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OPEN (CLOSED) PROBLEMS IN WEAK HADRONIC
PROCESSES

Branko Guberina™*-**
Sektion Physik, Universitdt Miinchen, Miinchen, Fed. Rep. Germany

and Deutsches Elektronen-Synchrotron DESY, Hamburg, Fed. Rep. Germany

Chiral perturbation theory in the sense of the Weinberg-Gasser- Leutwyler program is
presented for weak hadronic processes. It is argued that it represents a meaningful low
energy field theory, which in many cases has advantages over the standard approach. Its
relation with approaches which go beyond chiral perturbation theory, but rely on it, is
discussed. Finally, the role of tadpoles which appear both in chiral perturbation theory

and in operator product expansion of weak currents is clarified.

1. CHIRAL PERTURBATION THEORY - BASICS

Chiral perturbation theory (ChPT ) represents a viable alternative low energy theory of
strong and electroweak interactions. Its importance as an alternative approach to the usual
formulation of the Standard Model (SM) is particularly evident in processes where the lack
of knowledge of the true QCD confinement is blurring our view of electroweak interactions.
Kaon physics is especially sensitive to the above problems- since kaons and pions, being
pseudo-Goldstone bosons, are even less reliably described in phenomenological quark models.

Chiral perturbation theory is based on our knowledge of the fundamental symmetries
of the QCD lagrangian. The softly broken chiral SU(3)r X § U(3)r symmetry of the QCD
lagrangian is an important symmetry of Nature. The formulation of ChPT is based ' on
the following Ansatz the most general lagrangian consistent with a given symmetry would
result in any given order in perturbation theory, in the most general S-matrix, consistent
with incorporated symmetry, analiticity, perturbative unitarity and cluster decomposition.
Formulated in this way, ChPT becomes a quantum fleld theory.

In order to be so, one has to include all possible terms in the lagrangian and take account
of all graphs in perturbation theory. The classical field theory is, of course, equivalent to
tree graphs of quantum field theory. However, to have a consistent field theory, one has to

include also loop graphs. Without loops, theory violates unitarity. The inclusion of loops

*On leave of absence from the Rudjer Boikovi¢ Institute, Zagreb, Croatia, Yugoslavia.
**Maijling address, Theory group DESY, Hamburg, FRG.
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would generally lead to infinities. To get rid of them, the theory requires counterterms. Using
the regularization that preserves chiral symmetry (e.g. dimensional regularization), one finds
that counterterms necessary to renormalize one- loop graphs are of order p*, to be compared
with the lowest order tree level which is of order p?. Evidently, starting with the p*-order
L), one gets counterterms of order p* with the same structure as the p* - order £4). Using
the terms in £(*) as counterterms leads to finite results for all Green's functions to one-loop
order. |

The strong lagrangian at order p® (with minimal number of derivatives) is given by the

nonlinear ¢ -model

0 = Loouovh = Louon,e00 1)

for a massless field, with the invariant metric
9a(9) = tr(8,UBTT). (2)

U is the unitary matrix field

U(e) :expi—;—@. {3)

$ = %)\“é“ is given by

@ = o —% + ﬂ‘/% KO . (4)
K- K° ‘\@778

The lagrangian £ of the nonlinear s-model is, of course, nonrenormalizable, and agrees
with QCD only at tree level (leading behavior).* To get the full expansion, according to our

Ansatz one has to add all terms of higher order in p? ( terms with more derivatives)
ﬁstrong = 5(2} + £(4) + C(G) + .. (5)

This represents the full strong lagrangian. Again , the graphs containing n loops are sup-
pressed by (p?)" in comparison with the tree graphs. Therefore, the full £ strong 111 {B) specifies

a perturbatively renormalizable scheme. For example, up to order p%, we would have

p?- contribution: tree graphs from £(2)

p* -contribution: one loop graphs from £(2) 4 tree graphs from £(4)

p® contribution: two loop graphs from £(2} + one loop graphs with one vertex from £(4)
+ tree graphs with two vertices from £(*) + tree graphs from £(8).

