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Abstract:

We study two dimenslional massless chiral QCD in a gauge invariant
formulation. The Faddeev-Popov-procedure is used to obtalin a gauge
invariant effective action after bosonizetion which 1is then
quantlized canonically using Dirac’s prescription for constrained
systems. The gauge current algebra is deduced and covariant current
conservation is shown by means of the equations of motion of the
bosonic matter fields. '

*) Supported by Studienstiftung des deutschen Volkes
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1.) Introduction

Symmetries of a classical theory may be spoiled at the quantum
level.” In the case of gauge invariance this shows 1tself
dynamically in the fact that the gauge current J¥ is not conserved
covariantly:

Duuﬂ‘¢ 0, (t.1)

which 1s a contradiction to the classical equations of motion.
Since the existence of internal symmetries is one of the
~motivations for considering gauge theories, it should be demanded
that they survive quantization. Furthermore, the existence of an
anomaly DJ¥ *# 0 1s suspected to spoil unitarity and
renormalizability {1] , which implies that the theory 1is
inconsistent and hence useless.

For the chiral Schwinger model [2-4] , which seems to be anomalous,
it has been shown that a consistent quantum theory is possible {5].
Integration in the path integral approach over equlvalent gauge
field configurations [6-8] yields an effective action with a
Wess-Zumino-term [9] which renders the theory gauge invariant and
anomaly-free. In the abelian case [10,11} the effective action has
been quantized using Dirac’s prescription for constrained systems
[12-14]. It turned out that the current algebra is canonical, i.e.
there 1s no Schwinger term in the LJO,JO]—cbmmutator. In the
non-abelian case in the Hamiltonian formulation, however, there
has only been an eapproach using the gauge non-invariant formulation

[15]i

In this paper we want to perform the canonical quantization in a
gauge invariant framework. We consider the Lagrangean
o4 w o= 1-v°

A A CE T S (1.2)
of chiral QCD in two dimensions. We use the Faddeev-Popov-
procedure [16] to get rid of superfluous gauge field con-
.figurations in the path integral. After bosonization we obtain
& gauge lnvarlant effective action which will be quantized using
Dirac’s prescription. The constraint algebra shows that the system



is first class, thus reflecting the gauge symmetry. We fix a gauge
to obtain a second class system and calculate the Dirac brackets,
which are turned into quantum commutators. The gauge currents are
determined, their algebra. is deduced, and finally current
conservation is shown by means of the equations of motlon. '

2.) The Chiral Model with Wess - Zﬁmino - Term

We briefly review the chiral model to show how a Wess-Zumino-term
may be treated in the framework of canonical quantlization [17-19].
The action is given by

S =8g + Syz = - Jax tr (gue¥) + 2 [ tr o3, (2.1
M Q
where
= -1 - 8_}_ a
Wy h %mlm wp(@ ﬁt ) | (2.2)

The ®2 parametrize an SU{N)-valued field h,the t% are normalized
hermitean generators of the SU(N) gauge group, and we assume that M
= 3Q 1is the two -dimensional Minkowski space {for additional

‘conventions see appendices A,B).

In components, the action may be written as

M

here D is a local two form such that dD = {r w3.‘

5= [ dx (Fayy 3,01 8% « A Dyy 350! 3,09) = [ax 20 ; (2.3)
M

Since the ®l(x) are 1independent configurétion space varlables,
canonical quantization may be carried-'out by requiring that the
canonical momenta

ar 4
Py = a1 = P ¢ Dy 218, By = gy 308 (2.4

and the coordinates &J satisfy canonical commutation relations

[py00, 03y Jorc = - 1 834 87, (2.5)



It is easy to see that

18y 4 3%8(x-y), ’

it

[Py (x), (8 0y) Jape = - 1 3;£(®) 8(%-7). (2.6)

We will drop the index ”“ETC” in the sequel. After some algebra
using (B.12) it is possible to prove that <

. _ 3 : k - - .
[pi(x),pj(y)]'—-.ﬁ 1.)“gabc“”1a mj.blmkc'al‘b 5(x—fy)', - (2.?).
~ this result is necessary to calculate the current:algebra.later on.

