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Abstract

The bosonizarion method for dynamical fermions m 3-1 dimensions and 1ts

tests with free ferunons are briefiv summanized, First nurnerical results ohtained

v this wethod in a simple interactiug model with naive fermions and a single
component reai scalar field are described. Signals of a stroug synuuetry breaking
phasc transition are observed on 44 and 6% lattices. In this model, and probably
alec in other scalarfermion models, the linear bosonizauon algoritlun works fine

and gives interesting non-perturbative information.

1 Introduction

A well known difficulry in numerical stmulations of guantuin field theories is that tle aleo
sthurs for dynandcal fermions are slow. in fact very much slower thau for purely bosouae
fields. The uain reason s that the simulation is done in the effective Losonic theory. ob-
tained by integrating out the fermionic variables in the path integral representanon. The
resulting feriaion deterzmmnant wakes the effective hosomic action non-local and the nuerical
shnulation slow. Thie use of the Jordan-Wigner representation of 1hie fermion aluchra 1oral
in principle. improve the situation. In 1+1 dimensions it is possibie to construct local algo-
rithis on the basis of this representation. These algorithms {2} use the low dimensionality of
the problem in an essential way. and the extension to higher dimensions seemed very difficuls
due to the appearance of oscillating phase factors. However, as it was shown recently 3.4,. ou
a strongly asvimetric lattice with smaller lattice spacing in the imaginary time direction the
sign oscillations are suppressed and an efficient fermion Monte Carlo simulation s possible.
Teste of the method were performed 3,4 in 2—1 and 3—1 dimensions with free staggered |5}
and Wilson |6] fermions. The method and these tests will be briefly summarized in Section 2
In Ref. '4] the application to a simple interacting scalar-fermion model with Yukawa-coupling
was also described. First results of this simulation will be discussed 1n Section 3.

The interest in simulating scalar-fermion guantum field theories with Yukawa-couplings

is at least twofold:

*Lecture given at the conference “Frontiers of Nonperturbative Field Theory™, Eger. Hungarv. August 19x8



o To study the non-perturbative effects of strong Yukawa-couplings on the Higgs sector
of the standard model:

¢ To investigate the question of the non-perturbative formulation of chiral fermion gauge
theories.

The first problem involves the question of non-perturbative upper limits for scalar- and
fernuon-masses in these models. The second problem is particularly interesting in connection
with the possible physical existence of mirror fermions at the electroweak scale. {For a review
of these non-perturbative aspects of the standard electroweak model see [7].) In general,
one caun sav that our present knowledge about the non-perturbative properties of scalar-
ferimon madels 1= insutficient. The first exploratory investigations including also numerical
siaulatious were performed only recently i8]-/13].

2  The bosonization method for dynamical fermions

The creaTion and anuthilation operators in a fermionic Hamiltonian obey the anticommutation

{cl,cn} = o {emyCn} = {c Jr} =0 (1)

These define the fermion algebra. which can be realized in a computer by the Jordan-Wigner
matrix representation

e = ool gl CI = aMel? ... agn"l]a(f) (2)
Here fr_(;"}: n=1,....,N;7=1.2,3 denote Pauli-matrices which commute for different n:
@™ol = 206 e o™ (3)
and. as usual
oL = %(oliiag) (4)
For a quadratic Hamiltonian one needs the relation
cjﬁc-,... = 0“5:")0'( )p(m n) (5)
- where the phase factor pilm.n} = p(n.m) is given by
plmen) =1 plmem < 1) = -1 plm,m+ k} = —(rg"ﬂ)a;m”) . --Ugm’*k_l) (6)
Tlie basis vectors of this representation {£}) (‘an be labelled by {&} = {€(i): i = 1,...,N},

where (1) = =1 denotes the eigenvalue of o, {9 The occupation number of the state with
index ¢ 1s given by (&(+} — 1)/2. As it can be seen from Eq. {6}, the phase factor p(m.n)
depends on the occupation nuinber of the states between m and n.