* The choice of the effective lagrangian is not unique. At the tree level both linear and nonlinear
lagrangian lead to the proper value of two constants fr and v. At the one loop level , however, they
disagree. The linear (renormalizable) o model leads to relations among the coupling constants 2 which
are in disagreement with experiment.



If the quark mass matrix M is different from zero, all terms in £,,.,; would pick up

additional terms. The strong lagrangian then reads to the lowest order
2
£ .= %tr(apUaHU*) 4y tr(MU + UTM), (6)

with . R )
4v my, Mgy Mko

(7)

and v is proportional to the quark condensate, v = —1/4 < 0/gg|0 >. The lowest order Ef,flmg

> - )
f2 My + Mg My + My m, + My

at tree level is given basically by two coupling constants, f, and v, which are expected to
be calculable in QCD. Going to the next order, the number of coupling constants increases.
Although they should be ultimately calculable in QCD, in ChPT they are arbitrary and
have to be determined in physical processes. The complete chiral lagrangian in strong and
electromagnetic interactions is known to order p* as given in the work of Gasser and Leutwyler
2_ Besides the two couplings, f» and v in £}, the ten coupling constants L; in £*) are uniquely
determined. In principle, the same procedure applies to the weak interactions in ChPT.
The chiral realization of quark currents can be obtained by gauging the lagrangian cﬁf}m
locally*. This leads to the unique currents {V — A), and (V + A4),: |

(V — 4), =iLU8,U!

) 8
(V + 4), =L U,U. ®

The extension of ChPT to weak processes is in principle straightforward; in practice,
however, the predictive power is spoiled by a large number of unknown coupling constants.
The rich field of applications are rare K-decays because of many decay channels, which
enables one to fix counterterms uniquely. This program has been put forward recently by
Ecker at al.®, showing the powerfulness of ChPT in processes where a complicated interplay
between short- and long-distance effects and difficulties in calculating matrix elements cause
the standard approaches to fail.

In weak AS = 1 kaon decays, C P-violation etc. one has unfortunately only a few channels
and this fact makes it very difficult to go beyond the tree level chiral lagrangian. Nevertheless,
the chiral realization of weak lagrangians® has been found to be very useful as it "supports”
other approaches like the QCD lattice Monte Carlo simulation®. Some recent programs that
aim to go beyond ChPT, such as QCD Duality Sum Rules®~® or the 1/N, expansion'®~?? rely
heavily on ChPT. '

In the following chapters we present the weak interaction sector of ChPT and comment

on recent attempts to go beyond ChPT.

* One applies a local linear transformation to the U7 field, §U = —iT464(z), where §4(z) is an
arbitrary gauge function and finds the conserved current by using §£(¢) = — jj@‘*‘ﬂA(a:).
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2. AI =1/2 RuLeE IN CHPT

...me tanquam umbra sequitur.
A typical weak process, like K — 7, is given in the Standard Model by lowest possible

| B B . . R . . e . . '
\ order in weak interactions and all orders in strong interactions. The basic identification is
| given as follows:

< T Lagg ~ f d*z Dp (e Mw)T(5*(z)i(0))|K >¥ =< nr|lopmwal K >, (9)

where L pira 18 the effective lagrangian in ChPT. Applying. the Wilson operator product
expansion {(OPE) to the Lh. side of (9) leads to the set of quark operators with definite
symmetry properties 4. It is then possible to find their respective chiral realization.
Instead of presenting the complete weak sector of ChPT sistematically, we choose to select
some particular examples (see Fig. 1) where the advantages and drawbacks of weak ChPT

become illustrative.