The action S 1is invariant with respect to the global gauge
transformation

h—> h¥=8.hn. (2.8)
By application of Noether’s theorem we obtain conserved currents [20]
11 g3

Ja =Ja *

> M Jya g - where 34 =gy, et - (2.9)

‘Current rconservation au.J: =0 1s equivalent.to the equations of
motion. We note that -

Joa " Py fat. Jia = 9134 31¢1=Eaj, : (2.10)

so the algebra of the currents Jua may be calculated by usiﬁg the
canonical commutation relations and the Killing equation (B.10):

‘ 1 3 . .
[Joax). Joply}] = 7 9abc (Joc!x) * 2N J1ctx)) 8-y,
) i ¢ .-0 - -
'[JOa(X):Jib(Y)] = 75 Jabc J1c(x)8{x-y) + 14 35, *8(x-y),

[J1a(x). 31pty) ] = 0. (2.11)



These commutators imply the algebra of the symmetrngenéfating
currents Jua

1 - - a -
[Joatx).J1p(y)] = 75 9abc Jo (%) 8(E-¥) - 3% 85y FB(RY),

j. - - 9 2 - -
[Joa(x), 915y ] = 75 GabeJyc(x) 3(X-¥) + 114 22) 8gp, XY,

1 9 b
[V1at. 9150 ] = =9abe (-7 A 20 (x)=30J) o (%)) 8(X-7)

~ 31X 3y, 3%s(x-y). . (2.12)

This current algebra coincides with the result of ref. [19], egs.
(3.8), (3.9). S . -

3. )_ Chiral QCD in Two Dimensions

'Chiral coupling of fermions to gauge fields is realized in nature

in the weak interactions. Since under gauge transformations only
one helicity of the fermions is affected, the functional path
integral measure BY BY 1is not gauge invariant [21]. Hence anomalies
may appear Spoiling renormalizability and unitarity of the theory
[t} In two dimensions it is possible to study these anomalles
explicitly since the fermlons can be integrated out in the path
integral leading to an effective action which can then be quantized
canonically.

3.1.) The action of chiral QCD
The classical action of chiral QCD is [15]

S = Syp(A) + sfw,?,m = [ a2x 2y (%),
- M

Sym(A) = [ aZx 2 p(A) = fdzx [~——-tr (Fu )],
M

— — 1-
Se(P,¥,8) = [d2x 2p(A)= fa2x [ ¥ (13 + eX —

) ¥ ] (3.1.1)
M M |



The gauge field and the field strength tensor may be decomposed as

Ay = Auat®, Fuy = 3A - 3A, - te[a, A ] = B, t2. (3.1.2)

The covariant derivative is given by

Du = Bu - le Au. (3.1.3)

A short calculation yields

oy (x) = - te(F,F) + ¥1a¥ + v ea 0w, (3.1.4)

W
showing that only the ”“-” - component (see (A.1}) of the gauge
field couples to the left-handed fermion helicity. The action is
invariant under a gauge transformation 9(x), if

— A =
Au > A =3A

-1 _ 4 -1
u s —38 974,

‘PR—'—) TR_= ?R‘

;s.,
?L—> lFLf-" =3 YL'
D——D&s—a—i Ad = (3.1.5)
m > u*- m e we . .1,

¥

3.2.) The Faddeev - Popov - procedure

It is a well known fact that naive canonlical quantization of gauge
fields does no lead to a sensible quantum theory since the gauge
freedom makes the definition of a propagator' impossible. The
Faddeev-Popov-method solves this problem by eliminating
superfluous degrees of freedom in the path integral approach.
Therefore we consider the path integral

= 1S(¥,¥,A) 15, (A - ¥, ¥,A)
Z=[saroyov e = [ oA o Sym'M [y gy o 15¢ Mz



In principle there are now two possibilitles to proceed. One could
express

—  1S.(¥,¥,A) 1S_¢¢(h,
15¢l as J'ﬂh o —eff Al {3.2.2)

