DEUTSCHES ELEKTRONEN — SYNCHROTRON D E SY

DESY 88-172
HLR7Z 88-11
November 1988

%= AN\

| 87-/-¢38)
INCHET)

~.

Status of Lattice Glueball Mass Calculations

G. Schierholz
Deutsches Elektronen-Synchrotron DESY, Hamburg

and

Gruppe Theorie d. Elementarteilchen. HLRZ Jilich

ISSN 0418-9833

NOTKESTRASSE 85 . 2 HAMBURG 52



DESY behit sich alle Rechte flir den Fall der Schutzrechtserteilung und fir die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
_ HIGH ENERGY PHYSICS INDEX,
send them to the following address (if possible by air mail):

DESY
Bibliothek
Notkestrasse 85
2 Hamburg 52
Germany




DESY 88-172 _ ISSN (0418-9833
HLRZ 88-11
November 1988

STATUS OF LATTICE GLUEBALL MASS CALCULATIONS®

G. Schierholz

Deutsches Elektronen-Synchrotron DESY, D-2000 Eamburg 52, F.R.G.
and

Gruppe Theorie der Elementarteilchen
Hochstleistungsrechenzentrum HLRZ, D-5170 Jilich, F.R.G.

ABSTRACT

In this talk I review the status of lattice glueball mass calculations. I

restrict myself to recent results obtained on large lattices for the gauge group
SU(3).

INTRODUCTION

Over the past two years several groups' have developed new methods,
which, for the first time, allow to calculate glueball masses on large lattices
and in the continuum region, i.e. for 8 = 6/g* < 6.0. First results®>~® of these
calculations are available now, and it is the duty of my talk to review them.

As a result of its nonabelian character, QCD possesses a richer spectrum
than that of the traditional quark spectroscopy. A whole sector of the spec-
trum should consist {(before mixing} of pure glue states. These glueballs are
very much a prediction of QCD, and a firm calculation of their masses would
expose QCD to an invaluable quantitative test.

The lattice formulation together with numerical simulations is curreatly
the most promising technique to calculate the glueball mass spectrum. This
calculation proceeds in principle from first principles. The resulis may de-
pend, however, on the lattice spacing a, 1.e. the cut-off, and the spatial size
of the lattice. For sufficiently large values of 3, i.e. for small values of @ much
smaller than any hadronic scale, the cut-off dependence of the masses com-
puted in lattice units should be given by the two-loop beta function. This
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is referred to as asymptotic scaling, and for a reliable mass calculation oné
must demonstrate that the masses do obey asymptotic scaling. As far as the
size dependence is concerned, there are two kinds of effects. One effect is that
the vacuum of small volumes is effectively perturbative (in the sense that the
spectrum of states can be computed with perturbation theory”), whereas the
nonperturbative confinement mechanism - which is an infrared phenomenon
- takes over only on larger volumes. There is evidence® that confinement
originates in the condensation of color magnetic monopoles.® This happens
for’® = = L/¢ > 5, where L is the (linear) size of the lattice and £ = (ma)™
is the correlation length, with m being the mass of the lightest glueball. In
order that the glueball mass calculations are of any relevance to the real
world, the foremost requirement is therefore that the lattice volume is large
enough so that z 3> 5. The other effect concerns larger lattices and is due
to interactions of the glueballs with their images arising from the periodicity
of the lattice. If one parameterizes these interactions by an effective three-
point coupling A, the following size dependence of the glueball masses has
been computed:!!

2 e~3§z
m(z) = m{oo)1 — -] )

In practice this means that we need to calculate the glueball masses only on
a few - though large - lattices and then use equ. (1) to extrapolate them to
the infinite volume.

The calculation of the glueball mass spectrum has turned out to be one
of the most difficult problems in lattice gauge theory. The problem of earlier
mass calculations’? was that the operators used to project out the glueball
states have the property, that their projection onto the lowest-lying states
vanishes with the fifth power of the lattice spacing’® a as a goes to zero. As a
result, the signal was rapidly lost in the noise, and the calculations could not
be extended beyond # = 5.9. The so-called continnum region, where we may
expect the lattice spacing to be small enough to exhibit asymptotic scaling,
begins, however, only at 3 = 6.0.

The new methods either take advantage of the fact that operators com-
posed of gauge fields that are averaged over a certain neighborhood?~* are
much less exposed to short-range fluctuations - which are respensible for the
noise - or explicitly construct operators of lower dimensions®, which lead to
a projection that decreases only with the first power of the lattice spacing.!®
This is the optimum one can achieve. Both approaches have led to promising
results, which I will review now.



