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Abstract

Non-perturbative aspects of quantum field theories with elementary scalars
are reviewed. Such theories play an important réle in connection with the Higgs
mechanism of mass generation in the standard model. Recent non-perturbative
results in pure ¢* models imply an upper limit my < 630 GeV on the mass of
the Higgs boson. The effect of the SU(2) gauge coupling on the pure ¢* sector
is discussed. It is pointed out that the influence of the Yukawa-couplings of the
Higgs scalar to heavy fermions may be important, because a non-trivial infrared
fixed point structure can arise. The problem of chiral fermion gauge theories is
summarized. In these theories the chiral fermions always appear in mirror pairs if
the mirror Yukawa-couplings are attracted by the trivial infrared fixed point. This
provides a strong motivation of the experimental search for mirror fermions and
for their indirect effects in low energy phenomenology. In case if mirror fermions
do exist in nature, future high energy colliders have a very important role in the
exploration of their properties.

1 Introduction

The SU(2) ® U(1) electroweak interaction of elementary particles is weak, therefore the ques-
tion naturally arises, why 1s it necessary to study the electroweak theory non-perturbatively?
The answer to this question has several parts:

e A mathematical aspect: quantum field theories cannot be defined by perturbation the-
ory, unless the perturbative expansion is convergent. The perturbation series, however,
can only be expected to be asymptotic.

*Lecture given at the Tth INFN Eloisatron Project Workshop, Erice, June 1988



o A general physical aspect: spontaneous symmetry breaking providing the vacuum ex-
pectation value of the Higgs scalar field is a germinely non-perturbative phenromenon.
There is a lot of accumulated knowledge about such phenomena in statistical physics
which may be very useful.

¢ A special physical aspect: even if the SU(2)® U{1) gauge couplings are weak the quartic
scalar self-coupling can in principle be strong, implying a non-perturbative Higgs sector.

Before going into the details of recent non-perturbative investigations of the Higgs sector
let us summarize some general concepts defining the theoretical framework. It is patural
to assume that quantum field theory defined on a flat space-time is valid only up to the
Planck-scale (1.2 10*® GeV) where the effects of quantum gravity become important. Beyond
this natural physical cut-off some new framework is necessary describing the physics at still
higher energies. This more general framework may be the “theory of everything”, it may
involve “superstrings”, “wormholes” or “chaos with random dynamics” etc. From the point
of view of quantum field theory the most important aspect is that it has to specify the free
parameters at the natural cut-off scale.

Within quantum field theory the simplest possibility is that the minimal SU(3) ® SU(2)®
U(1) model is valid up to the Planck scale. This might, however, be impossible either be-
cause this assumption is mathematically inconsistent or because it is in conflict with some
presently unknown experimental result. Another possibility is that the SU(3) ® SU(2)® U(1)
model is embedded at some scale intermediate between 100 GeV and 10'® GeV in some larger
quantum field theory involving e.g. supersymmetry, grand unification ete. In a renormal-
izable quantum field theory the cut-off dependence is weak if the cut-off scale (A) is much
higher that the scale of physical masses (m2). In most cases the dependence behaves as some
positive integer power of the ratio m/A. Since the electroweak scale is so much smaller than
the Planck-scale (m/A 2~ 107Y7) the cut-off dependence can be neglected for every practical
purpose and a simple hypercubical lattice can be used for the cut-off. One has to keep in
mind, however, that the replacement of the continuous space-time by a discrete lattice 1s only
a mathematical tool and is only valid as long as the details of the discretization (lattice type,
form of lattice action etc.) do not matter.

Every quantum field theory has a number of free parameters which are primarily defined
by the independent bare parameters in the lattice action. Since these are free parameters,
the determination of there values lies beyond the scope of quantum field theory. Every
point in the space of bare parameters is equally possible. There is no inherent concept of
“naturalness” for the choice of bare parameters. In this sense there is parameter democracy.
In other words, there is nothing wrong in fine tuning the bare parameters of a given quantum
field theory. Just the contrary, some bare (mass} parameters have to be tuned always to a
high accuracy, because m/A ~ 107!7 << 1. The consequence of the smallness of physical
masses in lattice units (= cut-off units) is that the physically interesting points are very close
to the critical hypersurface in bare parameter space, where the masses in lattice units are
zero. Therefore, parameter democracy holds only in the immediate vicinity of this critical
hypersurface. Aspects like “naturalness” or “simplicity” may play a role in the choice between
different possible quantum field theories. For instance, theories with a smaller number of free
parameters can generally be considered simpler and more natural. Since symmetries usually
reduce the number of free parameters considerably, they are the most common source of
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“naturalness”. From this point of view the standard SU(3) @ SU(2) ® U(1) model is only
moderately natural because of the large number (about 20) of its free parameters.