TC T
K—< K <- (1)
N T
T Q n ‘n:——O (1)

K __O__R K-—O_R (11T)
T TC
K K—O<
T T
z i
K TC
Figure 1. Processes in ChPT. (I) tree level K© decay, (II) f» and wave function renormalization,

(I11) loop corrections to K° — K mixing, (IV) loop corrections to K+ decay. A square is an insertion
of the weak lagrangian and a circle a strong interaction vertex.

(1v)
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For example, to order p?, the octet part of the AS =1 weak lagrangian is given by *
C(Az.)5=1 = gaﬁs + hsea (10)

where gg and hg are unknown coupling constants, not fixed by ChPT alone. The operators

L and © have the following realization to the lowest order in derivatives and masses:

Ls = tr(AB,U*UY) (1)
0 = Btr(AUM + A(UM)').

The operator © is the tadpole operator which contributes in general to the off-shell Green’s
functions, but does not contribute to the S-matrix (see Fig. 1-I).

At tree level there is basically only one coupling constant, gg, for the AT = 1/2 part of
A(K — 27). It is not fixed by chiral symmetry alone and to determine it, one has to go
beyond ChPT. The value of g5 is known only in the large N, limit, in which Cg)sﬂ is reduced
to the product of bare currents.

With gg determined in the large N, limit, the amplitude A(K — 2m) coincides with
the large N. vacuum saturation approximation for the matrix elements of local 4-quark

operators!®.

(4)

wea

Going to the p*-level lagrangian £, introduces many unknown coupling constants.

)

weak

Typically, the amplitude receives contributions from one loop graphs calculated with £
(4)

and from tree graphs stemming from £/ ;.

A typical structure obtained by using dimensional

regularization is (up to irrelevant factors)

2e 2
A(p*) ~ I"UT +m2ln% 4+ where, (12)

Here 4 is a renormalization scale, T' is a calculable number, m is the meson mass and w"®

1s a bare coupling constant (counterterm) in CE:e)ak'

TEN

Defining renormalized (finite) w™*"gives

ren bare 2el

w e = w + T2

4 2 m? K r;n’ (13)
A(p*) ~ m*In T + w™ (p),

where the coupling constants w™”(u) obviously depend on the renormalization point p. The

whole expansion in (9} is, of course, - independent. Clearly, in calculating loops one is also

able to renormalize divergences via {13), but w™" is unknown. The same is true in the cutoff

regularization, provided all counterterms are kept™.

* Using a cut-off and naive Feynman rules the results are not chirally invariant 1°. Adding a
term —16*(0)Indet g.3(¢) to the lagrangian, where g, is defined in the Lagrangian ( 1), makes the
results chirally invariant. This term takes care of the difference between the naive measure and a
chirally invariant one in the functional integral '®. However, this term does not contribute to any of
the processes discussed in this talk.



The role of meson loops and/or counterterms is very important, as can be seen by studying
rare K decaysin ChPT 3. Some of these processes, like radiative K decays, proceed in the next
to leading order, since the lowest order contribution vanishes. So, the physical amplitudes
get contributions only from loops and/or counterterms. * In the next we discuss the large
N, expansion in ChPT and beyond. It turns out to be a very useful tool in treating many
problems in strong interactions. Its application to weak interactions should, however, be
taken cum grano salis. Point is that in the original formulation of the large N, expansion!” the
punctum saliens is the expectation that the true expansion parameter could be not exactly
1/N. = 1/3, but rather something like 1/4nN, or even 1/47*N,, as it happens in QED
where an expansion in the coupling constant ¢ becomes in reality an expansion in ¢ =
¢?/4r. Unfortunately, at least in the weak interaction sector, one often finds large subleading
corrections** that exceed 30%, which makes the whole expansion doubtful, at least in the
sense of Ref. 17.

Going to the next order in 1/N, introduces two types of contributions: i) tree level graphs
from £ with more than one flavor trace, i. e. from £*), ii) loop contributions with one meson
loop from £!?). The loop graphs are suppressed by factors p*/(1672f?) and hence suppressed
by 1/N..