[ oy oy e

as in [15] by simply integrating out the fermions, where S_¢¢{h,A)
is an effective action expressed in terms of a Lie group valued
field h and the gauge field. It turns out, however, that this
effective action is no longer gauge lnvariant. The reason for this
1s that the functional measure BY ¥ is not gauge Iinvariant,
yielding a non-trivial Jacoblan:

ov By + pyd pyd, (3.2.3)

Therefore the effective action does not possess the same symmetries
as the original one. In contrast, we will use the
Faddeev-Popov-procedure [16]. A clever unity

1=aa) [ags(Fad9)) (3.2.4)

is inserted into the path integral, where F is some gauge fixing
functional. The gauge invariance of A{A) may easily be shown by
means of the right invariance of the {(functional) Haar measure. The
gauge field measure DA 1s gauge invariant, furthermore, we define.

BA = BA A(A) § { F(A) ). | (3.2.5)

In the case of vector coupling of the fermions, the lintegration
over A factorizes if the integration variables of the fermions are
gauge shifted. An infinite constant may then be absorbed into an
overall normalization constant. Here, however, the chiral coupling
does not allow this shiff, so the Lie group valued field g survives
the Faddeev-Popov-procedure as a degree of freedom [6,7,8].



Using the gauge invariance of Sym(A), we obtailn after a shift of

the integration variable A [22]

= -1
1Syp(A) 7 JASE(Y.¥, AT )

f oy ¥ e (3.2.6)

Z = IIEA dg e

Thus we have restricted the integration in Z to those gauge fields
which are inequivalent with respect to gauge transformations.

3.3.) Bosonization

iNow~we use the well known fact [15,23,24] that the functional
integral

- ¥, ¥, A
[ oy oy 15T A (3.3.1)
may be replaéed by an integral over a group valued field h
[ on e 1RIA/R) 2 aTA) | (3.3.2)

Here B possesses the cocycle property and [{A) has the form of a
mass term for the gauge field with an arbitrary parameter a e R
which arises upon regularization of the fermionic determinant
[25,26]. Replacing g'1 by g and inserting the explicit
parametrizations

g = exp (ea{%ta), h = exp (@aé—ta) | (3.3.3)

we obtain the path integrel

1S
ef£(A.g,h) (3.3.4)

Z=[BA8gBhe
where

Setf(A.g,h) = | d2x £(x),
M



_ 1 & ae _
R(x) = -Fy Fgq + 2— Ay Ag

-

%) - L1 1
3,213°03 - —D; ;3,0 3;¢J

+ (a- 1)—hij 3,013"e] + “cijaoeialeJ

+ 4;4,, 91 3Eay (200t + 3101) (Agq - Aga)

e

(3.3.5)"

Y i hyjMay (3061((3_1 A0a Hl"la) -8103 (AOa+ ta-1) Aia)')‘

Here we have assumed that (g,ei hij Ngy,81) are the analogues of
(h, ot Iy ,EaysWigq) In terms of the parameters el. Of course,

locally there is a two-form C with dC = roed.

The effective action is invariant under the gauge transformation

g—>g”=g97l,
h—> h% = h$!
A—sa¥ zg9a 951 - Laggl
N w N e ou .

3.4.) Quantization

{3.3.6}

We are golng to quantize the theory canonically. Flrst of all we

define the momenta conjugate to Aua' ol and ol:

g &

i =z=—=F
a aaOAua Oua S50

Ilg = 0 , which is a primary constraint, and
1 _ _ V .

Oy = 9A14 ~ 31A0a * © Ipca Aob Atc

=2 308 - — Dy 3;8) ¢ —— ay A
Pt 7 35o0T ~8x 913 °0 12n 13 °1%7 7 (g Plafra



Iz — = J - + .
9 = 3,1~ Bn = C139;0 +f“4 e1al(8-1)Ag, Ala)

(3.4.1)
Fo: convenience, we deflne
=gy L p 3, 83)
Pa = &ay (Py* 5 D1y 9197)
1
da = Ma1 (917757 €13 2199). (3.4.2)
and obtain

@K

ak (8“5& - f2e A—a)'

ko1 = _

308K = gy (8 Tq - 7Ze ((a-1) Aga* Arq)). (3.4.3)
if we restrict ourselves to the case a# 1.