2 Non-perturbative results in pure ¢* models

The simplest working laboratories for renormalizable quantum field theories with a possibility
of spontaneous syminetry breaking are the ¢* models with a quartic self-interaction. For an
N-component scalar field ¢,(z), n» = 1,...,N the interaction term in the action can be

written as

D0 Amangn s (2)ns (2)bn, (2)n, () (1)

T M2 M Ty
The simplest case 1s the single component model N = 1. The complex scalar doublet in
the standard model corresponds to N = 4. Another simple limit is N — oo, where the
1/N-expansion offers a possible non-perturbative framework.

A basic property of pure ¢* models is the triviality of the continuum limit [1]. This means
that in the infinite cut-off limait A/m — oo mathematical consistency requires a vanishing
renormalized quartic self-coupling: A, — 0. This is at the first sight a rather surprising
result, which shows in a dramatic way the importance of the mathematical aspect of non-
perturbative investigations mentioned in the introduction. The point is that in a perturbation
theory framework the renormalized coupling is assumed to be a free parameter. Questions
about the mathematical consistency of this assumption are usually difficult to formulate.
Even if an apparent inconsistency appears it can be interpreted as a limit of applicability of
perturbation theory.

The simplest possibility for a non-perturbative definition of quantum field theories is lattice
regularization. The euclidean space-time continuum (with imaginary time) is approximated
by a finite hypercubical lattice with sites . The N-component scalar field ¢, lives on
the sites of the lattice. In the case of O(N)-symmetry the lattice action § contains two
independent relevant parameters. The field normalization is a further irrelevant parameter
which is, however, sometimes useful to keep, therefore S can be written as

5= Z {#¢nm¢’m + /\((ﬁnmqu)z - 5Z¢nm+ﬁ¢nm} (2)

Here an automatic summation over the O(N)-index n is understood, but not over the lattice
sites z. One out of the three paraieters can be fixed by an appropriate choice of the field
normalization. For instance, in lattice bare perturbation theory x = % 1s convenient, whereas
in numerical studies (especially for large A) u = 1 —2) is a correct choice. In this case the two
free parameters are: the quartic self-coupling A and the hopping parameter x which stands
in front of the quadratic coupling of nearest neighbours ¢,., with ¢4z, v = +1,+2, +3, 4.
With this choice of parameters the lattice action (2) goes over into

S = Z {¢nm¢nm + A(anmqsnm - 1)2 Y Z ¢nw+ﬁ¢nm} . (3)

The limit of infinitely strong bare self-coupling A — oo is particularly interesting. In this
case the length of the field is frozen to

¢n.’c¢nw =1 (4)
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This looks like losing one of the degrees of freedom. For instance, in the standard Higgs sector
with N = 4, where the field components are usually denoted by o, and =,,, » = 1,2,3, the
above constraint implies

'_U'i =1- Mop My (5)

In this case the A = oc limit is usually called the non-linear o-medel , in contrast to the linear
o-model for A < oo [2]. According to Eq. (5) at A = o 0, is a function of the 7-field and
therefore one is tempted to assume that the o-field, which is the physical Higgs-field in the
standard Higgs sector, is removed from the physical spectrum. This is, however, not correct.
The physical spectrum at A = o< is not essentially different from the physical spectrum at
finite A\. A state with the same quantum numbers as the o-field remains in the physical
spectrum, as one can see In a numerical simulation |3} In other words, the o-field cannot
be removed from the spectrum by taking the infinite bare coupling limit. The state with the
quantum numbers of ¢ can be considered to be a bound state of two (or more) 7’s. Therefore,
the non-linear o-model with the action

5= *’iqunw-}ﬁ@nw (6)

is equivalent to the linear o-model defined by Eq. {3). Here the restriction to the simplest
minimal actions (3,8) is important. For instance, the non-linear sigma model as a low-energy
approximation of QCD contains many higher dymensional couplings, which do influence the
physical content in an essential way.

This simple example shows, how difficult the correct identification of the spectrum of a
quantum field theory can be, due to the appearance of all sorts of non-perturbative bound
states. Another important point is, that perturbative renormalizability is not necessary.
In perturbation theory the non-linear s-model is non-renormalizable, whereas the A < oo
case is renormalizable. If one defines these models non-perturbatively, the A — oc himit is
smooth and finite. The A = oc model is in the same universality class as A < oo. Instead
of perturbative renormalizability one is interested in the existence of critical points with
zero mass in lattice units (m/A = 0). If such critical points do exist, one can perform a
continuum limit by going to one of them. In the vicinity of critical points there is a quasi-
continuum situation where the cut-off dependence is negligible and the model can be used
for the description of a physical theory.

