DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

TWO-PHOTON PRODUCTION OF EXCLUSIVE FINAL STATES

by

A. Levy

Tel-Aviv University, Tel-Aviv, Israel

ISSN 0418-9833

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.	
DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.	
To be sure that your preprints are promptly included in the	
HIGH ENERGY PHYSICS INDEX, send them to the following address (if possible by air mail):	
DESY Bibliothek Notkestrasse 85 2 Hamburg 52 Germany	

Two-Photon Production of Exclusive Final States

Aharon Levy Tel-Aviv University, Tel-Aviv,Israel 69978

Rapporteour talk given at the Rochester Conference, Munich, Aug. 1988

Two-Photon Production of Exclusive Final States

Aharon Levy Tel-Aviv University, Tel-Aviv, Israel 69978

1 INTRODUCTION

In view of the limited time I will confine myself mainly to the subject of $\gamma\gamma \to VV'$ [1], with some mention at the end about $\gamma\gamma \to B\bar{B}$.

It is customary in these talks to point out what new information do we have since the last Rochester conference. At Berkeley we had only one reaction well measured, $\gamma\gamma \to \rho^0\rho^0$, preliminary results of $\gamma\gamma \to \rho^0\omega$, and some upper limits[2]. Today we have measurements of six out of the possible 9 V V' combinations and upper limits on the remaining three:

out out of the bonders of	
$\bullet \ \gamma\gamma \to \rho^0 \dot{\rho}^0$	CELLO, MARK II, PLUTO, TASSO, TPC/ $2\gamma[3]$
$ullet$ $\gamma\gamma ightarrow ho^0\omega$	ARGUS, CELLO, TPC/ $2\gamma[4]$
• $\gamma\gamma ightarrow ho^0\phi(u.l.)$	ARGUS, TASSO, TPC/ $2\gamma[5]$
$ullet$ $\gamma\gamma ightarrow\omega\omega$	ARGUS[6]
$\bullet \ \gamma\gamma \to \omega\phi(u.l.)$	ARGUS[7]
• $\gamma \gamma \rightarrow \phi \phi(u.l.)$	ARGUS, TASSO, TPC/ $2\gamma[8]$
$\bullet \ \gamma\gamma \rightharpoonup \rho^+\rho^-$	ARGUS, CELLO[9]
$ullet$ $\gamma\gamma ightarrow K^{*0}ar{K}^{*0}$	ARGUS[10]
• $\gamma\gamma \to K^{*+}\bar{K}^{*-}$	ARGUS[11]

Let us now say a few words about each reaction.

$$2 \quad \gamma\gamma \to \rho^0 \rho^0$$

The by now well known low mass enhancement below the nominal $\rho^0 \rho^0$ threshold (Fig. 1) was first observed by the TASSO group[3d]. It founded the dispute between the traditional non-exotic interpretation that this enhancement can be explained by t-channel factorization[12], and the exotic explanation that this enhancement is the result of a constructive interference between I=0 and I=2 $q\bar{q}q\bar{q}$ states [13]. Both models give a good description of the data, but I would like to turn your attention to the very low cross section measured for this reaction above 2 GeV. We will return to this point in section 8.

How is this and other V V' cross sections obtained? The distributions are fitted to a 3-parameter fit of a sum of non-interfering contributions in each W interval. For the present reaction one uses $a \cdot (\gamma \gamma \to \rho^0 \rho^0) + b \cdot (\gamma \gamma \to \rho^0 \pi^+ \pi^-) + c \cdot (\gamma \gamma \to \pi^+ \pi^+ \pi^- \pi^-)$, where a, b and c give the percentage of each process leading to the observed final state. For each of the three processes a model is assumed which describes it. For the $\rho^0 \rho^0$ final state the

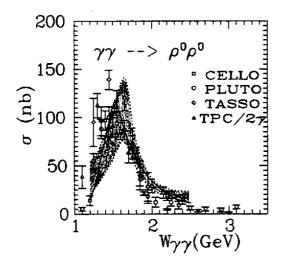


Figure 1: A compilation of $\gamma\gamma \to \rho^0\rho^0$ cross sections[3]. The shaded region is the expectations of the t-channel factorization model[12] and the solid curve is that of a 4-quark interpretation[13]

matrix element includes two relativistic Breit-Wigner shape resonances and some angular correlations. For the $\rho^0\pi^+\pi^-$ final state, only one Breit-Wigner is used and the remaining $\pi^+\pi^-$ are produced isotropically[3d]. A compilation of the $\rho^0\pi^+\pi^-$ cross section values thus obtained as function of W can be seen in Fig. 2, and shows a possible enhancement around 1.9-2.0 GeV, with an appreciable cross section above 2 GeV[14]. In fact, the $\rho^0\pi^+\pi^-$ cross section is even higher than the $\rho^0\rho^0$ cross section in this region.