Now we introduce the covariant derivative

b .. '
D& = Sabau—egabc AUC (3.4-.4)

and finally obtain the Hamiltonilan density after a partial
integration:
2 42
= A e
2 = 5NN} - Ap, DPP n1 ¢ 5 T Metla

- — 1 7 4n o . a-1
+ AM pabgy ¢ 160 “1a®la + a1 2a9a * 167 Cla®la

-J?eEa(Aoa-Ala) 4—4 “Ha(AOa A1a)
2e _
) Z—%qa ((a-1)Agq+ Agq) “.,/;4,t 610 (Aoa * ta-1)Agq). (3.4.5)

The terms linear in aooi and 309i have vanished, furthermore it tis
obvious that 2 can be written in terms of p,, g4 in a simple form
since these varlables contain the contributions from the forms C
and D.

._10..



As mentloned above, H% is not an independent dynamical variable
and has to be treated as a primary constraint

0y, =0 0 : (3.4.6)
in the sense of Dirac [13] . To obtaln a consistent quantum theory
which is not i1l from the very beginning, one has to use Dirac’s

prescription for quantizing constrained systems, since canonical
commutators might lead to contradictions. The basic Poisson

brackets are
[t py(r) = 8y 81,
{eiti‘},qj(;})} =8y y 5(X-Y),

{Apa (X1, M2 (71} = 8, 8(%-¥),

(A1) L ()} = 55p 80X -y), (3.4.7)
the other brackets vanish.

By careful use of identities involving derivatives of
s-distributions and of (B.12) one obtains the useful Poisson
brackets '

{0123 .Pp(¥)} =%gabcm1c8(§—§)+ Sapd S(X-Y),

[pa(x} pb(y)} gabc(pc ; wlc)S(x -y),

{e12(X).ap (Y1} = —-—gabcclcui'—;) + 8,3 8(X-7),

{qa(xl ap(y)} = gabc(qc . 5o 61c) XY ). (3.4.8)

Following Dirac, we have to_look for further constraints which
arise as consistency conditions

30y % 0. (3.4.9)

- 11 -



Since

{01, (). (91} = 0, | | (3.4.10)
th;s is équivalent to

0~ {01,0%) 1} = {0,,0%), fay 21}, - (3.4.11)

which leads to

ab 1

| _ . _ |
Qpq =Dy MMy, + f2epgy + la * 12eda = 5,0 61a ¥ 0. (3.4.12) ;

=
YZ4n
Q,, 1s a secondary constraint correspondlng to Gauss’ law.
Additional Polsson brackets are

{01200, 00t92} =0, '
{020 (X), 0, (Y1} = & gape QpctR) S(X-7). - (3.4.13)

Now we claim that there are no further conétraints.'A lengthy
calculation yields

305, (%) = {05, (%) ,H} = e gape Qpp(X) AgalX) 0, o (3.4.14)

since Q) ® 0. Therefore the consistency relation 330, » 0 can be
expressed in terms of the constraints which are already known.

The matrix

{aaatic'),ﬂﬁb(f)}

is not invertible, so we are dealing with a first class system.
Dirac proves that first class constraints are generators of
symmetries of the theory. In our particular case the gauge symmefry
of the effective action is reflected. Furthermore, Q, fulfills the
correct algebraic relation (3.4.13) for generators of symmetries.

- 12 -



There are now two possibilities to obtain a sensible guantum
theory.

a) We may assume canonical commutation relations equivalent to the
Poisson brackets. The constraint equations Q,, {¥> = 0 are
fulfilled for physlcal states I1¥> only. To obtain further
information, we would have to use the restricted physical Hilbert
space which is the kernel of the constraints Qg,.

b) We can extract information from the operators and their algebra
without considering states if we could assume the constralints to be
strong operator equatlons for all states. This may be achleved by
using further constraints which force the system to be second
class.

We will proceed as Indicated 1In (b). Wé have to determine
constraints which restrict the symmetry of the theory, so we have
to fix a gauge.

3.5.) Gauge fixing and Dirac brackets

We will work in thg-unltary'gauge g = 1, since in this gauge the
Wess-Zumino-term which leads to the gauge invariance of the theory
1s gauged away. Then it is possible to compare the results with

those obtained in the gauge non-invariant formulatlon.

