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Abstract

We present a detailed description of the on-shell electroweak radiative corrections
calculation together with a list of formulae for 4-fermion processes complete at the one-
loop level and with the accuracy required for precision experiments at the ete~ colliders
LEP and SLC. Applications are discussed to the mass interdependence of the weak vector
bosons, the weak mixing angle, and to the precisely measurable on-resonance ohservables
Z mass, width, forward-backward and polarization asymmetries for leptonic and hadronic
final states. Comparisons with the results of other calculations have been performed as far
as possible with satisfactory agreement in the predictions for the measurable quantities.
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Chapter 1

Introduction

With the ete~ colliders LEP and SLC going into operation in the nearby future the investi-
gation of the weak interaction enters a new era of precision experiments. For a long period
weak interaction effects have been known from nuclear physics and low energy particle physics
phenomenology, starting already in 1896 with the observation of nuclear 3 decay by Bequerel.
The historical path was marked out by a lot of surprising discoveries which have substan-
tially contributed in shaping our understanding of the basic constituents of matter and their
fundamental interactions:

- the existence of neutrinos - the violation of apparently fundamental symmetries like par-
ity and CP invariance - the appearance of internal quantum numbers like lepton numbers,
hypercharge, and isospin, leading to the family structure of the fundamental fermions - the
observation of neutral currents - and the culmination in the spectacular discovery of the heavy
vector bosons W, Z having been predicted by the Glashow-Salam-Weinberg model as the
successful conclusion in a long development of theoretical concepts [1].

This GSW model originally conceived for leptons, then extended to the hadronic sector
incorporating the concept of Cabbibo resp. Kobayashi-Maskawa mixing 2], has become the
“electroweak standard model”: the presently most comprehensive formulation of a theory
of the unified electroweak interaction, theoretically consistent and in agreement with all
experimentally known phenomena of electroweak origin {3]. The trace of this development is
quite different from that encountered in formulating Quantum Electrodynamics (QED) as the
theory of pure electromagnetic forces: the quantized form of Maxwell’s theory has been well
established for nearly 60 years and has kept its principal structure since the pioneering work
of Dirac, Heisenberg, and Pauli; later developments [4] simplified the practical perturbative
handling tremendously.

The relatively long period for which QED has been available made it possible to subject
it to experimental tests like measurements of the anomalous g factor of the electron and
the muon [5] proving the correctness of the theoretical concept to an accuracy which is as
yet unique in the wide area of probing the fundamental laws of physics. Those precision
tests were milestones in revealing the basic character of QED as a quantized field theory
since the theoretical predictions follow from a systematic application of the field theoretical
version of quantum mechanical perturbation theory. Although the higher order perturbative
terms are usually quite complicated in their concrete manifestations they are finally the
consequence of a simply structured Lagrangian. This Lagrangian can be considered the
classical Lagrangian of a corresponding unquantized theory which, however, would never
give rise to the small measurable effects following from the quantized version. Hence, the
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experimental verification of the quantum effects confirms that quantum field theory is the
adequate theoretical framework for the description of the fundamental interactions.

Testing a theory at its quantum level becomes possible if the following counditions are
satisfied:

(1) existence of a theory that makes precise predictions beyond the lowest order,

(11} availability of experiments which are sensitive to such small effects.
Both conditions have been fulfilled in case of QED.

The spectacular prediction of the weak vector bosons from the unification of electromag-
netic and weak interactions and their experimental verification have a parallel in the physics
of electromagnetism:

Maxwell’s unification of the electric and the magnetic forces led to the prediction of
electromagnetic waves propagating with the velocity of light. Thus, the experimental proof
of their existence and properties by Hertz’s experiments has been the confirmation of the field
theory of the electromagnetic interaction at the classical level, whereas the further efforts in
course of the 20th century have confirmed the same field theory also at the quantum level.