The critical line for the O(N)-symmetric ¢* model (3) is qualitatively shown in Fig.1 (see
[4,5,6,7] and references therein). Below the critical line there is the symimetric phase with
‘vanishing vacuum expectation value. Above the critical line the symimetry is spontaneously
broken by the non-zero vacuum expectation value of the scalar field. In both phases near the
critical line there is the scaling region where the mass in lattice units m/A is small and the
cut-off effects are negligible. An important information about the model is contained in the
curves of constant physics. These are the curves in the (&, A)-plane where the renormalized
coupling ), is constant. Their qualitative behaviour is shown in Fig.2 (for more details
see the papers in Ref. [4,5]). As it is also shown by the figure, the renormalized coupling
is zero on the critical line in accordance with the triviality of the continuum Limit. The
consequence of the triviality of the continuum limit is that for increasing ratio of the cut-off
to the renormalized mass A /m, there is an upper limit for A,. In Fig.3 this is represented by
the excluded area. The mapping from the bare parameters to the renormalized parameters 1s
such that no points in the excluded area can be reached by any choice of the bare parameters.
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The numerical determmnation of the upper limit for the renormalized coupling in the phase
with spontaneously broken symmetry involves some interesting technical problems. Without
going 1nto details here let us mention the problem of infrared singularities due to the presence
of Goldstone-bosons in the O(N)-symmetric ¢* models with N > 2. As it is well known,
the zero mass Goldstone-bosons are the consequence of spontaneous symmetry breaking.
The long range correlations due to the zero mass Goldstone-bosons (and the corresponding
infrared singularities) imply strong finite volume effects in the numerical simulations. These
can, however, he used to extract the required infinite volume information from the study of
finite volume systems [8,9]. In a similar way, the study of finite volume effects in the single
component ¢* models (N = 1} can also be used to obtain interesting physical information,
for instance about low energy scattering and vacuum tunneling [10,11].

The cut-off dependent upper limit on the renormalized coupling in the broken phase of
the O(4)-symmetric ¢* model implies an upper limit on the ratio of the Higgs-boson mass to
the W-mass in the standard model. The renormalized quartic coupling is usually defined as

3m? -
= (7)

A =

v2
where v, denotes the renormalized vacuum expectation value. For small SU(2) gauge coupling
(g) the physical Higgs-boson mass (my) is equal to a good approximation to the renormalized
mass in the pure ¢* model (mpg = m,), whereas the W-mass is given by the Dashen-Neuberger,

formula [12]
1
mw = _gv, (8)

This relation is a consequence of the O(4) Ward-identities and together with Eq. (7) implies

Tnfg _ 4,

2 (9)

myy 3
From this relation and the upper limit on A, one obtains [5,6,7]
mu < 630 GeV (10)

This is at the lowest cut-off where the lattice regularization is applicable, actually at A > 2m,.
Taking the natural value of the cut-off A = 1.2 - 10" GeV the result is

my < 145 GeV (11)

These are surprisingly low limits which imply the absence of a strongly interacting Higgs
sector, because the tree-level unitarity limit signalizing strong interaction is at my ~ 1 TeV
[13]. In the case of the very low cut-off corresponding to Eq. {10) the upper litmut depends
a little on the way how the discretization was done {lattice structure, lattice action) [14],
but the corresponding change in Eq. (11) is rather small. For A/m, — oo the asymptotic
behaviour of the upper it 1s given by the perturbative renormalization group equations

(see Sec. 4):
ar?
Ap <
In(A/m,)
This is why the value of the upper limit in Eq. (11} is so similar to the limits obtained by the
requirement that the renormalized coupling be small up to a scale close to the Planck-scale

{“perturbative grand unification”) [15].

(12)
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3 The inclusion of the gauge couplings

The weak SU(2) ® U(1) gauge couplings are usually assumed to be small perturbations on
the pure ¢* model. This assumption is plausible, but an exact proof is not easy in the case if
the bare quartic scalar coupling is large. For a not too large number of fermions the SU(2)-
and U(1)-couplings behave differently, because SU(2) 1s asymptotically free and U(1) is not.
Most of the non-perturbative work was up to now done on the SU(2})-coupling, therefore let
us concentrate here on it (for studies of the phase structure of the full SU(2) & U(1} Higgs
model see {16]).

The phase structure of the standard SU(2) Higgs model was extensively studied in a large
number of papers (for references see the reviews [17}). The bare parameter space and the
established phase structure is shown in Fig.4. On the surface shown in the figure there 1s
a phase transition which is most probably of first order everywhere except for some parts
of the boundary. Above the phase transition surface there is the Higgs phase where the W-
boson gets a mass due to the Higgs mechanism. In the confining phase below this surface
the model describes a QCD-like theory with scalar “quarks”. The usual assumption is that
the standard electroweak model is in the Higgs phase. The confining phase is relevant in
the formulation of the strongly interacting electroweak model [18]. In this phase the broken
symmetry is “restored”, therefore the phase transition is usually called symmetry restoring
phase transition [19].