In order to invert the antisymmetric constraint matrix

[Qma'QBb]
we have to add an even number of constraints. We express el = 0,
which implies g = 1, as 3,0 = 3;0! = 0 [10]. To simplify

calculations, we use as gauge fixing constraints

e
Q4. =—— -] O’
3a " JZax Cla

2
Q, = 12e aa-%((a—l)A0&+A1a)%O. (3.5.1)

_13_



We remark that

Y24n

k o _Tedm k
03, = F4 eka218. Qua = Z(77 oka 208*- (3.5.2)

The matrix
C = {Qaa'QBb}
may easily be calculated by using (3.4.7),(3.4.8), the result is

0,60, 03,1} = 0,
2

{01060, 0451} = = (a-D5g3 G-,
2 2
- - e R d - e X hnd -
{QZa(x),Q3b(y)} =mgabce11c5(x—y)+ Esaba dlx-y),

. _ 3 -
{Qza(x),04b(y)]-= dabc G@ézqc:* E;'AIC)S(x-y),

03,00, 03,91} = 0,
2 2
- - e - e X - -
[QBa(X)rQ4b(Y)}='ZE;;9abc°1c5(x'Y)+ I;saba ${x-y),
- — — 1 - -
{040 (%), ()} = 12e2 g, (T + o= 61c) $(X-7). - (3.5.3)

To proceed, we define linear combinations of the constraints:

Xy = Q3, x3 = Qp, x3 =0y, x4 7 Q, - Q. (3.5.4)
Then it is easy to see that the matrix

CUx,¥) = {xua(X), xgp (V)]

is invertible. Therefore, the system 1s now second class, and we
may write down Dirac brackets

{a.Blp = {A.B} - 3 faxt a7 (A, xeq (K1 e 2L o (X.¥) {xgp(¥),B}  (3.5.5)
o,a

B.b

- 14 -



which are turned into quantum commutators by the prescription.

(h—10 ]

It is a tedious bit of algebra to do the calculation, so we simply
state the result here. Some commutators are simplified by using the
fact that constraints are now strong operator equations.

1 1 4n -
~[Roatx) Agpty) ] = =57 9abc(Bic - (a-uAOC)S(g—y),
1 l 47[ - - X - -
T[AOa(X}rAlb(Y)] == e_i(e‘?fabcAlca(x“Y)“Saba 8(x—y)),

%‘[AOa(X)'HL(Y)] '_L(iezgabcnt:*“sab)“;'?)‘

—i—[Aoa(x),mlb(y)] - —;i—l— %gabcwlcm;-;)%EJ’“sabaxS(;—{;)),
-—]i'—[AOa(x),ﬁb(y)] = -ﬁ(%gabc §c5(£—§)+ésabax-5(§—§)),
%[AOa(X)'ab(Y]] - ./lggabcAOca(x y)+ 147 Sab axs.(§ v,
—i——[Ala(xl,n;(y)] = 85, 3(X-Y),

1. . — 1 - - X - -
-i—[hla(x),qb(y)] g (egabc Ao 8lx-y} -8, 9 S(x~y)),

L p 1 - L L - =
T[ﬂa(x),qb(y)] = ‘Egabc 0. 3(x-y),

l —_— l -+ = X - -

T Loga(x),Bpiy)] = 7 Gabc 93¢ 8 (XY )+ 85,3 3(X-7),

1 — 1 - = X - -
T L0120, (0 ] = - (Fgabc 01 3H-Y) ¢ 8559 8(x-Y)),

%[Ea(X)'Eb(Y)] = 1/'““%“gabc(ﬁc: ‘g,‘;mlc)“;‘;)’

—i—-[aa(x),ab(y)] = —({%gabc 5C3(§~§)+§%Sabaxa<£-§)),

—i—[q—a(x),"q"b(y)] = 'B—it'(‘a“imo&%c) + ﬁaabaxs(i’—{r),

—i—[Df‘c.nlctx), Aop(y)] = —igabc(%nfdng teh;)8(X-7)
FT B0 B(X-T),

- 15 -



1 - - X - -
—[Dac (x),A1p(y) ] = @ gapchc8(X-F1 -3y 3 8(X-3),
ac_1 bd_1 ce 1 .+ = o
T[Dl M {x),Dy Hgly}] = € 9abe Dy Mg 3(3-¥),  (3.5.6)

where the last three comutators will prove to be useful to
calculate the current algebra.