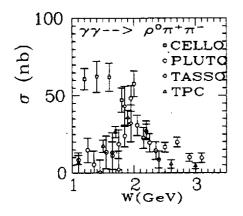


Figure 2: A compilation of $\gamma\gamma \to \rho^0\pi^+\pi^-$ cross sections[3]

At this point I would like to sound a criticism that was first pointed out by ACHASOV and SHESTAKOV[15], and concerns all $\gamma\gamma$ reactions in which one neutral vector meson is produced. Let us use the $\rho^0\pi^+\pi^-$ as an example. The charge conjugation of $\rho^0\pi^+\pi^-$ has to be positive. Since the ρ^0 is an eigenstate of C one can write:

$$C(\rho^0\pi^+\pi^-) = C(\rho^0) \cdot C(\pi^+\pi^-) = -C(\pi^+\pi^-) = +$$

Since the charge conjugation of a particle-antiparticle system is given by $(-)^{l+s}$,

$$C(\pi^+\pi^-) = (-)^l = -$$

which means that l has to be odd, and at these low energies we take l=1. Using the relation connecting G, C and I

$$G(\pi^+\pi^-) = C(\pi^+\pi^-) \cdot (-)^I$$

one restricts the isospin to I=1. Therefore the quantum numbers of the recoiling $\pi^+\pi^-$ are

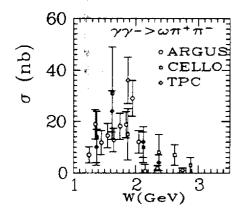
$$I^{G}(J^{P})C[\pi^{+}\pi^{-}] = 1^{+}(1^{-}) -$$

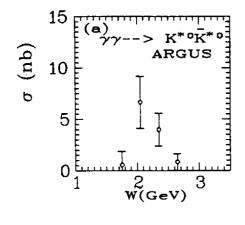
which are exactly the quantum numbers of a ρ^0 . What then is the meaning of a $\rho^0\pi^+\pi^-$ final state in which the $\pi^+\pi^-$ mass is generally less than 1.2 GeV and has exactly the quantum numbers of a ρ^0 ? Thus it seems that the ansatz of 3 non-interfering processes may not be a good one and one may have to reanalyze the data, taking into account the restrictions on the recoiling $\pi^+\pi^-$. It is not clear how this will change the results, but it has to be done.

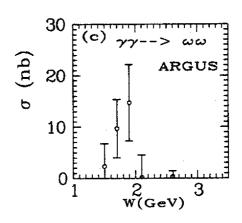
The same arguments hold for $\omega \pi^+ \pi^-$ and $\phi \pi^+ \pi^-$. Some restrictions are obtained also for the case $\omega \pi^+ \pi^- \pi^0$ and $\phi \pi^+ \pi^- \pi^0$. It does not hold for vector mesons which are not eigenstates of C, like ρ^{\pm} or K^* . With this in mind, let us proceed to the other reactions.

$$3 \quad \gamma\gamma \to \rho^0\omega$$

A compilation of the cross section measurements[4] of the reaction $\gamma\gamma \to \omega\pi^+\pi^-$ is shown in Fig. 3. The three measurements are consistent within error, though the CELLO data[4b] have a somewhat different shape. All three groups can not distinguish between $\omega\pi^+\pi^-$ and




Figure 3: A compilation of $\gamma \gamma \rightarrow \omega \pi^+ \pi^-$ cross sections[4]


 $\omega \rho^0$ final states, but ARGUS[4a] and TPC/2 γ [4c] claim that most of the $\omega \pi^+ \pi^-$ is in fact $\omega \rho^0$ final state. The data show an enhancement around 1.9-2.0 GeV, similar to that seen in $\rho^0 \pi^+ \pi^-$, which cannot be explained by the t-channel factorization model, nor by the 4-quark model with the parameters as tuned for the $\rho^0 \rho^0$ final state. The TPC/2 γ group can get a good fit of the 4-quark model to their data by changing the parameters of the model[4c].