The low energy constant f. gets renormalized” (see Fig. 1-II). The same is true for
fx. The cutoff dependence comes in in different ways'l: i) A possible A* contribution is
absent because of chiral symmetry; ii) A®-terms are of the form A% x tree-level £} (by power
counting and chiral symmetry); ili) The In A%-terms are of the form In A%x tree level £(*). It

1s then possible to absorb the cutoff dependence defining

_ 3A°
frer=1f- 1672 f

ren _ 139, A2

LS = L5 + 1% 16 ln F"; (14)
ren _ 11, A

L4 = L4 + 1677 16 ln o

This leads to the finite values for f, and fx. The results obtained coincide with the ones
obtained using dimensional regularization®!'. The cutoff has disappeared and the logarithmic
p-dependence is left over. It gets cancelled with the p-dependence of renormalized constants
L7*"(1}.This also remains true for the physical amplitudes in weak decays.

The weak 4-quark lagrangian transforms as (8z,1r) and (27;,15) under SU(3}; x SU(3)z.

* The processes can be classified as follows® i} Vanishing p*-couplings. In this case, the underlying
chiral symmetry forces loops to be finite. ii) The loop contribution is finite, but there is also a (scale
independent) finite counterterm contribution. iii)The loops diverge. In this case, ChPT must allow
for a renormalization scale dependent counterterms.

**The leading 1/N, calculation gives the ratio of amplitudes A(K® — #*7~ )/ A(K* — 7+2°) of
the order 1 instead of the order 10. The point is that the Wilson coefficients are of order 1 (virtual
gluons are subleading in 1/N;) and matrix elements are simply given by vacuum insertion (without
color suppressed terms). Then, one has to gain a factor of 10 by doing 1/N, corrections.

-1



All terms in the weak lagrangian have the structure

_ 1 !
Lijie = e(pqon) Gruy(1 —75)a @775 (1 = ¥s)ges (15)

where c(pgcp) is 2 Wilson coefficient that depends on the renormalization point ugcp (which
is introduced by QCD renormalization of local operators).

The leading 1/N, behavior of (15) is rather simple’®!'. Since virtual gluon loops are
suppressed by 1/N,, there is no strong interaction connection between two currents in (15).

Therefore (15) can be written as
Lkt = (Ly)ij (L% )t (16)

Including next to leading 1/N, corrections spoils the simple factorization exhibited in (16).
One has

Liie = (L.)i; (L*)e + tree level from other operators + loops in(16). (17)

Each of the new operators also includes subleading 1/N, corrections but with a different
coefficient. Unfortunately, as we have already emphasized, they introduce new free couplings
at the next to leading order in 1/N,. This reflects the composite structure of the four-quark
operator, which is not simply a product of bare currents, and whose overall scale is unknown.
As an example the operator relevant to K° — K° mixing (see Fig. 1-III) reads

-5 + (U, U (UHUY) 4
—[4vLs + g)(UBUN, {USUMIUY — 8KUM + M1G#U - UMOHUT) ; (18)
~(8vLy + ga)(UBU) GUBUY), gtr(MU + MIU) — go(MIUT) g MITY) 5+ -+

Lygd

The leading term is of order N? (leading factorizable contribution). The unknown constants
g; are of order N.. The nonleading factorizable contributions are contained in the terms
proportional to L;. The dots stand for the rather long list of other operators with the same
transformation properties under SU(3)y x SU(3)z.