3.6.) The current algebra

- We define the gauge currents by

11 a&1 1 _a _yv

Jazzahua ,.where lf—!.ym+2.1, me=_TFU\JF&' (3.6.1)
An explicit calculation yields
0 ae2 i i i )
Ja = 7 Aoa’ J‘4 RER +3 1) + 7,—] cia((a-l)aoe -3,01)
ab 1
=-Dy My,
i ae2 e i i e 1 1
Ja = " Ma i wya(390i+a, @ )"“—_4?41: -aia(aog -(a-1)3,01)
b 1 2
= Dy “b*ae (A0s -~ A1a), (3.6.2)

where 1n the second step the constralnt equations have been used.

The commutators (3.5.6) involving covarlant derivatives allow the
determination of the current algebra, we express the result in
terms of the currents (3.6.1) and the gauge field:

0 O O - —
[Ta(x), 3501 ] = -1e gape Jo 8(3-7), (3.6.3)
0 1 .0 aZ e? - -
[dat0,0p(0] = 1]e Yabc ("7 Jc +— - Apc) (X-7)
a2 o2

*;4 5 ba S(X Y)]

- 1 2 2 - 4
[Jatxy,at(y)] iegabc[a:i &ﬁ%(hc - (a-1)Agc) |8 (X-v).

,..16 -



We note that the [JO,J0]~commutator 1s canonical, no Schwinger term
arises, as required for a consistent quantum theory, as already
observed in [22]. We want to make some remarks concerning the gauge
non-invariant formulation. If the Faddeev—Popov—method' is not
used, the field g 1s absent and the effective actlion is not gauge
invariant. Then Dirac’s prescription leads directly to a second
class system since no gauge symmetry is present. Dirac brackets and
current commutators may be calculated, too, and it turns out that
they colncide with the results we have given above 1if the
constraint equations are used. Therefore we have found a gauge
{namely a gauge, which eliminates the fleld g that is not contained
in the gauge non-invariant formulation) which reproduces the
result obtained in the non-invariant formulation.

3.7.) Equations of motion and current conservation

Finally, we want to show fhat the gauge current is covariantly
conserved:

ab ) : _
Dy Jp = OT (3.7.1)
This condition has-to be fulfilled, because the equétion of motion

DuF““ = JY for the gauge field implies D\,DuF“‘J = D,JV = 0.

A straightforward, but tedious calculation using the Lagrangean
formalism starting from (3.3.5) yields the equation of motlion of
the matter fields @l and el: '

e ' 2 J
{2_4“ (Ojba o
= e (23,915 -319p5 ) (30®T 3@ -3, BT 3, 85 ) - 35®T 3, 05
- ¥§8ngbi 'r91s 7 919rs /\90P “0 1 1 gy bef Yre¥sf0 1
2 o |
e . .
* 74z Jabe “re (2027 (Aga~A1a) * 318 (Aoa21a) ]
2
e

~ 7= (30hop - 3tA1p * 33Agn - 31Agy, )i

_17_



ﬁin ejbazei |

- "%‘%‘qé;l_)"bi(23rh1s"31hrs)(309raoes‘319r3195)-%gdbf_srdcs.f_a'oefaoes
+;é%%‘gabe"re[aoer((a"l)AOa”\la)“'aler('AOa'(a'“Ala)}
‘i—: (ta-1)3gAgp, + 3pAyy, - djAgp = (a-1)3jAyy ). (3.7.2)

A'simple calculation gives

2 . '
rang.=:E§G;gabe-[mre[ao°r(AOa“A1a) * al¢r(AOa_A1a)]' (3.7.3)

+5re[aoer((a"1)AOa+A1a)*'aler("AOa'(a'l)Ala)]]'
where the equations of motion (3.7.2) of ®! and @! have been used.