4
$$\gamma\gamma \rightarrow \omega\omega$$
, $\gamma\gamma \rightarrow K^{*0}\bar{K}^{*0}$, $\gamma\gamma \rightarrow K^{*+}\bar{K}^{*-}$

The reason I grouped these three reactions together is that they have been measured exclusively only by the ARGUS group. Note the similar W behaviour of all three reactions shown in Fig. 4. Note also the large ratio of the cross section of $K^{*+}\bar{K}^{*-}$ to that of $K^{*0}\bar{K}^{*0}$, which can be explained by the 4-quark model and by a dual QCDmodel[16], however the absolute predictions are an order of magnitude smaller than the data. A one-kaon-exchange model[15], which gives a good description of the $K^{*0}\bar{K}^{*0}$ reaction, predicts the $K^{*+}\bar{K}^{*-}$ to be about 5.3 smaller than the $K^{*0}\bar{K}^{*0}$ - in contradiction to the data.

The predictions of the t-channel factorization[12] exceed the $\omega\omega$ data above 2 GeV, where, according to ARGUS, there is a large contribution of an $\omega\pi^+\pi^-\pi^0$ final state. One should however keep in mind that the charge conjugation restriction was not taken into account. This could also be the reason why a one-pion exchange calculation[15] has some problems fitting the data in that region.

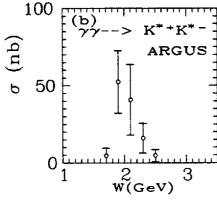


Figure 4: Cross sections for (a) $\gamma\gamma \to K^{*0}\bar{K}^{*0}$ [10], (b) $\gamma\gamma \to K^{*+}\bar{K}^{*-}$ [11], and (c) $\gamma\gamma \to \omega\omega$ [6]

$$5 \quad \gamma \gamma \rightarrow \rho^+ \rho^-$$

Until recently only the JADE upper limits existed for the reaction $\gamma\gamma \to \rho^+\rho^-$ [17]. They were very important since they ruled out the interpretation of a single s-channel resonance decaying into $\rho\rho$. The new measurements of ARGUS[9a] and CELLO[9b], shown in Fig. 5, agree well with each other and confirm the JADE upper limits. None of the presently

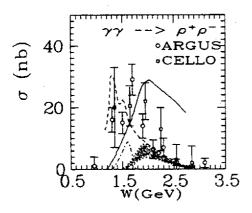


Figure 5: Cross sections for the reaction $\gamma\gamma \to \rho^+\rho^-$ [9]. Theory: t-channel factorization[12] (shaded), 4-quark [13] (dashed), 4-quark [18] (dashed-dot) and dual QCD[16] (full line)

existing models can explain the behaviour of the data over the whole presently available W range.

6
$$\gamma\gamma \rightarrow
ho^0\pi^+\pi^-$$
, $\omega\pi^+\pi^-$, $\omega\omega$, $K^{*0}\bar{K}^{*0}$, $K^{*+}\bar{K}^{*-}$, $\rho^+\rho^-$

I have plotted again, side by side, the cross section of all these six reactions in Fig. 6, in order to point out their similar W behaviour and the enhancement they all show around 1.9-2.0 GeV. A detailed study of this region is needed to confirm one or more resonance states.

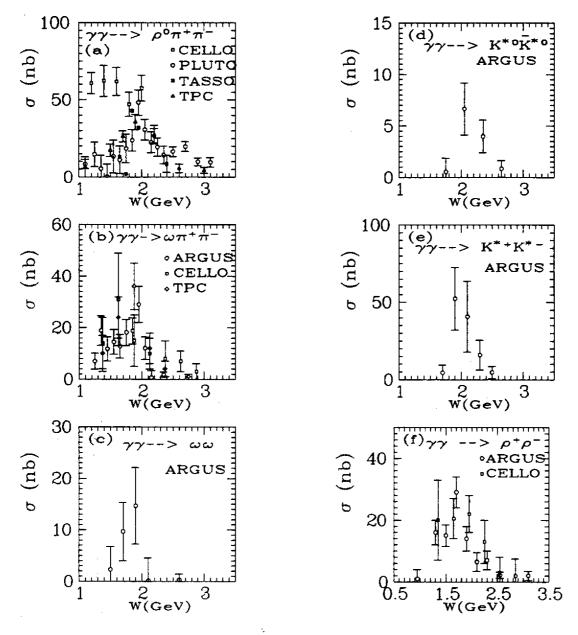
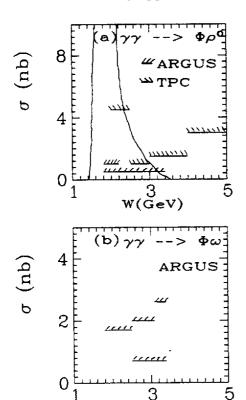



