becomes spin-transparent already in itself and the integrals
over n cells in eq.(13) will vanish. This means applying an additional, energy-dependent
strong spin matching to the half superperiod by making the local spin tune v, per cell satisfy
the condition giver in Tab.1 for the chosen number n of cells, as explained in chapter 1.1.
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In the idealized "circular” ring considered so far, strong spin matching will shift the overall
spin and betatron tunes to integral or half integral values, which is of course not acceptable.
However, in a large real ring there will be insertions with matched special lattices that have
less or no bending, and these can be used to adjust the overall spin and betatron tunes to be
away from resonances. At the same time, these insertions must be equipped with snakes and
thereby made spin-transparent independent of energy. Depending on the insertion lattice,
this may be a more complex problem that will not be treated in this paper and calls for
further investigation.

Again, in the general ring with snakes, the value of the spin-orbit coupling integral I, (o)
can be determined in a step-by-step integration over the sections between snakes, as in eq.(13),
and then eq.(8) permits one to assign an inverse quality factor q for comparing the benefit of
different ring designs.
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Part 3 Strong spin matching with snakes in the SSC

3.1 Missing magnet scheme and insertion of snakes in the periodic
cell lattice '

The 2x20 TeV proton storage ring projected in the U.S., the Superconducting Super
Collider {SSC), has two (almost-) half rings, each composed of 143 FODO cells with a betatron
phase advance of ¢ = 90° [26]. In order to make room for the snakes, it is suggested to leave
out a small fraction of the bending magnets, in a regular pattern so chosen that the spurious
dispersion generated will periodically cancel and thus remain small [27,28a,29]. Eligible mis-
sing magnet patterns are shown schematically in Fig.2 for phase advances of p = 907, 727,
and 60° per cell. In the SSC, it would be a good choice to leave out half a dipole magnet in
every 6th cell. Since there are 12 dipole magnets per cell, this would amount to decreasing
the average bending strength by 0.69 %, and the remaining dipoles would have to be made
0.69 % stronger for the same energy. The average tunnel radius could remain unchanged, but
slight lateral magnet readjustments of up to + 2.5 cm would be required. The dipole length
is 16.54 m, and snakes can be built at half that length, as shown in the next chapter.

A total of about 48 snakes at a spacing of 1.37 km would then be installed in the arcs of
the SSC, with n = 6 cells between them. The snakes would alternate between two types that
have snake precession angles a; and a», respectively. An inspection of Tab.3 tells that, with
n = 6, strong spin matching is achieved already over m = 2 superperiods, i.e. over 24 cells, if
the snakes are designed to have precession angles with a; — a; = 180°. Practicable examples
of snake pairs which satisfy this requirement are given in the next chapter.

Consulting now Tab. 1, we find those particular working energies at which, after accelera-
tion, the ultimate strong spin matching is achieved, where not only pairs of superperiods are
spin-transparent, but even every half superperiod by itself (n = 6 cells). With a deflection
angle of A = 0.01967681 rad per cell we have with eq. (10)

p 1 E[GeV] A

S AN ikl e R T
Yo = 9 F 127 052335 27 0 PT

and thus the particular energies

1
Epartimiar - 83-558(P + E)GEV 3 r= 1721 e
3.2 Snake design

As an array of horizontal and vertical bends in an alternating sequence, the snake must
rotate the spin by a given amount in each magnet, independently of energy. The magnetic
fields, therefore, must stay constant during acceleration, and the snake, being part of a fixed
ring geometry, must be straight. It will thus consist of matched horizontal and vertical beam
bumps which are folded into each other and can be characterized by their initial horizontal
and vertical spin rotation angles ¢y and iy . Several such topologies have been investigated,
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looking for small beam: bump amplitudes, and it was discovered that one of them, for certan
combinations (¥, ¥v), vields a continuous family of snakes with a continously varying snake
precession angle o [17)].