The renormalization procedure for weak amplitudes is rather simple. After renormaliza-
tion of fx and f,, the rest of loop divergences can be renormalized by redefinition of bare g;.
In particular, the g; may be used as a counterterm to cancel the quadratic divergence. Let
us take as an example the K° — K° mixing. The complete expression is rather long. If we

collect only quadratically divergent terms and the terms of the second order in momenta, we

get*
< K°|£,3,4/K0 >= (1; + %)m;; - 12;5m§{ + - (19)
Using now (14) and o
gi”‘==9:-—$€£;i, (20)

*A* divergences cancel as they should, since they would otherwise break chiral symmetry. For the
same reason no mZA? is present.



one gets the final result with no cutoff dependernce:

frenZ ren

fren.2

The subtraction™ in (21) is consistent with respect to the large N, behavior, since ¢1 and

< K0|£sdad|K >= (

ymi + o (21)

the quadratic divergence are of the same order in N.. In the same way one handles the
logarithmic divergences, using all possible counterterms in (18).

In conclusion, one can renormalize away all quadratic and logarithmic divergences. The
logarithmic 4 dependence is cancelled by the corresponding i dependence of the counterterms.
The results obtained in cutoff regularization agree with the results!® obtained in dimensional

regularization.**

3. BEvyonD CHPT
As it became obvious from the preceding chapter, the 1/N, analysis of the next to leading

order of weak amplitudes in ChPT does not bring more predictive power, since the loop cor-
rections are of the same order in 1/N. as are the unknown coupling constants (counterterms).

To have complete subleading 1/N, contributions, one has to include the finite parts of gi
because they are contributions of the same order in 1/N, as the divergences. Since they are
totally unknown in ChPT alone, the predictive power of the large N, expansion beyond the
trivial leading order {factorization) is rather poor. In order to get more 1nf0rmat10n on g;,
one has to go beyond ChPT. '

An intriguing attempt to go beyond ChPT represents the large N. approach of Bardeen
et al.”® Based on an intuitive physical insight rather than a formal field theory formulation of
Chapters 1 and 2, it differs from the Ansatz (9) at the very beginning. Instead of using the
chiral realization for the lagrangian as in (10), Bardeen et al. find chiral realization for the
local 4-quark operator in the leading 1/N, expansmn The weak lagrangian then becomes of
a hybrid type, typically of the form

L ~ c()oepOchirats (23)

where ¢(p)ocp is the Wilson coefficient calculated in QCD and O,p;,q 1s the chiral realization
of the local 4-quark operator. Clearly, the hybrid expression (23), in order to be consistent,

needs the additional scale dependence of the matrix element of the operator Ochiral, which

*The same counterterm also removes the quadratic divergences in other weak decays. As an
example, the K™ — 7t x? analogon of (19) (see Fig. 1-IV) reads as follows!!

2
< 7Tuh"ro[['u.sdu|K' >= zf[(f + 891 )( .%{ - mfr) - 16l:|-2_f g(m%' m} )] T (22)

By inspection one can easily convince oneself that the same renormalization (20) removes the quadratic
divergences in (22).

“*Dimensional regularization implicitly uses f7" and g{°" since the quadratic divergence is sub-
tracted in the evaluation of integrals.



has to cancel the y-dependence of the Wilson coeflicient ¢()gcp- In order to be so, one has
to solve the problem of matching the two "technically” different theories, QCD and ChPT.
In other words, the renormalization properties of ChPT should match the renormalization
properties of QCD.

The proposal made in ref. 13 is to introduce a scale in the matrix element of Ouirat
via loop corrections to the leading tree diagram. The punctum saliens in their approach is
the introduction of the physical cutoff A of the order of renormalization scale pgcp, instead
of removing it in the process of renormalization, as we did in Chapter 2. In this way a
scale is introduced which preasumably has to match the scale in the Wilson coefficient. This
philosophy has a physical background in the fact that short distance effects (z < u™?) are
integrated out in the form of Wilson coefficients and long distance effects (z > p™') are
implicitly included in the calculation of matrix elements. The last ones are proposed ° to be
controlled by the physical cutoff A. Since the cutoff dependence is not removed, in order to
be consistent, the quadratic divergence has to be kept.