Figure 6: Cross sections for (a) $\gamma\gamma = \rho^0\pi^+\pi^-$, (b) $\gamma\gamma \to \omega\pi^+\pi^-$, (c) $\gamma\gamma \to \omega\omega$, (d) $\gamma\gamma \to K^{*0}\bar{K}^{*0}$, (e) $\gamma\gamma \to K^{*+}\bar{K}^{*-}$, and (f) $\gamma\gamma \to \rho^+\rho^-$

Note that a similar enhancement is observed in this energy region in some $J/\psi \to \gamma VV$ ' decays[19].

7
$$\gamma\gamma \to \phi\rho^0, \ \gamma\gamma \to \phi\omega, \ \gamma\gamma \to \phi\phi$$

The ϕ meson does not show, at the present luminosities, associated production with another vector meson. Only upper limits, shown in Fig. 7, have been measured so far [5,7,8], the best

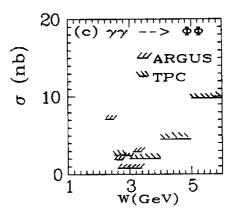


Figure 7: Upper limits for (a) $\gamma\gamma \rightarrow \phi\rho^0$, (b) $\gamma\gamma \rightarrow \phi\omega$, and (c) $\gamma\gamma \rightarrow \phi\phi$. The solid curve in (a) is the prediction of a 4-quark model[13]

one given by ARGUS. ARGUS is also the only experiment to give any information on the $\phi\omega$ reaction. The 4-quark model[13] has some difficulty with the $\phi\rho^0$ upper limits, shown in Fig. 7a. However here too no C restriction has been considered in the data analysis. All other models are consistent with the data.

8 The OPTICAL CONNECTION

Are all the data we have seen up to now consistent with other $\gamma\gamma$ measurements? One can check such a consistency by using the $\gamma\gamma$ hadronic total cross section, which can be connected through the optical model and the Vector Dominance model to the reactions $\gamma\gamma \to V^0V'^0[20]$:

$$\sigma_T(\gamma\gamma) = lpha\sqrt{\pi} \sum_{VV'} (rac{4\pi}{\gamma_V^2}) (rac{4\pi}{\gamma_{V'}^2}) [B_{VV'} \cdot \sigma(\gamma\gamma
ightarrow V^0 V'^0)]^{rac{1}{2}}$$

Figure 8 shows the published $\gamma\gamma$ total cross sectioned measurements of PLUTO[21] and TPC/ $2\gamma[22]$. The dotted line is the prediction $\sigma=187+702/W$ using a factorization model[23]. I have subtracted from this expression the point-like contribution, using the QPM[24], and have obtained the solid line. The open squares are the contributions to the total cross section coming from the $V^0V'^0$ measurements, using the optical model. One gets indeed a consistent picture up to 2 GeV. Between 2 and 3 GeV however, the measured $V^0V'^0$ cross sections are too low and fail the consistency check. This deficiency may be connected

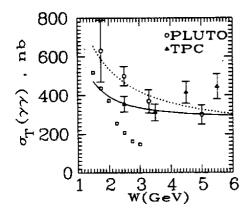


Figure 8: $\gamma \gamma$ total hadronic cross section (see text)

with the criticism discussed in section 2, where the determination of the $\rho^0\pi^+\pi^-$ cross section was evaluated.