RESULTS

All calculations on large lattices have been done for the pure gauge theory,
where one neglects the effects of quarks. So far we have quantitative results
only for the 0** and 2% glueballs, which seem to be the lowest-lying states.

It 1s useful to plot the masses as a function of the variable z, which
provides a measure of the physical size of the lattice. This allows us to
disentangle finite size effects from violations of asymptotic scaling. In the
limit of asymptotic scaling we expect the masses to fall on a universal curve.
For larger volumes the z-dependence of this curve can be parameterized by

equ. (1).
In this spirit I have compiled the results in fig.1. To convert the lattice
units to Az I have used the two-loop formula

-1 _iztf_g 82 Bt
a = 28.8A505c™ ()i, (2)
The symbols mean:

Symbol | Ref. 3 L

0 2 °6.0,6.05,6.1 13

x 4 5.9,6.0,6.2 | 12,16,20

. 5| 6.0,6.2 14,16

0 6 6.0 18

A 12 5.9 10

\V/ 14 ~ 5.83 9

The correlation length is £ = (mg++a)~'. For clarity I have omitted the hori-
zontal error bars on the data points. The last two entries are the only reliable
SU(3) mass calculations based on the old methods. All but the bottommost
reference use the Wilson action, while ref. 14 uses the fundamental-adjoint
action. Reference 4 offers various glueball masses to choose among for each
g and L. 1 have taken the mass from the ratio of the zero-momentum cor-
relation function at time 4 over time 3 except for the 2*% at § = 5.9, where
I have taken it from the ratio 3/2. These seem to me their most reliable
results.

Let me first discuss the case of the scalar glueball. At present the errors
are still too large (at least partly) to draw any firm conclusions on scaling
and the volume dependence of the 07+ mass. (One should be aware that
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Fig. 1. The masses my++ and ms++ in units of Agrs-

the masses are also afflicted with systematic errors on top of the statistical
ones as, e.g., a comparison of the results of refs. 4 and 5 shows where they
overlap.) What we can say though is that the results are consistent with
asymptotic scaling, and that the variation of the mass with the volume is
probably less than 20% over the whole range 6 < » < 12. Equation {1) then
tells us that the mass will not change noticeably anymore beyond z = 12,
which leads to the estimate

Mp++ = (10.4 + 0.3)Am. (3)

As far as the tensor glueball 1s concerned, the basic outcome is that its
mass is significantly larger than the mass of the scalar glueball. In fig. 2 1
have plotted the ratio of the two masses as a function of z. The result is
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for 8 < z < 12. {For comparison: the small volume calculations™* done
at © < 5 give ma++ /mg++ = 1.} It is premature to say anything about the
scaling behavior. For that we have to wait until the errors have gone down.
I also like to emphasize that in this case the cut-off is only a™ ! < 1.3m3+1, s0
that the results may still change if the lattice spacing is decreased further.
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Fig. 2. The mass ratio mg++ /mo++.

Michael and Teper? also quote values for the first excited 07+ glueball as
well as for the 06—+, 1~ and 2*~. The cut-off hereis only a™! = (0.8 - 1.0)m,

and I am not convinced that these estimates can even serve as upper bounds.

To convert the results to physical units, one may use the string tension I,

which is about VA = 420MeV . In fig. 3 I have shown the ratios mo++ /v I\ o



and Mg+t /Ko, where R, is the string tension extrapolated to infinite
volume using the formula'® K (L) = K, — n/3L. This gives mo++ ~ 1.4GeV
and ma+4 =~ 2.1GeV. It goes without saying that these numbers are likely
to change when quarks are included in the calculation, which, however, will
not be possible for quite some time. But perhaps one cau employ a mixing
model'” to estimate these effects.

Fig. 3. The ratios mog++ /v Ao and my++ /v R

OUTLOOK

The work 1 have presented in this talk is clearly only the beginning of a
new effort to compute the glueball mass spectrum at larger values of 3 and
on large lattices. A lot remains to be done. Most importantly, the errors have



to be reduced. It helps that various groups are involved in these calculations,
in particular for gaining control over the systematic errors. The next step
then is to go to really small values of the lattice spacing, which means to
increase 3 and L further. This should allow us also to reliably estimate the
masses of the higher glueball states.
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