The effect of the small SU(2) gauge coupling on the ¢* model can be described in the
framework of the weak gauge coupling expansion [20], where the Green’s functions of the
Higgs model are expressed by power series in the gauge coupling. The coefficients of the
series depend on the Green’s functions of the pure ¢* model. With reasonable assumptions
one can show that the higher terms of the expansion give only small corrections, but at
the same time one can also see why the smallness of the corrections is not completely trivial.
Namely, in the higher loop contributions an integration over all momenta has to be performed,
and at the momenta near the cut-off scale the scalar self-interaction is roughly equal to the
bare quartic coupling which can be large. A direct control over the effect of the small gauge
coupling can be achieved in numerical simulations which are possible at small gauge couplings
in the Higgs phase [21]. The results are consistent with the weak gauge coupling expansion.
The direct simulation with a weak gauge coupling has the advantage that the finite mass
of the gauge W-boson acts as an infrared regulator and therefore there is no problem with
infrared divergencies. The upper limit on the Higgs-boson mass can also be obtained in this
way and the results [22,23] are consistent with the upper limit obtained in the ¢* model (see
previous section).

Besides the gauge couplings in the standard model there are also the Yukawa-couplings
of the fermions which can influence the Higgs sector. In particular, heavy fermions imply
strong Yukawa-couplings which can have an important effect because they can change the
renormalization group behaviour qualitatively. These questions will be discussed in the next
sect1on.



4 Infrared and ultraviolet fixed points

4.1 Pure scalar ¢* model

The absence of strong interactions in the #* model can be qualitatively understood from the
infrared behaviour of the renormalization group equations (RGE’s). For this purpose the
convenient form of the RGE’s involves the renormalized coupling {A,) as a function of the
cut-off (actually, the ratio of the cut-off to the physical mass A/m) [24]. Using the natural
variable
T =In A {13)
m

the RGE can be written as

dr.(7)
dr

Here 3, is an appropriate Callan-Symanzik S-function, which in the scaling region depends
only on ),. (The 7-dependence implies scale breaking.) The last equality in (14} shows the
universal one-loop contribution, which dominates for small A,. This equation determines the
change of the renormalized coupling for fixed bare coupling A, that is along vertical lines in
Fig.1. A numerical check of the RGE behaviour in the single component ¢* model at infinite
bare quartic coupling (Ising limit) was performed in Ref. {25], and a good agreement with the
three-loop A-function was found. Near the critical point A, is small, therefore the one-loop
term dominates and drives the solution for 7 — oo (1.e. for m/A — 0) to the fixed point of
the renormalization group equation at A, — 0. The asymptotic behaviour near A, = 0 is, in
accordance with Eq. (12),

4rE - (14)

= “ﬁr()\'r;?—) =

T 1672

2
A~ am” (15)
T

Since 7 — oo is the limit when the physical mass in cut-off units tends to zero, A, = 0 1s

called an infrared fized point (IRFP) of the renormalization group equation. The qualitative

consequence of the IRFP at A, = 0 is that once the cut-off is large compared to the physical

mass, the renormalized coupling is small because the solution of Eq. {14} is attracted to the
IRFP.

The situation in a U(1) gauge theory like QED can be similar to ¢*, because the leading
term of the Callan-Symanzik S-function is similar to Eq. (14). This would imply the triviality
of the continuum limit of QED and, consequently, a cut-off dependent upper limit on the fine
structure constant. However, if the cut-off is at the Planck-scale this upper limit is much
higher than the physical value 1/137. In the continuum formulation of perturbation theory
the triviality of the continuum limit is signalized by inconsistencies which were discovered
long ago by Landau (“Landau-ghosts”) [26].

The triviality of the continuum limit follows from Eq. (14) only if the leading term in
Eq. {14) is at least qualitatively correct also for large renormalized couplings (see Fig.5). In
the ¢* model this is most probably true but in QED there are arguments that the behaviour
of the F-function is different at large couplings [27,28]. In order to illustrate how a non-
trivial continuum limit can arise let us consider a more complicated F-function depicted in
Fig.6. It starts at A, = 0 as a parabola (see Eq. (14)), but for larger A, it has two other
zeros. The second zero at A, = X; is another IRFP which is attractive for increasing . The
intermediate zero at A, = A, is a repulsive fixed point of the RGE (14). One can consider
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another RGE which describes the change of the bare coupling as a function of the cut-off for
fixed renormalized coupling:
dX 1
(T):ﬁ()\,T):—— AN 4. (16)

dr -~ 1672

The functional form of the S-function in this equation is similar but not exactly equal to 3,
in Eq. (14). The leading term for small coupling is the same and the qualitative behaviour
for large couplings is also given by Fig.6. Let us assume that the zeros of F()) are at the
same place as those of 3.(A.), for instance F(A = A,) = 0. (This can always be achieved by
an appropriate redefinition of the renormalized coupling.) At A = A, the differential equation
(16) has an attractive fixed point, which is called ultraviolet fized point (UVFP) because for
T — oc the cut-off is infinitely large compared to the physical mass. {Note that an equation
similar to (16) also describes the change of the renormalized coupling in the continuum theory
as a function of p/m, where u is the renormalization scale.)