Another possible solution to the inconsistency could be that we are missing some $V^0V'^0$ states above 2 GeV. Since the main contribution to $\sigma_T(\gamma\gamma)$, using the optical model, comes from $\rho^0V'^0$ final states, the first reaction that comes in mind is $\gamma\gamma\to\rho^0\rho'^0(1600)[20]$. The ρ'^0 decays mainly through $\rho^0\pi^+\pi^-$, one should look for the reaction $\gamma\gamma\to\rho^0\rho'^0(1600)\to\rho^0\rho^0\pi^+\pi^-\to\pi^+\pi^-\pi^+\pi^-$. Both ARGUS[25] and CELLO[26] have measured this final state, shown in Fig. 9, and get very good agreement with each other. One can indeed see

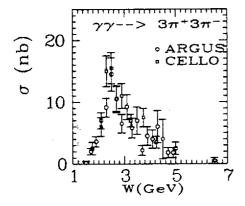


Figure 9: Cross section of the reaction $\gamma\gamma \to 3\pi^+3\pi^-[25,26]$

that the cross section has a sharp rise just at the $\rho^0 \rho'^0(1600)$ threshold. The CELLO group searched for this final state and the preliminary indications are promising[26]. They find a clear ρ^0 signal and indication for $\rho^0 \rho^0 \pi^+ \pi^-$ production. Since both $\rho'^0(1600)$ and the ρ^0 are wide resonances, it is difficult to claim a signal and this channel is still under study.

9
$$\gamma \gamma \rightarrow p \bar{p}$$
, $\gamma \gamma \rightarrow p \bar{p} \pi^+ \pi^-$

There are some new measurements of $\gamma\gamma \to p\bar{p}$ and $\gamma\gamma \to p\bar{p}\pi^+\pi^-$ by ARGUS[27] and TPC/2 γ [28]. The theories are still struggeling with these reactions. There is an attempt to get the correct order of magnitude for the $p\bar{p}$ final state using a quark-scalar diquark scheme[29], which indeed is an improvement, but the predictions are still too low. The measured $\gamma\gamma \to p\bar{p}\pi^+\pi^-$ cross sections of ARGUS and TPC/2 γ agree well with each other and with earlier measurements of the TASSO group[30]. The ARGUS group sees for the first time a clear Δ^{++} and $\bar{\Delta}^{--}$ signal in $\gamma\gamma$ reactions, however not in association with each other. Thus the ratio of $\Delta^{++}\bar{\Delta}^{--}/p\bar{p}$ can be obtained only as an upper limit and is less than 1 around 3 GeV.

10 SUMMARY and CONCLUSIONS

- We have now information on all the γγ → VV' reactions and all detectors agree with
 each other's measurements. However there may be a need to reanalyze some of the
 reactions in order to take into account the restrictions evolving from charge conjugation
 conservation on the three-body final states.
- No single model can explain all the data. We will probably have to use some hybrid models to get a clear picture of all the channels.
- Is there one or more states around 1.9-2.0 GeV that can explain the enhancement seen in this region in different final states?
- Where are the missing V^0V^0 , states? We need them in order to get a consistent picture with the total $\gamma\gamma$ hadronic cross section measurements. Do we see a $\rho^0\rho'^0(1600)$ final state in the $3\pi^+3\pi^-$ final state?
- All measurements of $\gamma\gamma \to B\bar{B}$ agree with each other and there is a first signal of Δ^{++} and $\bar{\Delta}^{--}$ production in $\gamma\gamma$ reactions, though not in association with each other.

11 ACKNOWLEDGEMENTS

It is a pleasure to acknowledge helpful discussions with M.Feindt, E.Gotsman, U.Maor, A.W.Nilsson and J.E.Olsson. I also thank J.Ahme for his help in the preparation of this manuscript. Finally I wish to thank the DESY directorate for their kind hospitality and support and the Minerva foundation for financial support during my stay at DESY.