The additional term in the covariant derivative is easily seen to
be

oo, oM
egbac Auc Ja—auJb » (3.7.4)

so that indeed

ab _u ' ‘ _
D, Jp =0, _ (3.7.5)

the gauge current J% is covariantly conserved.

So it turns out that the dynamics of the Wess-Zumino-field g
ensures current conservation {22]. Of course, it is possible to try
a similar calculation in the gauge non-invariant formulation. Then
it turns out, however, that the equations of motion do not suffice
to prove covariant current conservation. We suppose that in this
case, as In the abelian case [10], the complete and explicit
solutions of the equations of motion are necessary. Since they are
not known in the non-abelian case, the use of a gauge invarlant
effective action seems to be the only possibility to prove gauge
current conservation.
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4.) Summary and Conclusions

We have studied chiral QCD in two dimensions in a gauge invariant
formulation. Using the Faddeev-Popov-procedure we obtained a gauge
‘invariant effective action after bosonization. The calculation of
the constraint algebra showed that we were dealing with a first
class system. As Dirac has shown, filrst class constraints are
generators of symmetrlies which leave physical observables
invariant. In our particular case, the constraints generate local
gauge transformations. Gauge fixing leads to a second class system.
Quantization 1s possible by calculation of Dirac brackets of the
dynamical variables which are then turned into quantum
commutators. We defined gauge currents and determined the current
algebra. The [JO,J0]~commutator turned out to be -canonical
reflecting the fact that JO is a generator of a symmetry. No
Schwinger term is present as required for the consistency of the
theory.

Finally we proved covariant current conservation by means of the
equations of motlon of the bosonlc matter flelds.

The additional matter field surviving the Faddeev-Popov-procedure
turned out to be essential for the two main features. of this
formulation, namely gauge invariance and the possibility of
proving covarlant current conservation explicitly.
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Appendix A: Conventlons and Notation
We use 2-dimensional Minkowski space M = 3Q with metric Q =
diag(1l,-1} and Levi-Civita-symbol gy = 1. Lightcone variables are

defined by

A, =AY =Agt Ay, 3, =% =35t 3. (A.1)



The y-matrices in the chiral representation read
40 = &b, vt =162, ¥ = 4Oy! = diag (1,-1). (A.2)

Projection operators onto left-~ and right-handed componeﬁts of the
fermions are defined by

, ¥, =AY, ¥g =g¥. (A.3)

Appendix B: Differential Geometry of SU(N)

‘Let G be a Lie group [27,28] SU(N) with hermitean, normalized
generators t@,

tr tath = 58b, tr ¢ = o, (B.1)
and totally antisymmetric structure constants 9apc» Where
[ta,tP] = 1 g . tC. | (B.2)
Each h € G may be pare;metrized by

h = exp (@a%ta). | (B.3)

The Maurer-Cartan-form

co=h—1dh‘—,'mia1—(~_—ta dgl - (B.4)

is a canonical left-invariant i-form on G.

On G, there is a left-invariant metric

+

g=- gij d@ied‘pj, gij = -2 tr (&Ji&)J) =mia‘wja. ) {B.5)
We define E to be the inverse of. the matrix w,
9ia £y = 81, (B.6)

and we note that the a3y are the components of left-invariant
vector flelds
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3 o~ A _ ,
= Eai EST.! g(xayxb) = sab' ) (B-?)

The structure equation

[xa XP] = - = gope X© (B.8)

may be expressed in components as

1
Eai 3383 ~ %by 938ay = 7 Jabe By (B.9)
here 9, d t .
where 3; denotes —y
A very useful relation is Killing’s equation
(B.10)

Eaj 349k1 * 914 %8aj *t Ikj 918ay = O

Let tr 3 be a three-form on G which is a ”A"~product with resect to
{-forms, the matrix product and the trace are taken with respect to
Lie algebra matrices.

It is easy to see that tr w3 1s a closed.form, so locally there is a
two-form D with tr 93 = dD. We may expand D as

. “—1_ l V ‘ _ . S .
D=--Dyydet a d®d, Dyy = - Dyy, (B.11)
and note that

31Dk = 33Dyx * Dy = o= Jabc Via “ib ke (B.12)
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