Combining the two equations (14) and (16) one can construct the curves of constant renor-
malized coupling (A, ) in the bare parameter space. Staying for simplicity in the symmetric
phase, one obtains Fig.7. (In the broken phase a qualitatively similar picture 1s repeated,
only upside down.) Since the UVFP corresponds to a singular point of the theory, there may
be all sorts of singularities near to it. For instance, the critical line may have a cusp or some
other type of singularity at A = A,.

The consequence of Fig.7 is that at the UVFP it is possible to define a non-trivial con-
tinuurn limit. Near this point the renormalized coupling can have any value between the two
neighbouring IRFP’s, namely

0< A <A (17)

In QCD the existence of the continuum limit is guaranteed by an UVFP, which is at zero
coupling corresponding to asymptotic freedom. The triviality of the continuum limit 1 the
¢* model is equivalent to the absence of an UVFP in the 3-function. As mentioned above, in
QED there might be a non-trivial UVFP, therefore Fig. 6 can be qualitatively correct (perhaps
without the second IRFP).

The importance of the IRFP’s can also be inferred from Fig. 7. First, they imply limits for
the renormalized coupling in the continuum limit (see Eq. (17)). Second, as 1t 1s shown by the
figure, on the critical line outside the UVFP the value of the renormalized coupling is given
by the IRFP’s. This means that defining a continuum limit at some critical point different
from the UVFP, the value of the renormalized coupling always tends to an IRFP. Therefore,
continuum theories with IRFP couplings are special points in the space of all theories (in this
context see Ref. [29], where the notion of IRFP’s was approached more generally).

4.2 Inclusion of gauge couplings

After this general discussion of infrared and ultraviolet fixed points let us return to the
renormalization group behaviour in the standard SU(2) Higgs model. In the following let us
always consider the version of RGE’s corresponding to Eq. (14), which gives the change of
the renormalized couplings for fixed bare couplings. If the SU(2) gauge coupling i1s added to
the ¢* model there are two renormalized couplings: the quartic coupling A. and the gauge
coupling g,. Along the lines A = const.; § = 4/g* = const. in Fig.4 the change of A, and g’



as a function of 7 = In(A/m) 1s determined by

dA.(T)
dr

1 27
= —Bs(An, g2, 7) = — AN -9 gr+ g+
Ba(Anr97,7) TR g+ 59t

dg?(T) 1 43

- = =B A, g2, 7) = gt 18
d’T 169( ,g'r'fT) 1671'2 3 gr ( )

Here the one-loop terms are explicitly given. The SU(2) gauge coupling has an UVFP at

g2 = 0, corresponding to asymptotic freedom. The general behaviour of 3, for fixed g, is

shown by Fig.8. Since this function has no zeros, nothing can stop the decrease of A. which,

therefore, goes to negative values and makes the theory unstable. The consequence is the
first order Weinberg-Linde phase transition [19] at the surface separating the two phases (see
Fig. 4).

4.3 Inclusion of Yukawa-couplings

The inclusion of light fermions with small Yukawa-couplings to the scalar field does not
influence the Higgs sector in an essential way. The only noticeable difference is due to the
change in the 3-functions of the gauge couplings. Heavy fermions and the corresponding
strong Yukawa-couplings are, however, important. In particular, heavy quarks establish a
strong coupling between QCD and the electroweak sector and induce a qualitatively new
renormalization group behaviour. In order to illustrate this let us consider here the RGE’s’
for a colour triplet weak doublet quark. The SU(2) gauge coupling is not essential here,
therefore let us only consider the SU(3) colour coupling (g,), the Yukawa-coupling (G, ) and
the scalar quartic coupling:

dgz("") 2 1 58
AT GP A T) = s gt
d‘r 69(97-7 T3 TﬂT) 1671'2 3 g‘f’ +
dG3(T) 2 1
= LGN T) = — 24G* — 16G%gH) + - ..
d‘r ﬁG(gr, ™7 T) 167T2( T rg'r) +
dA,
) 302 G2 A7) = —— (4M2 + 48A, G — 288G) + - - (19)

dr 1672
For 7 — oo the colour gauge coupling grows, the higher corrections to the one-loop S-function
become important and at some point perturbation theory breaks down. In the perturbative
region, where one-loop gives a good approximation, the right hand sides of the last two
equations have zeros (see Fig.9). Therefore, as long as the colour gauge coupling is small
and slowly varying, the other two couplings are “dragged” with it, close to the values where
B¢ and B, vanish. This situation can be called quasi-IRFP. Since in this case the quartic
and Yukawa-couplings can be predicted, there is a large number of papers in the literature
exploiting this possibility (see for instance [30]). Of course, once the colour coupling gets
large, the perturbative S-functions are not applicable, the quasi-IRFP becomes irrelevant
and the question of the continuum limit at 7 — oc remains open. In an imaginary world with
only heavy quarks, where the colour coupling remains perturbative at the quark mass scale
and therefore all the couplings can stay perturbative, one can show that the quasi-IRFP does
not imply a non-trivial continuum limit of the quartic and Yukawa-couplings [31]. This means
that for infinite cut-off the model tends to pure QCD with heavy quarks and a non-interacting