References

- [1] For recent reviews see: U.Maor, "Vector meson production in $\gamma\gamma$ reactions"; A.W.Nilsson, "Exclusive final states- continuum (experimental) ", invited talks presented at the VIIIth International Workshop on Photon-Photon Collisions, Shoresh, Israel, April 24-28,1988
- [2] S.Cooper, Proceedings of the XXIII Int. Conf. on High Energy Physics, Berkeley, 1986
- [3] $\gamma\gamma \to \rho^0\rho^0$:(a) CELLO Coll., H.J.Behrend et al., Z.Phys.C21,205(1984); (b) MARK II Coll., D.L.Burke et al., Phys.Lett.103B,153(1981); (c) PLUTO Coll., Ch.Berger et al., Z.Phys.C38,521(1988); (d) TASSO Coll., R.Brandelik et al., Phys. Lett.97B,448(1980); M.Althoff et al., Z.Phys.C16,13(1982); (e) TPC/2 γ Coll., H.Aihara et al., Phys.Rev.D37,28(1988)
- [4] $\gamma\gamma \rightarrow \rho^0 \omega$: (a) ARGUS Coll., H.Albrecht et al., Phys.Lett.196B,101(1987); (b) CELLO Coll., H.J.Behrend et al., paper 531; (c) TPC/2 γ Coll., W.Hofmann et al., paper 606
- [5] $\gamma\gamma \to \rho^0\phi$ (u.l.) : (a) ARGUS Coll., H.Albrecht et al., Phys.Lett.198B,577(1987); (b) TASSO Coll., M.Althoff et al., Z.Phys.C32,11(1986); (c) TPC/2 γ Coll., H.Aihara et al., Phys.RevD37,28(1988)
- [6] $\gamma\gamma \rightarrow \omega\omega$: ARGUS Coll., H.Albrecht et al., Phys. Lett. 198B, 255(1987)

- [7] $\gamma\gamma \to \omega\phi$ (u.l.): ARGUS Coll., H.Albrecht et al., paper 453
- [8] $\gamma\gamma \to \phi\phi$ (u.l.): (a) ARGUS Coll., H.Albrecht et al., paper 453; (b) TASSO Coll., M.Althoff et al., Z.Phys.C32,11(1986); (c) TPC/2 γ Coll., H.Aihara et al., Phys.Rev.D37,28(1988)
- [9] $\gamma\gamma \to \rho^+\rho^-$: (a) ARGUS Coll., H.Albrecht et al., paper 527; (b) CELLO Coll., H.J.Behrend et al., paper 530
- [10] $\gamma \gamma \to K^{*0} \bar{K}^{*0}$: ARGUS Coll., H.Albrecht et al., Phys.Lett.198B,577(1987)
- [11] $\gamma\gamma \to K^{*+}\bar{K}^{*-}$: ARGUS Coll., H.Albrecht et al., paper 526
- [12] G.Alexander, U.Maor, P.G.Wiliams, Phys.Rev. D26,1198 (1982); G.Alexander, A.Levy, U.Maor, Z.Phys. C30,65(1986)
- [13] N.N.Achasov, S.A.Devyanin, G.N.Shestakov, Phys.Lett.108B,134(1982);
 Z.Phys.C16,55(1982); ibid C27,99(1985)
- [14] G.Alexander, A.Levy, S.Nussinov, J.Grunhaus, Phys.Rev. D37,1328(1988)
- [15] N.N.Achasov, G.N.Shestakov, Phys.Lett.203B,309(1988)
- [16] S.J.Brodsky, G.Köpp, P.M.Zerwas, Phys.Rev.Lett.58, 443(1987)
- [17] JADE Coll., Presented by H. Kolanoski, Proc. of the 5^{th} Int. Workshop on $\gamma\gamma$ Collisions, p.175, Aachen (1983)
- [18] B.A.Li, K.F.Liu, Phys.Lett.118B,435(1982); ibid 124B,550(E)(1982); Phys.Rev.Lett.51,1510(1983); Phys. Rev.D30,613(1984)
- [19] G.Eigen, talk presented at this conference
- [20] A.Levy, Phys.Lett.181B,401(1986)
- [21] PLUTO Coll., Ch.Berger et al., Phys.Lett.149B,421 (1984)
- [22] TPC/2 γ Coll., D.Bintiger et al., Phys.Rev.Lett. 54,763(1985)
- [23] A.Levy, Phys.Lett.177B,106(1986)
- [24] V.M.Budnev et al., Phys.Rep. 15,181(1975)
- [25] ARGUS Coll., Talk presented by A.W.Nilsson see ref.[1]
- [26] CELLO Coll., H.J.Behrend et al., paper 529
- [27] ARGUS Coll., H.Albrecht et al., paper 525
- [28] TPC/2 γ Coll., W.Hofmann et al., paper A368
- [29] M.Anselmino et al., paper 48
- [30] TASSO Coll., M.Althoff et al., Phys.Lett.142B,135 (1984)