The second difference in respect to the ChPT formulation in Chapters 1 and 2 is that no
counterterms are allowed and consequently, the effects of, e. g. vector mesons and higher
resonances, have to be added separately. As we discussed in preceding chapters, in ChPT
these effects are contained in coupling constants (counterterms).

Tt is instructive to compare the expression for a typical weak amplitude in ChPT and
in the large N, approach. Since the approximate identification poecp ~ A has been used
in Ref. 13, one sees that the logarithmic scale dependence is the same. There is, however,
one essential difference. In ref. 13 one has instead of the counterterms g;, the quadratic
A dependence. Naively, one would guess that the A*>-dependence mimics the countertermns.
However, this is not true for the following reasons: i) The counterterms g; contain besides
the long distance effects also the short distance ones. In the approach of ref. 13 the latter
are factorized in the form of Wilson coeflicients. ii) The counterterms in ChPT also contain
the effects of higher resonances (vector mesons etc.). In the approach of ref. 13 they have,
according to authors, to be added separately.

From the above points it is clear that it is very difficult to achieve one-to-one correspon-
dence between ChPT and the large N, approach of Bardeen ef al

One question raised by Bijnens and myself in Ref. 11 is whether the approach of Bardeen
et al. is missing the 1/N, Subleading counterterms g;. Again, it is not trivial to answer
this question. Bardeen et al. claim explicitly that e. g. vector resonances have to be
added later as an improvement in their present calculation. So, at least that presumably

dominant part of counterterms is not present in their calculation.™ In my opinion, it is almost

*Low energy ChPT is perfectly consistent with resonances. It can be shown? that the renormalized
low energy couplings at g ~ 0.5 — 1GeV are almost exclusively reproduced by p-exchange, a p-field
being introduced via an asymetric tensor field p! {z) which transforms as the nonlinear realization

D) of SU(2)1 x SU(2)g (couplings of the type qjkpiqua“qﬁ"’ would break chiral symmetry).
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impossible without calculation to guess how important that contribution is. ChPT would
implicitly require the importance (largness) of counterterms to keep the whole correction in
weak amplitudes moderate. Otherwise the perturbative expansion would break, since the
loop contributions are in itself huge. This would imply the importance of missing corrections
due to vector mesons etc. in Bardeen et al., at least in the range A ~ 0.8GeV.

The question of matching the QCD scale pgep with the cutoff scale of meson loops is
even more difficult to answer. First of all, one has (at the present level of calculation in
ref. 13 to match the logarithmic pgep dependence of Wilson coefficient with the quadratic
A dependence of meson loops, i. e. matching should be studied in the chiral limit (Wilson
coeflicients are calculated in this limit). Then, the chiral logarithms are absent and matching
is, horribile dictu, disappointing. However, it would be premature to claim mismatch, since
higher resonance contributions could improve matching, smoothing the quadratic behavior
of the scale A and forcing the approximate logarithmic behavior. This actually has to be
the case if the matching of two different scales has any sense. Unfortunately, I do not see
any a priori argument that it should be the case and therefore, in my opinion, the matching,
although in principle possible, needs the proof.*

An interesting attempt to go beyond ChPT are QCD Duality Sum Rules, proposed by Pich
and de Rafael®. They rely on the tree level ChPT in the sense that e. g. renormalized gs is
determined by using the proposed duality between QCD and ChPT ¢-2. To my knowledge this
is the only approach (appart from lattice QCD) where the y-dependence of the matrix element
is exactly controlled. It turns out that it comes from perturbative radiative corrections to the
matriz element. The y-dependence obtained in such a way exactly cancels the u-dependence
of the Wilson coefficient.** |

The QCD duality approach works very well for "normal” transitions, like K° — K mixing
and K% — 77~ decay®’. It failed, however, at least in the first attempt®, to explain the
AT = 1/2 rule. Intriguing progress has been made recently®, indicating the reason for fail-
ure, as well as the possible dynamical explanation of the Al = 1/2 rule. The huge finite o,
corrections found show that the AI = 1/2 processes are, contrary to the Al = 3/2 ones or
K - K mixing, totally nonperturbative. In this case OPE and LLA become untrustable.