Higgs-boson. The additional couplings go to zero for 7 — oo, although very slowly. For fixed
g» we have [311:

G.(7T)— T Adr) — 7 (20)
Such a slow change has practically no consequences. For instance, for the Yukawa-coupling the
asymptotic change between 100 and 10’ GeV is only a decrease by a factor of about 1.4. In
other words. i1 the case of a quasi-IRFP the upper limits on the quartic and Yukawa-couplhings
are slowly changing with the cut-off. The value of the upper limit for the Higgs-boson mass
is in this case somewhat higher than in Eq. (11). For the natural cut-off at the Planck-scale
both this limit and the upper limits for heavy quark masses are in the range of 200 - 300 GeV,
depending on the details of the model [30].

4.4 Is there a non-trivial infrared fixed point?

Since models with a true IRFP are special, it is conceivable that for some yet unknown reason
they play a important role in the understanding of the standard model. The above example
of a quasi-IRFP fulfils almost all requirements. The only nussing ingredient is the infrared
attractive zero of the #-function for the gauge coupling. In the one-loop approximation this is
impossible, therefore one has to go to higher loops or to a non-perturbative approach. In fact,
as it was pointed out by Banks and Zaks [32], in the 2-loop approximation some non-abelian
gauge theories with an intermediate number of flavours have an IRFP. The 2-loop G-function
of the gauge coupling can be written in models with fermions as

9, 9;
Bilg?) = —2Bp—te — 23— 21
2 %1672 T(1672)? (21)

The constants 3y, depend on the group and on the number of fermions. In the case of SU(2)
and a number Ny of fermions in the fundamental representation we have

22 2 136 49
N V) =—-— - N 22
Bo 5~ 3V B4 3 = Vs (22}
The same for SU(3) is:
2 38
Bo=11- 2N By =102~ =N (23)

This shows that 1n the case of SU(2) for N; between 6 and 10, and in the case of SU(3) for
N between 9 and 16 the 2-loop G-function has an IRFP zero, as indicated by Fig. 10. Taking
as an example 6 standard families, or which is from this point of view the same, 3 mirror
pairs of standard families (see next section), we have Ny = 12 both for SU(3) and SU(2) and
the 2-loop F-function predicts a non-trivial IRFP for the SU(3) colour coupling at

9. _ 3

= 2
1672 50 (24)

This implies a non-trivial IRFP also for the gquartic and Yukawa-couplings (see above),
whereas the IRFP for the SU(2) and U(1) couplings is at zero. (The absolute value of
the 2-loop S-function for the SU(2) coupling is, however, very small.)

Therefore, the 2-loop beta functions predict the possibility of non-trivial IRFP’s. The
question is, of course, whether the IRFP remains there after taking into account the higher
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loop corrections and the mass- (threshold-) effects. Also the question of the phase structure of
such models has to be clarified, for instance, whether there is a second order phase transition
allowing a non-trivial continuum limit or not.

5 Chiral gauge theories and mirror fermions

5.1 Chiral gauge theories with mirror fermions on the lattice

The electroweak interactions in the standard model are described by a chiral gauge theory
where left- and right-handed components of the fermion fields are transforming differently
under the SU(2) ® U(1} gauge symmetry. This implies that left-right symmetry is broken at
low energy. Nevertheless, it can be restored at high energy above the scale of spontaneous
symuroetry breaking. There are two different ways how this can happen:

e by enlarging the gauge group to a left-right symmetric one, for instance to SU(2}, ®
SU(2)r @ U(1) [33];

o by doubling the fermion spectrum with miérror fermions.