Quite analogously, the electroweak unification has predicted the existence of massive vec-
tor bosons with masses of the order of the Fermi scale (Grv/2)~7 ~ 250 GeV, which was
known experimentally from earlier days’ data on particle decays. The appearance of a sec-
ond parameter necessary for specifying the precise mass values, the electroweak mixing angle
sin® @y, comes in since the unification is not really complete but still involves two indepen-
dent coupling constants. This small “defect” (from an aesthetic point of view) requires one
more experimental information obtained e.g. from neutrino scattering. The experimental
verification of that prediction in pp collisions [6] may be considered a confirmation of the
standard model at the classical level.

In complete analogy to QED, the standard model as a quantized gauge field theory al-
lowing a perturbative treatment beyond the lowest order exhibits higher order effects which
are measurable in suitable experiments. But in contrast to QED, the experimental facilities
so far have not yet reached that high level of precision necessary for detecting the quantum
effects (there are, however, already strong indications for the presence of higher order contri-
butions [3]). In the sense of our analogy to electromagnetism, we are presently in the phase
after Hertz’s experiments but_before measuring Lamb shift and anomalous magnetic mo-
ments. This situation will considerably change with the experiments at LEP and SLC which
for the first time will become sensitive to the quantum structure of the unified electroweak
interaction.

The electroweak standard model is a non-abelian gauge theory based on the gauge group
SU(2)x U(1) where the ideas of Yang-Mills theories, isospin invariance, spontaneous symmetry
breaking, and Higgs mechanism merge in one common concept. The possibility to perform
perturbative calculations for measurable quantities order by order in terms of a few input’
parameters is substantially based on the renormalizability of this class of theories which was
proved by ’t Hooft in 1971 (7]. The input parameters themselves cannot be predicted but
have to be taken from appropriate experiments.

The virtue of renormalizability has motivated the calculation of the higher order quantum
effects, the “radiative corrections ”, to processes accessible by the experimental facilities.
Such processes have been the weak decays of particles, and scattering processes mediated by
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the electroweak interaction: neutrino-lepton and neutrino-nucleon scattering, as well as ete™
annihilation. These are processes where the fundamental fermions interact with each other via
the exchange of gauge bosons. For the purely leptonic reactions this is obvious; if hadrons are
involved the basic electroweak processes are considered to be the corresponding subreactions
at the level of quarks as their constituents. According to the structure of the fermion -
gauge boson interaction these kinds of fundamental reactions are all of the type of 4-fermion
processes. Since also at LEP the fundamental processes which can be investigated with high
precision are those of fermion pair production ete™ — ff we are primarily concerned with
the question of radiative corrections to 4-fermion processes.

Electroweak processes between fermions can essentially be described with help of three
input parameters (besides fermion masses and mixing angles), e.g. the gauge coupling con-
stants g», g1 according to SU(2) and U(1), and the Higgs field vacuum expectation value v.
Since there is no a-priori preference given to a specific parameter set these can be replaced
by any other three quantities with the only requirement of being independent and obeying
the theoretical relations to the previous ones. Since the input parameters have to be taken
finally from experiment it is more practical to deal with a set where each parameter has a
direct connection to a specific experiment and is a well measured quantity, for example [8]:

e the fine structure constant « = 1/137.03604{11), obtained from Thomson scattering; *
o the Fermi constant G, = 1.166344(11) x 107° GeV~?, obtained from the u lifetime; *
e the mixing angle sin’ §y = 0.231 & 0.006, obtained from neutrino-quark scattering [16].

The muon decay process . — ev, i, is the most accurateley investigated weak decay process.
From the muon lifetime the effective Fermi model coupling constant G, is derived which is
free of radiative corrections, except of purely electromagnetic ones {8]. The electromagnetic
fine structure constant « is in addition also free of electromagnetic corrections [10].