This may have serious consequences for all present approaches.

*In this context it is interesting to note that in some cases (e. g. penguin operator) one can get!?
ezact p-cancelation in the leading 1/N, expansion in ChPT (since the penguin coefficient scales as the
square of the running quark mass), without introducing a physical cutoff 4 la Bardeen et al.

"It is of interest to note that Goity has done his 1/N, analysis'® using the identification (9). In
order to match the y-dependence he wrote a new Wilson expansion (at lower (chiral) scale) whose
inverse Wilson coefficients match the p-dependence of the original Wilson coefficients. This seems to
me to be the correct way of doing it - much in the same way as it happens in QCD sum rules.
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IV. Ez Nihilo Nihil - RULING OUT SELF -PENGUIN TADPOLES
The role of the d—s self -energy diagrams in nonleptonic weak interactions has been studied

for a long time by a number of authors®".

The interest in this problem arises because the
self- energy diagram could in principle contribute, in the form of tadpoles, to the Al = 1/2
processes. If it were large enough, it would provide an elegant explanation of the Al =
1/2 rule. However, Chia has recently shown?! that, when renormalization is properly done,
the tadpole contribution turns out to be prohibitively small, mainly because of the GIM
mechanism.

Recently, Shabalin®? has suggested an interesting and intriguing mechanism that turns a
quadratic GIM suppression into a logarithmic one. The effect basically comes from leading
logarithmic one-gluon corrections to the bare diagram. Unfortunately, it has been shown
by Peccei, Picek and myself” that the full QCD correction in LLA, reduces the tadpole
contribution to a negligible amount (zero in the chiral limit). As a number of papers has
appeared recently?, still trying to survival tadpoles, I shall present arguments against it,
both in the framework of OPE in QCD and in ChPT*.

In the framework of OPE of two weak currents there appear a set of two-quark operators
with canonical dimension < 6. The first two, #, = 5d and 6, == 3v - d may be transformed
away by renormalization. The next two operators contain two and three derivatives, respec-
tively; 63 = 500d and 8, = 50~ - 8d. 84 is an operator that would lead to a tadpole-type con-
tribution (Wilson coeficient of order g°), but is suppressed by GIM, i. e. by (m? - m2)/ME.
An appropriate normalization condition imposed on self- energy fixes the counterterms to be
added to the original lagrangian in order to remove divergences. This suffices to make the

self-energy contribution numenically unimportant.

The situation changes radically by inclusion of gluon corrections, as emphasized by Shabalin®®.

The GIM cancellation changes from the powerlike to the logarithmic one, ~ o, In(m?2/u?).
According to Shabalin this would be enough, to explain the AT = 1/2 rule.

In the following we shall make the full OPE analysis in LLA using the renormalization
group. In general, one encounters three classes of operators, class I: gauge invariant, which
do not vanish by the QCD equation of motion, class IT: gauge invariant, which vanish by the
equation of motion and class III, gauge variant operators, which vanish by the equations of
motion. It is clear that only class I contributes to physical matrix elements (S-matrix). Class
III is clearly unphysical. Class IT should give no contribution to the S-matrix, provided it

does not mix under renormalization with class I.** The argument is based on the fact that

*The self-energy tadpole contribution should not be misidentified with the so called "eye” graph
that appears as a tentative solution to the Al = 1/2 puzzle in the lattice calculations®. The “eye”
graph is the symbolically written matriz element of the 4-quark operator and the self-energy tadpole
is a 2-quark operator which does not lead to an "eye” graph. (The “eye” graph appears as a result of
contraction of two quark fields of a 4-quark operator in a soft-gluonic background).