In this familiy of snakes, the magnet sequence is (-H, -V, 2H, 2V, -2H, -V, H) and the
locus of points (g, ¥v) where the array acts as a snake is shown in Fig.3. It looks almost
like a circle and thus lends itself to an obvious clock notation. The snake precession angle
o 1s indicated for a number of points; its sign can be inverted by inverting the sign of all
horizontal bends. We have o = £90° at the 9.00k point, for example, and o = 180° at the
6.00h point. '

Since, in our SSC example, a snake pair with a; — @y = 180° is required, one simple
solution will be to employ everywhere the 9.00h snake, with alternating sign of . But it
appears from Fig.3 that there probably is an even better choice. At the, say, 10.00h and 5.00h
points where the tangential lines from the origin touch the locus of snakes, the corresponding
snakes have a singular and valuable property: They do, in linear approximation, maintain
their snake action, i.e. give an exact spin flip, even if the angles ¢y, 1y deviate from the
design value by an equal proportion. The precision required of the (common) magnet power
supply will then be greatly reduced. In turn, if a very stable power supply is employed, it
can be used for fine adjustment of the snake tune. The difference of snake precession angles
between the two singular points, however, is close but not equal to 180°. But by introducing
in the 5.00h snake slightly unsymmetric slopes in the horizontal beam bump, the difference
@3 — a1 can be adjusted to be 180° exactly, with the added advantage of making the snake
shorter. The result is shown in Fig.4, where (I) is the 9.00h snake pair with « & 90°, (IIa) the
10.00h member of the singular snake pair, and (IIb) the second member, the unsymmetric
derivate of the 5.00h version. The beam excursions shown in Fig.4 correspond to the injection
energy of 1 TeV; they stay below 1.8 mm.

3.3 A note on terrain-following

The often held belief that polarization cannot survive in a terrain-following machine is
not correct. It is possible to design vertical bends with a spin rotation equal to the rotation
of beam direction such that, in the orbit-following coordinate system, the spin direction stays
unchanged at all energies. Such a "spin-trailing” hinge is shown in Fig.5. It is based on a
proposal by J. Buon [28b] which has here been modified [29] in order to become, in linear
approximation, independent of common errors in horizontal bending strength. For an error
of —1 °/,, in the strength of the horizontal magnets, the angular offset of the outgoing spin
from the orthogonal direction to the beam will be less than 20 u rad (!) for all vertical spin
rotation angles. This is shown in Fig.6 which also shows that, at the same time, a small error
in spin precession will result (less than 13 mrad).

Such vertical hinges can be inserted into the ring to make it follow the slopes of a shallow
valley, for example, without distorting the spin motion.

13



3.4 Concluding remark

Based on the grounds prepared in this paper, and on the proposed snake scheme, the au-
thor believes that, at little expense, polarization in the SSC can be made very stable during
acceleration, and even more so at the stationary working energy. Ways to incorporate snakes
in the insertions, however, have not been devised and need further work.
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spin tune HERA betatron number of cells LEP
per cell energy phase per energy
_ . cell n
Vo E[GeV] P 314 6|a8jojtofr2isef18 20 E (GeV]
3/10 27.497 90° X
72° X X
60° X
11/36 28.006 30° T T T T T Ix!
5116 28. 6042 90° LT T T I
173 30.552 GeV —_—'(9:(.3-?7‘—-—* —F F X
72° . X
\@ X XX X
7120 32.079 GeV :@r X X
72° — X
%[ 132,08 GeV FFRe0 ~E A F FFAAKI ] 420
11730 33.607 60° FTT T T T IXEL | 44894
378 (34.37 Gev J4+—003 XY [T IX] ] 5915
718 35.644 60° CT T T IXE T T IX] 47.615
275 36. 662 90° X| 48976
72° X X X
60° X
5712 90° X X X1 51.016
60° X
73730 s T T 1T T T T T IXI [ [ 55057
7716 g0° T T 1T T 1T T 1T T XTI 53.567
e 60° [T T T T T TT T IXI 54.417
9/20 90° X X | 55 097
72° | X \
715 72° FT T T [T T IXE | 57 138
17136 90° FTT T T T T 1 1 IX] 57.818
172 90° X X X[ [X]T [X] 6219
72° X X
60° X X X X X
Tab. 2 : Particular energies for strong spin matching over

n cells in the HERA and LEP electron rings.
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Fig. 6 Spin trailing error of vertical hinge, as a
function of vertical spin rotation per magnet,
for a common error of -1%o in the strengths
of the 4 horizontal bends. AYy is the overatl
error in vertical spin rotation (in prads), and
Ay the overall error in spin precession {in mrads).




	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