The standard model in its lowest order application yields the following relations between
this experimental input and the masses of the W* and Z bosons:

T
MZE = , 1.1
W \/EGM sin2 ng ( )
My 2 |
—M‘-‘%— = 1-—sin t9w . (12)

These relations can be used to obtain the masses from the input data given above. With the
possibility of measuring directly the vector boson masses in e* e~ colliders with high precision
(AMz = 20— 50 MeV at LEP I [11], AMy = 100 MeV at LEP 200 [12]} the question for the
“best” input would lead to a different answer: Take the most precisely measured quantities

o, Gy Mg (1.3)

as input parameters for fixing the theory, and predict the other quantities My and sin? O
from the relations given above for testing the theory. Indeed, with Az we enter a precision

lwe refer to Thomson scattering since it is the low energy limit of Compton scattering and measures the

classical electron charge; for determinations of @ with high precision other methods like applications of the
Josephson or the quantum Hall effect are more practical
Zsince we deal always with its value as derived from r, we prefer the notation G, instead of G
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level of 0.05%. The W mass, however, is not yet within reach for the next future with a

comparable accuracy, and so we are left with sin® fy as the quantity for precision tests in the
phase of LEP 1.

But how to improve on the experimental accuracy of sin® 7

From neutnno electron scattering one expects an uncertainty of £:0.005 [106]. The present
error in sin? fy from neutrino-hadron data is not expected to become sizably smaller in future
neutrino nucleon scattering experiments. The key to a substantial improvement is instead
found in measuring charge and polarization asymmetries in the processes ete™ — ff at the
peak of the Z resonance. These quantities depend in lowest order only on the ratios of the
vector and axial vector coupling constants of the fermions to the Z boson

Zey = 2L =1 — 4] Q. | sin® b (1.4)

and hence only on sin’ 6y (Q; denotes the electric fermion charges). As an example of
particular importance we mention the left-right asymmetry

op ~- OR 2,
oL+ op 1+ x?

Arp = (1.5)

where o g are the total cross sections for left- and right-handed incoming electrons. By a mea-
surement of Ay a determination of sin® fy will become feasible with an accuracy of 3:0.0004
(assuming 10° Z events) [13,14] matching the precision of the input data. Without longi-
tudinal beam polarization, one would obtain A sin? @8y = 0.001 from the forward-backward
asymmetry App in ete™ — ptp” for the same number of 2Z’s [13,15].

From the experimental input parameters o, G, sin® 8w as specified above we obtain with
help of the relations (1.1), (1.2) the following values for the boson masses:

My =776+1.0GeV, Mz =2885+08GeV.
When compared to the measured masses [8]
(M )ezp = 80.9 £ 1.3GeV, (Mz)erp = 91.9+ 1.7GeV

they show that the lowest order expressions are not precise enough as to reproduce the
experimental results within two standard deviations. This is already a signal for the presence
of radiative corrections . In view of the much more precise measurements of Az and sin? Oy
in forthcoming e*e™ collisions the inclusion of higher order effects in the relations (1.1-2) for
the Mw © Mz o sin® 6y interdependence becomes mandatory.

But also the relations between sin® #y and the asymmetries at the Z resonance are mod-
ified after including radiative corrections; they deviate from the simple lowest order expres-
sions like (1.5), for example. Since the higher order contributions turn out to be significantly
larger than the expected experimental accuracy in LEP experiments their proper treatment
is a necessity for the asymmetries as well. Their experimental verification, in connection
with measurements of the boson masses, will be a milestone in establlshmg the electroweak
standard model as a quantized field theory.

Due to their virtual presence in the higher order loop diagrams also those particles of the
standard model outfit enter the predictions for processes between the established fermions
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which until now have escaped the direct experimental grip: the Higgs boson as the remnant

of the spontaneous symmetry breaking, and the top quark as the missing member of the

third fermion generation. The present status forces us to introduce their masses as additional
independent input parameters which are only very little theoretically and experimentally
constrained. Precision experiments being sensitive to the My, m; dependent radiative cor-
rection effects may also be understood as probing the presently empirically unknown part of
the standard model.