Let us now cousider a relativistic Dirac-field v, .. where a = 1,2, 3,4 is the Dirac index and
« the lattice point in 3-dimensional space. The Hamiltonu operator for free Wilson-fermions
with mass m 1s:

H =N vlmsy, —
PAC I ! -

xr

vj . 1.5 _L‘f'\-i’ nooo. i — uT 2 Al (7
?: 11 “.'31‘ a rrjl. n‘+k} > y?{_x+}‘akdx R, g/r ({}

L2
H
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The summation ¥, goes over the three orthogonal directions. k is the unit vector in direction
Sk B g
i and in a 2&2 block notation the Dirac-matrices 3, ay are

- 1 0 o 0 o '
5—(0 _1) ka(ak O) (8)

In the continuum limit the second term in the Hamiltonian, which is proportional to the Wil-
son parameter 0 < r < 1, removes the additional lattice fermion species from the spectrum.
r = 0 corresponds to “naive” lattice fermions. Using Eq. (5) one obtains the Hamiltonian in
the Jordan-Wigner representation. For instance, in the case of naive lattice fermions we have

amr 1 wloak) m+k azr) s .9
H = Zm)\gfri—m“rf(" [ 5 S {)\(a.k)rr[_'( k) k) gl )p(ﬁz(a,kj r+k,ar) +h.c.} (9)

a.T a.x.k

where Ay = Ay = —A; = — X, = 1 and Mo, k) and 4(a, k) are given in a matrix form by
i =1 +i 4 4 3
i =1 -z 3 3 4
i -1 —i 11 2

The fermion variables can be represented in the computer by single bits. The order
of these variables is relevant due to the sign factor p appearing in Eq. (5). In the case of
Wilson-fermions it is reasonable to store the four Dirac-components belonging to a lattice site
consecutively. The sites can be stored in the usual lexicographic order. Arbitrary boundary
conditions are possible but, of course, on the boundaries the phase factor p(...x + k, ...z)
is sometimes given by a longer product than inside the lattice. These phase factors have to
be often computed during the simulation, therefore it is advantageous to keep them short. In
the way just described the average work per site needed to compute them everywhere on an
L7 lattice is growing with L%, Since. however, the phase factor p can be obtained by counting
the number of up bits between two bit addresses, the computation can be done very qu ckly.

The aim of the numerical simulation is to compute traces like

Z =Tre "% (11}

with # = T-! the inverse temperature (or “imaginary time”). This is done on L* . L,
asymmetric lattices, where 3 = agLq. The lattice is much finer in the time direction. therefore
the ratio of the lattice spacings ag is much smaller than 1. For small ao one can use a linear

2l a5 it was

(or some other low order polynomial) approximation for the exponential e~
first proposed by Duncan in Ref. |3\, The discussion here will follow Ref. (4], where some
improvements of this method were suggested. The calculation of the trace in Eq. (11) starts
by the replacement

Ly
Tr e_LOQGH — Tr {6'—‘GOHD(1 - a-o.HH)J’ (12\

Here H = Hp + Hpr is a decomposition of the Hamiltonian into a diagonal piece Hp and the
rest Hp containing the off-diagonal terms in the fermionic variables. This form allows the
combination of the fermionic algorithm with the usual Monte Carlo integration procedure for
the bosomnic variables. Namely, in the case of interacting theories the purely bosonic piece of
the Hamiltonian can be added to Hp. Another advantage of Eq. (12) is that it is insensitive to
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& constant shift in the Hamiltonianu. because the coustant is contributing to Hp and therefore
drops out from the relative probability defining the heatbath procedure {see below).
Inn the specific case of free Wilson-fermions the diagonal part is given by

Hpi{¢}: = mAL&} {¢h (13)
where now {£} = {fla.r) o =1.2.3, 4 » = 1,... LY and
Mer=) )‘ af1(ne) (14)

1 this noration. after inserting in Eq. (12) complete set of states Ly-times. we have

L

Z _ \‘—-\ H{f‘d””-A':\g’('i{E}?El —_— ”UHRJ[E}Ivl } —_ - (1:)]

where the dots are small corrections due to the replacement in (12) and. by definition.
Ly, o1 = 48}, This corresponds to periodic boundary conditions in the time direction.