The mirror fermions are defined in chiral gauge theories by interchanging the transiormation
properties of the L- and R-handed field components with respect to the gauge group. The
1dea of mirror fermions is as old as the idea of parity breaking. In fact, the possibility of the
existence of “elementary particles exhibiting opposite asyminetry” was discussed already in
the classical paper by Lee and Yang [34]. Mirror fermions also occur naturally in connection
with many interesting modern theoretical ideas. To mention a few typical examples, mirror
fermions were introduced in order to cancel anomalies [35], they occur in grand unified theories
with large orthogonal groups [36], in Kaluza-Klein theories [37], in extended supersymmetry
[38] and also in superstring inspired models [39]. '

Since spontaneous symmetry breaking is a non-perturbative phenomenon, for the study
of the left-right symmetry restoration a non-perturbative framework (such as lattice regu-
larization) is needed. Chiral gauge theories with mirror fermions were intorduced in lattice
regularization in Ref. [40,31]. Let us denote the “normal” fermions with V' — 4 coupling to
the W-boson by % and the mirror partners with V + 4 coupling by x. The generic form of
the fermion mass matrix in the broken symmetry phase on the (¢, x)-basis is

G‘ﬁbv nu'd‘X ) )
= 25
H ( By Gxv (25)

Here v 1s the vacuum expectation value of the scalar doublet field, G, respectively G, , are
the Yukawa-couplings of the v- and x-fermions and sy, is a chiral invariant mass parameter.
The physical states are mmxtures of % and x characterized by some mixing angle «. The
corresponding physical fermion masses g, are, in general, different and are usually of the
order of max({pyy];(v]). In the specific case of pJ, = GyG,v*, however, one of the mass
eigenvalues 1s zero. The very small fermion masses in thé standard model (for neutrinos,
electron, u- and d-quarks etc.) could be due to such a cancellation mechanism. Although
this looks at the first sight as an ugly fine tuning of parameters, it is conceivable that there is
some dynamical or symmetry principle in a more general theoretical framework determining
the parameters of quantum field theory which implies such a relation. In this respect it is
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worth to emphasize that in the usual perturbative setup of the Higgs sector the smallness
of the fermion masses compared to the vacuum expectation value is due to the fine tumng
of the corresponding Yukawa-couplings to values very close to zero. (The smallness of the
Yukawa-couplings does not necessarily have to do with local chiral symmetry.)

As it will be discussed in some detail below, models with three mirror pairs of fermion
families can be constructed which are consistent with all the presently known phenomenology
(see for example Ref. [41]). It is a very interesting experimental question whether this way
of parity symmetry restoration is realized in nature. Mirror fermions should be searched for
directly in high energy production experiments or indirectly by looking for their effects in low
energy phenomenology. Of course, as long as mirror fermions are not found experimentally,
we have to ask the exciting theoretical question, whether the mirror partners can be removed
from the physical spectrum of a quantum field theory?

5.2 Can the mirror fermions be removed?

In a lattice regularized theory with fermions the mirror partners are always present due to
the Nielsen-Ninomiya theorem {42], provided some rather plausible assumptions are fulfilled.
This is the fermion doubling phenomenon on the lattice. Nevertheless, in vectorlike theories as
QCD the superfluous additional states can be kept at the cut-off scale and hence are removed
from the physical spectrum in the large cut-off (“continuum”) limit [43]. The question is
whether the mirror doublers can also be kept at the scale of the cut-off in chiral gauge
theories?

For the correct formulation of the question it is important to note that the mirror partners
can be removed from the physical spectrum in scalar-fermion theories without gauge fields.
For instance, in the broken phase this can be achieved by an appropriate choice of scalar field
vacuum expectation values and Yukawa-couplings. In a model with SU{2) gauge symmetry
the simples possibility is to introduce a second scalar doublet which has a vacuum expectation
value of order one in lattice units. It can be shown that by tuning the parameters it is possible
to arrange in this case that one of the masses of a mirror fermion pair remains at the cut-off
scale.

The difficulty comes in the physically interesting case with W- and Z-gauge fields, because
then the scale of the scalar doublet vacuum expectation values is fixed by the W- and Z-
masses. Let us first assume that in the large cut-off limit the Yukawa-couplings Gy, are
attracted by the trivial IRFP at vanishing (renormalized) couplings, as it is suggested by the
perturbative g-functions. In this case, similarly to the triviality upper limit for the Higgs-
boson mass, there are cut-off dependent upper limits for the masses of the mirror fermion
partners which follow from the requirement of mathematical consistency of the quantum field
theory. As a consequence, the mirror partners cannot have much higher masses than the
vacuum expectation value.

The only viable alternative to the physical existence of mirror fermions seems to be that
there is a non-trivial UVFP in the Yukawa-couplings of fermions Gy ,. In this case, as it
was generally discussed in the previous section, the upper limit on the renormalized Yukawa-
couplings of the mirror fermion partners can be very large (in principle also infinite, see
Eq. (17)), and the mirror families can be moved in the continuum limit to very high (maybe
also infinite) masses. The existence of a non-trivial UVFP may also be connected to the exis-
tence of chirally asymmetric phases in quantum gauge field theories with mirror fermions {44].
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At present 1t 1s not known whether a non-trivial UVFP in the Yukawa-couplings of mirror
fermion pairs does exist or not. Nevertheless, its existence or non-existence is a genuine prop-
erty of the quantum field theory, because it is generally assumed that the physical content of
a quantum field theory 1s independent of the regularization scheme. Therefore, the possibility
of removing the mirror fermion partners from the physical spectrum is a general quantum
field theory problem and not only a question in lattice regularization.