**Classical QCD equations of motion are changed by quantum corrections and renormalization
and may not be used in the Green’s functions. These changes, however, have no influence in the
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self-energy operator g, is a part of an operator that vanishes by QCD equations of motion
{i. e. belongs to class IT). It remains to show that such operators, eventually generated
during renormalization, do not mix with normal 4-quark operators from class I.

Let us define local 4-quark operators as

O(a.8) = ($7.7sAY)($7By) (24)
Ocarpry = (P71 AN Y ) (P BAR)

For simplicity we have restricted ourselves to the parity-violating part of the operators. A
and B are matrices in the flavor space and A® are color matrices. Any 4-quark operator can
be expressed in terms of the operators (24).

In order to solve the RGE for Wilson coefficients, one has to find the anomalous dimension

matrix 7;; of the operators, which is defined via*

d TENn TEN
Maoar = —%; 07" (25)

The set of operators (24) has to be inserted® in all possible 1-particle irreducible (1PI)
truncated Green’s functions.**

Inserting the operators (24) in set I and set II of Fig.2, one gets besides the original

operators also the new one™**

2 -
OC - -—EDMF:V('IP')’V’TE,CAG'I/)). (28)

This is the first new operator generated in the process of renormalization. It is the famous

penguin operator, as can be seen by using QCD equations of motion

Oc = (D1 CA“Y N P7.12%%) = O, {29)

1. e. one gets the 4-quark operator.

calculation of physical amplitudes, i. e. the $-matrix and may be used there.
*The relation between bare and renormalized operators, 0" = Z,. 07", defines the renormal-

ization matrix Z;; from which v;; may be calculated, v;; = 2 u(d/dp)Zx;.
**The relation between bare and renormalized Green’s function (with n quarks and m gluons)

with operator insertion is given by

Tére . = 202 2 T (26)

to be compared with the analogous relation for the Green’s function without operator insertion
Fbare — Z;;/Z Zg};”/ZI\ren | (27)

Zo iz the renormalization matrix of the operator @ and Z,r and Zi4 are renormalization constants
for the quark and gluon field, respectively.
***To the results one has to add a factor Z25, cf. eq.(26).
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Figure 2. 1PI Green’s functions with operator insertion. The symbol e indicates the
insertion of the operator. Full lines are quarks, wavy lines are gluons and dashed lines are
ghosts.



In principle, one is not allowed to use equations of motion in the Green’s functions and
therefore we should proceed with renormalization of the operator O¢ in (29). Insertion of
O¢ in set III of Fig.2 induces new operators

D¢ = 59 DDDy;Cy

_ 30
Go = —20* AL DB (7" 7sCI%). (%0)

The first one is the leading operator of Shabalin’s leading self-penguin and the second one
is the gauge variant operator. Adding up all contributions coming from further insertions of
O¢ (sets III - VII) one sees that the operators Dy and G¢ survive.* There is, however, no
operator with ghosts, i. e. graphs of set VII give zero. To proceed, one has to insert the
self-penguin operator D¢ in all possible 1PI Green’s functions and show that D¢ does not

mix with other operators, i. e. that
D = Zp Dy, (31)

For example, to show that D¢ does not induce any 4-quark operator, one has to insert it in
4-quark Green’s functions, i. e. sets V and VIII (Fig. 2). The result is zero®®. The same
procedure applies to the gauge variant operators.

In ChPT, a situation with the tadpole contribution is even more transparent. The op-
erator © contributes to the amplitudes A(K® — 7*77), A(K° — 7°) and A(K® — 0). For
example, the first graph in Fig. 1-I gives ~ %ﬁ %“ ge. This is, however, exactly cancelled by
the contribution of the second graph in Fig. 1-1. On the other side, if one writes the amplitude
A(K — n7) in terms of the amplitudes A(K — =) and A(K — 0) { PCAC relation), one
finds again that the tadpole contributions in the last two amplitudes cancel each other and

A(K — 7r) is tadpole-free.
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