This sensitivity to empirically unknown particles applies in the same way also to all kinds
of new objects which are connected with ideas beyond the minimal standard model (“new
physics”) as far as these objects couple to gauge bosons and/or to the known fermions. Con-
crete realizations are encountered for example in the concepts of more fermion generations,
more Higgs fields, supersymimnetry, as well as in the rich variety of phenomenology inspired by
superstrings. The radiative corrections hence are going to open a window also to these “new
physics effects”. This is of particular importance for particles which are too heavy to be pro-
duced directly. This has to be considered the second important aspect for the role of radiative
corrections in the interplay between theoretical effort and high precision experiments.

From present days experiments there are no indications for structures beyond the minimal
model. For this reason we may expect that new physics effects, if present, will manifest
themselves in terms of only small deviations from the standard model predictions, of the
order of the minimal radiative corrections. In order to isolate possible signals due to extra
structures the reliable calculation of the standard model radiative corrections is necessary for
establishing a solid background. These standard model radiative corrections are the topic of
the present article. For discussions of new physics effects we refer to the current literature, in
particular to the reviews by Lynn, Peskin, Stuart [17] and Hollik {18] together with the work
quoted therein. They are outside the intention of this article, although the strategy outlined
here allows a rather direct continuation to new physics as well.

For concrete higher order calculations the specification of the parameters in terms of which
renormalization and presentation of results is performed is necessary. The calculation of
radiative corrections to the vector boson masses when derived from G, and sin® 8y (defined
by means of neutrino scattering) was done by Veltman [19]. Marciano [20,22] and Sirlin
[21,22] applied the electroweak “on- shell scheme” in order to obtain the quantum eﬁ'ects in
the correlation between Mz, My ,sin® @, resulting in the famous formula

; T 1
Y V26, sin’fw(1 - Ar)

(1.6

replacing (1.1), where Ar summarizes the higher order terms. The relation (1.2) is unchanged;
it is rather understood as the definition of the weak mixing angle in terms of the boson masses
and hence is valid in all orders of perturbation theory. Moreover, in this way the dependence
of sin® By on a specific process has been removed.

The electroweak omn-shell scheme is the most natural extension of the familiar on-shell
renormalization scheme of QED. It utilizes such quantities for the free parameters of the
model which are measurable in physical processes with all particles on their mass shell.
These quantities are the masses themselves specifying the particle content of the model
(Mw, Mz, My, my) together with a as a coupling constant. In a strict sense, G, would
no longer be an on-shell parameter in the standard model since the W boson involved in
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muon decay is off-shell. It can, however, uniquely be expressed in terms of the on-shell quan-
tities by means of (1.8). The advantage of the on-shell scheme is the unambigous physical
meaning of the free parameters, their independence of perturbation theory, and the trans-
parency of the renormalization relating the “bare” parameters of the classical Lagrangian to
the physically measurable parameters of the quantized renormalized Lagrangian. Since the
input for the standard model is more involved than in case of QED or QCD this transparency
is appreciated also for comparing the results of various independent calculations and checking
their consistency.

Since quite a number of calculations had been performed in the past applying different
strategies and renormalization schemes the Trieste Workshop on Radiative Corrections in
1983 (23] was held in order to clarify the somewhat confusing situation at that time. A
consensus was found among the participants, and a proposal was made for calculating and
organizing higher order effects in the standard model [23] which in further course was also
more explicitly documented in the Radiative Correction Study Group report [24], presented
by Dydak [25] at the LEP 200 Workshop at Aachen [12] in 1986, and can be summarized as
follows: perform calculations in the on-shell scheme and impose the relation {1.6)

Gy = Gula,Mw, Mz, Mp,m.,m,,...)

as a constraint from which Mw can be fixed after the other parameters have been specified.
This allows to get rid of the experimental uncertainty induced by My ..