The non-zero contributions in the sum (15) are given by such sequeuces {&}y...{&}s,
that the consecutive states {£4, and {{},.; differ at most by a fiip of a single “active fermiou
ink”™. A fermion lmk i» a pair of fermion variables connected by a non-zero off-diagonal
matrix etement of Hy. A fermion link is active if the fermion variable pair is unegual. The
sun in Bq. (15) is performed by sampling with a heatbath Monte Carlo. The probability of
a configuratiou is taken 1o he proportional to

L )
Pl{f}] {E:’L} - ]‘—[fiaom'\{‘kif "{s.jf 1 - UOHR’{ }:-bl'. {16)
1=

A heatbath step consists of keeping the states {&},.1: and {£}._;. fixed and choosing et
with relative probability

W) MO ey 2 - aoHr {80 T - asHr {&H (17

Sinee the probability P is defined in Eq. (16} by the absolute value of niatrix elements. the
partition function 1 (157 1x @aven by

I c A

— 7 ¢ L - a VH bros

L= H i_l:. ' 16___!’ " p (18}
U T wd{gl 0,

Here <« -+ p weans an expectation value in the Monte Carlo process defined by the probability

. The cxpectation value of zome operator can also be obtained similarly. As a simple

example. the expectation value of v, 15

Lo ti 1 — GDHH {f}r-—lf

2
S f
(1€}l — agHR] {th+1> P

(Gt ) = 27 (2 Aabrgian,

o t=1"

i
1,
x (19)
Vi

The Monte Carlo step determined by the relative probability W in {17) does not change the
exactly conserved quantum numbers like. for instance. the fermion number. In other words.
+he simulation is done in the canonicel instead of grand canonical ensemble. Nevertheless.
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Table T

The comparison of ¢ %% = 0.0183156 for SE = 4 to the linear approximation (1 — 8E/ Lg%
for different Lo. The relative deviation 1s A.

Lo | (-2 | A
100 | 0.0168704 | 7.9%
400 | 0.0179506 = 2.0%
1000 |  0.0181686  0.8%
4000  0.0182785 i 0.2%

the grand canonical ensemble can also be reproduced by choosing the initial configuration
randomly and repeat the Monte Carlo summation many times.

The applicability of the linear approximation can be estimated by comparing the value
of ¢ PF 10 (1 — BE/Lo)*, where E is a relevant eigenvalue of Hp. For 3 =4, E =1 tlus1s
done in Table L. The relative deviation A is well approximated by

2
PN L) R (20)

2L, 2
The order of magnitude of the maximum of relevant energy eigenvahies 1s not easy to guess.
A conservative estimate could be E 2 const. (Lm)?, which corresponds to a constant particle
density. (Here L* is the volume and m is the fermion mass in lattice units.) This would
lead to ao ~ A~Y(Lm)~%, but for free fermions and in the single component Yukawa model
discussed in the next section it turned out that good results could be obtained for much
larger values of ag. The relevant E values for large enough 7 came out to be of the order of
1. This is not surprising, because at large 3 the states with higher energy are expounentially
suppressed in the trace. (Note that a constant vacuum energy can always be shifted into Hp.

therefore F is always understood above the zero vacuum enexgy. ]

The order of magnitude of the relative error of { ¥ot) on a 4* lattice (which means by
definition L = 4 and 3 = 4) with a mass m = 1.0 for naive fermions turned out to be slmilar
to A in Table 1. This is shown by Fig.1, taken from Ref. {4]. The statistics corresponds
typically to 5000 sweeps per ag value after 1000 equilibrating sweeps (a “sweep  means on
the average one heatbath change per fermionic variable on the I3 Ly lattice). The statisucal
errors were estimated by the usual binning of the sequence of results {actually into bins of
length 27). In Ref. (4] it was shown that for free naive or Wilson fermions the expectation
value of we* as a function of the mass m. inverse temperature 3 and fermion number Ny is
well reproduced on a 4° lattice with an asymmetry parameter ao = 1,/320.