5.3 Phenomenology of mirror fermions

As it was stated before. it 1s possible to construct extensions of the minimal standard model
which contain mirror fermions at the 100 GelV scale and at the same time are consistent
with all presently known phenomenology. Needless to say that if such mirror fermons do
indeed exist 1n the 100 Gel’ range, then future high energy colliders are very important for
the exploration of their properties.

Let us first consider the constraints on mirror fermion models imposed by phenomenology.
The most important consequence of the mirror fermions at low energies 1s that the weak
currents, instead of being pure V — A, have a generic form

{(V—A)cosa+{V + A)sina (26)

Here o 1s a mixing angle in the (¢, x)-basis. In a model with three mirror pairs of standard
fermion families an important constraint is the absence of lepton number violations and
the absence of flavour changing neutral currents. These constraints can be satisfied, for
instance, with fermion mixing schemes having a one-to-one correspondence between fermions
and mirror fermions (such mixing schemes can be called monogamous ) [41]. In such a scheme
the mixing in the heavy mirror quark sector is given by the same Kobayashi-Maskawa matrix
as in the Light quark sector (including the top quark).

The phenomenological upper bounds on the mixing angles «. . .. were derived in a more
general framework recently by Langacker and London [45]. (For earlier works see also the
references in [46].) In the best cases, namely for the first fermion family and for the muon, the
bounds are typically |sina| < 0.2. The lower bounds on mirror fermion masses are similar to
the bounds on the masses of a fourth heavy fermion family, typically m > 30 GeV for leptons
and m > 50 GeV for quarks.

The important couplings for the production and decay of mirror fermions are the off-
diagonal couplings to real or virtnal W- and Z-bosons {see Fig.11). In the monogamous
mixing scheme these couplings are always between corresponding pairs, that is between elec-
trons and mirror electrons, u-quarks and mirror u-quarks etc. They are always proportional
to the corresponding sin a. Depending on the values of the masses and mixing angles, the
dominant decay pattern of the mirror fermions can be either a direct decay to the light part-
ner, or first a decay to some lighter mirror fermion. In the monogamous scheme these latter
are suppressed by the fact that the mass splittings between the mirror families are relatively
small, in fact similar to the mass splittings among the light families. Therefore, the deca);
signature of a heavy mirror fermion is quite spectacular: the mirror leptons can decay to 3
leptons or to a lepton plus 2 jets, the mirror quarks to 3 jets or to a jet plus a lepton pair.
At very high energy hadron colliders, like the Eloisatron, the mirror fermions can probably
be pair-produced. This would allow a detailed study of their spectrum and of many of their

decay modes.
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Figure captions

Fig. 1. The qualitative behaviour of the critical line{C') in the (A, x)-plane of the
O(N)-symmetric ¢* model. The hatched area on both sides of the critical line is the scaling
region where the cut-off is much higher than the physical scale.

Fig. 2. The curves of constant physics {i.e. constant renormalized coupling) in the
(k,A)-plane for the O(N)-symmetric ¢* model. The dashed-dotted line is the critical line
where the mass in lattice units is zero. The arrows point in the direction of increasing cut-off

(decreasing lattice spacing}.

Fig. 3. The cut-off dependent upper limit on the renormalized coupling in the
(A/m., A, )-plane (m, is the renormalized mass, A, the renormalized coupling). The hatched

area 1s excluded.

Fig.4. The bare parameter space of the standard SU(2) Higgs model. A and & are the
bare parameters of the scalar field and 3 = 4/¢* stands for the SU(2) gauge coupling. Above
the phase transition surface (7'} there 1s the Higgs phase, below it the confining phase.

Fig.5. The qualitative behaviour of the Callan-Symanzik S-function in the ¢* model.
The B-function has no other zeros besides the IRFP at A, = 0. The curves of constant physics

look in this case iike Fig. 2.

Fig. 6. An illustrative Callan-Symanzik S-function. It has two infrared fixed points
(IRFP) at A, = 0 and at A, = }; and an ultraviolet fixed point (UVFP} at A, = A,

Fig.7. The qualitative behaviour of the curves of constant physics for the #-function
shown in Fig.6. C is the critical line, and here only the symmetric phase 1s shown for

simplicity.

Fig.8. The qualitative behaviour of the Callan-Symanzik S-function for A, (g, = fized)
in the standard SU(2) Higgs model.

Fig.9. The qualitative behaviour of the Callan-Symanzik §-functions for the Yukawa-
coupling (8¢) and for the quartic coupling (8,) at small couplings according to Eq. (19).

Fig. 10. The 2-loop A-function of the gauge coupling for intermediate number of

fermion flavours.

Fig.11. The off-diagonal couplings of the mirror fermions (F') to the corresponding
light fermions ( f).
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