The relative speed of the bosonized fermion algorithm compared to a purely bosonic
updating is roughly given by ag ! In this rough estimate the problem of the phase factor
oscillations is not yet included (see the discussion below) and no extrapolation to ag — @ 1s
considered. It is. however, conceivable that this extrapolation is not necessary. One can also
work with a small but finite a¢ which. for instance in the linear approximation, corresponds
to an action Hp — aj’ log(l — aoHg). This contains some higher order correction terins
in addition to Hp + Hpg, but in the euclidean invariant continuum limit these corrections
probably do not matter.



Amn estummate siwilar 1o Table 1 also gives that the second order replacement
_ 1,
exp{—LoaoE) — (1 —aE + EaéE‘ yro (21)

is by far superior: for 3F = 4 and Ly = 100 one obtains an estimate with only 0.1% deviation.
The second order analogue for the replacement in Eq. (12) 1s

1 Lo
Tr ¢ koeel _, Tr {(VMHDU —apHp + ;aiz)le?)} (22)

Since aj ! can be much smaller, a quadratic bosonized fermion algorithm is presumably much
faster than the linear one.

In Ref. ‘4! and for the Yukawa model discussed below, the linear algorithm according
to Eq. (12} was used. The initial configurations were chosen randomly out of all possible
tine-independent configurations. It can be shown that in the ag — 0 limit this 1s a correct
procedure. althougli there are also non-zero configurations which cannot be reached from
this by subsequent heatbath steps. A non-zero contribution is obtained from a sequence
1¢)y ... {&}, if the subsequent states are either identical or differ at most by a flip of a single
active fernuon link. Due to the periodicity the configuration has to be the same after going
around once in time direction. Therefore, either the subsequent flips have to compensate each
other or otherwise the same state can also be reached if a change is “going around the world” in
the space with periodic boundaries. These later sequences have. however, a minimum number
of L factors of ao in the probability and hence are negligible for ap — 0. More generally, all
configurations wich cannot be reached by subsequent heatbath steps from a time independent
configuration are suppressed by higher powers of ag and have smaller entropy. In practice, as
it is shown by Fig. 1, the deviations due to the omission of some configurations become small
for ag == 107? — 1072, From this point of view the quadratic algorithm based on Eq. (22)
is probably Dbetter. because there a broader class of configurations can be reached from a
time-independent one.

As it was realized already in the early attempts in higher dimensional bosonization [2], a
potential source of problems in the calculation of expectation values is that the phase factors
in the nominator and denominator (like in Egs. (18.19}) can strongly oscllate and make
the couvergence to the average very slow. A rough estimate implies that in the exponential
alzorithms of Ref. (2] for ag = O(1) this could be catastrophic because the relative fluctuations
mav grow exponentially with the lattice volume. In the limit ap — 0 the situation is, however,
completely different, because the phase factor fluctuations tend to zero. This can be shown,
for instance. for free fermions and for the single component Yukawa model discussed below.
Since the problem is of kinematical nature. it is presumably true also in other interacting
madels in the sense that for small ag the refio of the nominator and denominator as a function
of the volume behaves as a normal expectation value. (This actually turned out to be truein
every model I tried up to now.) This statement is weaker than the corresponding one for the
nominator and denominator separately, because the correlation between them can be strong.

In the case of free ferrmons or for the single component Yukawa model, it can also be
shown that in the linear heatbath procedure the expectation value in Eq. (18) determining
7 is exactly 1 (i.e. the denominator in the expectation values is 1). The configurations
which can have a contribution -1 to Z cannot be reached in the linear approximation from a
time-independent configuration. In second or higher order procedures Z is not exactly 1, it
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only tends to 1 for ap — 0. This may be a slight disadvantage of the higher order algorithis,
but the advatages are presumably much more important.

3 One-component scalar fermion model

The partition function of a model containing both fermionic and bosonic degrees of freedom
can be written in the linearized case as

Lo
Z = /a’cb‘ sl N [ {e e €)1 - aoHRio) {€hea)) (23)

‘““ -
e {¢he, =t

Here the euclidean path integral f[d¢] has to be performed over the bosonic variables {¢.}.
The purely bosonic part of the euclidean action is denoted by 5.6,. The Hamiltonian 1s
Hi¢) = Hp|é)+ Hrld], which depends on the fermionic variables {{}y... -, .{&}z, and contains
also the interaction piece between fermions and bosons. The number of timeslices for the
boson fields can be equal to Lg. but it can also be smaller, for instance only L. In the second
case the bosonic variables are repeated on several neighbouring fermionic timeslices for the
calculation of the trace. Since the time direction is treated differently. euclidean rotation
invariance (or Lorentz-invariance) is not automatic. For its restoration in the continuum
limit it may be necessary to choose different bosonic couplings on spacelike and timelike Iinks
and tune their ratio appropriately.

In the scalar-fermion model considered here ¢, is the single component scalar field on
the space point = in the timeslice . The naive- or Wilson-fermion field is . The scalar

action is in general

S = T\ 1,uo — )\@mf - K Z (¢x+§1f¢m,t + ém_g}_‘tém,t) = Kt (@100 + ér.r—lém)} (24)
e

%, and K, are the hopping parameters in the spacelike, respectively. timelike directions. Here
we shall consider only the limit of infinitely strong quartic self-coupling A ~— oc. In this case
the first two terms of S are absent and the values of ¢, are restricted to ¢, = =1 (“Ising
limit"). The Hamiltonian H = Hp + Hg on the timeslice ¢ is given by

+-
P ) . T
Hpiol =Y (m+ G )ity

x

; T -
s i By — UI,H'L + Z { b QT — u-l._,a;\.;"“,;_t} (25)

r
3
=k
Here only the case of massless naive fermions with m = » = 0 will be considered. The
simplicity of this model is due to the fact that the Yukawa interaction proportional to G can
be included in the diagonal part of the Hamiltonian Hy.

An important limit of this model is n, = », = 0. In this case the scalar field has no
kinetic term, and therefore its random fluctuations are independent on different sites. The
consequence of the interaction with the fermion field is. however. that the scalar kinetic
term is reproduced dynamically, and the physical content of the model is similar to the case
with non-zero scalar hopping parameters. (This can le seen, for instance, m the hopping

-T



parameter expansion. similarly to Ref. :10..; The scalar bosou can: be considered in this limit
10 be a bound state of a fermion-antifermion pair.

In the numerical simulation on 4* and 6* lattices the A = oc, m = r = 0 case was
considered. The number of timeslices for the fermion and scalar field was equal {Lo), and the
asvinmetry parameter was in most case ao = 1/160. For vanishing scalar hopping parameters
x, = &; = 0 some global quantities obtained on a 4% Jattice with ag = 1/160 (1.e. Ly = 640)
are shown as a function of the Yukawa-coupling G in Table II. The time independent initial
configuration was chosen randomly in such a way that it had always a fermion number
N, = 2. (In the expectation values in Table II the difference to zero fermion number is
smaller than the statistical errors.) The statistics corresponds typically to 10000 sweeps after
3000 equilibrating sweeps. The measurements of the expectation values were performed after
every 10th sweep. (A “sweep” corresponds to one update per field variable.) The expectation
values of ¢, and v,v, were defined by the absolute value of lattice averages. This is necessary,
because on these small lattices the averages of both ¢, and ¥,%, change sign during the run,
even if the expectation values are already quite large. The sign of ¢, and Ypt, 1S in most
cases opposite, therefore (¢,v ;) is negative.

Table 11

The results of the numerical simulation on a 4* lattice with ag = 1/160 for x, = x;, = 0 and
N; = 2. Statistical error estimates in the last numerals are given in parentheses.

!

G : ( ‘zt:r} <¢m> (éx¢z+fc>
0.125 1 0.08(1) | 0.015(2) | 0.0078(2)
0.250 | 0.11(2) | 0.039(6) | 0.0309(5)
0.375 | 0.12(2) | 0.057(5) | 0.0611(8)
0.500 * 0.16(2) | 0.09(2) :0.101(2)
0.625 . 0.35(7) | 0.23(5) | 0.144(7)
0.750  0.47(9) | 0.31(6; 1 0.18(1)
0.875 1 0.99(7) | 0.60(5) | 0.14(2)
1.000 - 1.32(2) | 0.81(3) | 0.05(2)
1.125  1.43(6) 1 0.85{3) ; 0.05(2)
1.250  1.56(2) ©0.93(1) | 0.009(2)
1.375  1.55(2) 1 0.93(1) | 0.010(2)
1.500 1.62(2) | 0.96(1) | 0.006(2)

In order to check the ag-dependence a high statistics run with 45000 sweeps was also
performed at G = 0.75 with ag = 1/320 (i.e. Lo = 1280). The results are:

{0, = 0.48(6) (¢ = 0.31(3) (Gp0, i = 0.170(8) (26)

These are consistent with Table II, in other words. the ap-dependence is smaller than the
statistical errors.

The statistical errors were always estimated in the usual way by forming bins of length
2" out of the data sequence. These error estimates become roughly independent from the



bin size for large bins. although the number of sweeps is not large enough to make a definite
statement about this. In the case of the longer run corresponding to Eq. (26) the n-dependence
of the relative error estimates is roughly similar to the n-dependence seen in a high statistics
Metropolis simulation of the 4-dimensional Ising mode! {14i. Therefore. the efficiency of the
Markov chain in the linear bosonized fermion algorithm does not seem to be much worse than
in the Metropolis algorithm for the scalar field alone.

In order to obtain information on the volume dependence. I also did a few runs at x, =
x, = 0 on a 6% lattice with ag = 1/160 (i.e. Lg = 960). A comparison to the 4* results is
shown in Fig. 2a-2¢c. The increase of the vacuum expectation values (d,) and {(t,¢,) happens
on the larger lattice at smaller values of the Yukawa-coupling G. and it is more abrupt.
The behaviour of (¢, and {(1.¢,. together with the peak in (w,o__;) can be interpreted
as signals of a strong symmetry breaking phase transition between a symmetric phase for
small G and a broken phase at larger G, where both {¢,} # 0 and (¥,%.) # 0. No sign of
a second symmetric phase at very large G was observed, in contrast to Ref. 12:, where two
phase transitions were seen in another simple scalar-fermion model with Yukawa-coupling.
A single symmetry breaking phase transition was also seen in another related wodel with
staggered fermions in Ref. {11;. The order of the symmetry breaking phase transition can
only be determined in runs with high statistics on larger lattices.

In addition to the numerical simulation at r, = x, = 0, I also performed sinnlar runs
on a 4* lattice for several non-vanishing scalar hopping parameter values. The increase of
{¢.) and {¥,¢.) occurs for non-zero k's at smaller Yukawa-coupling G. If the scalar hopping
parameter is larger than the critical value in the Ising-model, where the scalar field obtains
a non-zero vacuum expectation value, the expectation value of a1, hecomes non-zero very
soon after the inclusion of a small Yukawa-coupling. These findings can be interpreted as
hints for a simple phase structure of the single component Yukawa model with naive fermions,
as it is shown i Fig. 3. '

In sumunary: the linear bosonization algorithm for fermions works fine in the 4-dimensional
single component Yukawa model. An even better performance is expected in the case of
quadratic bosonization.
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Figure captions

Fig. 1. The dependence of (¥t} on the ratio of the timelike to spacelike lattice
spacing ao for free naive fermions with mass in lattice units m = 1.0. The spacelike lattice
is 43 and the inverse temperature 3 = 4. (This is referred to as a 4% Jattice, although the
calculation is actually done on a 4% - (4/ao) lattice.) The dot at ap = 0 1s the exact result.

Fig. 2a. The expectation value of the scalar field (¢.) at vanishing scalar hopping
parameters as a function of the Yukawa-coupling G. Open symbols correspond to a 4* lattice,
the full symbols to a 6* lattice.

Fig.2b. The same as Fig.2a for (pptiie ).
Fig.2c.  The same as Fig.2a for (0:0_,;)-

Fig. 3. The suggested qualitative phase structure of the single component Yukawa
model with naive fermions at infinitely strong scalar quartic self-coupling A = .
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