The on-shell scheme has become popular in a lot of practical applications (see for example
[23], [24], and the collection of references given there). In our context we want to mention
explicitly only those activities which are tightly related to the topic of this paper: the calcula-
tion of the radiative corrections to e*e™ — p*u~, first performed by Passarino and Veltman
[26] for the range outside the Z resonance; with restriction to the electromagnetic subclass
by Greco, Pancheri, Srivastava (27|, Berends, Kleiss, Jadach (28], and Bohm, Hollik [29];
the complete one-loop calculation for the PETRA/PEP energy range by Béhm, Hollik [30]
and the corresponding calculation of the weak subclass by Brown, Decker, Paschos [31}]; the
inclusion of the resonance range by Wetzel [32], Lynn, Stuart [33], and Hollik [34]. The last
two references contain also the radiative corrections to the left-right asymmetry (1.5) and are
as yet the only calculations for this important quantity complete in the virtual corrections at
the one-loop level. In a similar way Bhabha scattering has also been accomplished {105].

Meanwhile essential progress has also been made in the calculation and implementation
of QED corrections in higher than one-loop order [35-38); in connection with the precise
calculation of the Z boson width [39,40] they are essential in forming the Z resonance line
shape from which Mz will be measured. The position of the peak maximum and its relation
to Mz turns out to be insensitive to the values of the other parameters [41,42] which is crucial
for Mz being an independently measurable input quantity. Moreover, the resummation of
the large contributions from light and heavy fermions to all orders in the leading terms
was performed in [43] and this article. The corresponding effects in sin® y can match the
" experimental precision, and a comparison between the results of [43] and ours is needed at the
high level of accuracy as required nowadays. With the assistance by Burgers [42] we found
satisfactory agreement between the two independent calculations.

The intention of this article is threefold:



(i} to give a comprehensive description of the on-shell scheme for practical use and to
outline its application to the calculation of radiative corrections, in particular to the My —
My — sin? fy correlation and the fundamental ete™ processes ete” — ff;

(i1) to collect numerical results for the various accurately measurable quantities where the
input parameters are taken from a range of current interest, allowing also a comparison with
other work;

(iii) to present a complete collection of all radiative correction formulae in one place needed
for discussing the topics of (1) with the required accuracy, except of the hard bremsstrahlung
part and the higher order QED terms. The hard photon corrections depend in general on the

specific experimental set up and are more conveniently treated by Monte Carlo simulations
[28,44]. 2

The spirit of this article is mainly a practical one. For this reason we restrict ourselves to
the minimum part of general formalism necessary for understanding and handling the listed
expressions; for details concerned with the more formal part we refer to [45] which has been
the starting point for the further development. In some places we deviate from ref. [45];
this will be mentioned explicitly in the corresponding text passages. For other elaborate
discussions of the on-shell renormalization see refs. [46-48].

The article is subdivided in six major parts:

First we specify the classical Lagrangian, the basic notations and conventions, and give
the ingredients needed for the lowest order description of 4-fermion processes.

The next section outlines the on-shell renormalization as required for our further applica-
tions. It contains also the general expressions for the renormalized 2- and 3-point functions
which become concrete when combined with the explicit terms of the appendix.

This general part is followed by the application to the muon life time with a discussion of
the input parameters and the Mw — Mz — sin® 8y correlation.

The treatment of the Z width and ete™ processes is performed in the subsequent two
sections. The general formulae for the e*e~ - ff differential cross section include longitu-
dinal as well as transverse initial state polarizations. Numerical results for total and partial
Z decay widths, Z line shape, total cross section, and various on-resonance asyminetries are
listed and discussed.

Finally, in the appendix we put together the explicit expressions needed for making this
paper self-contained and a useful collection of radiative corrections formulae as well. A very
condensed listing of the formulae in the on-shell scheme has recently been published in [49];
it is, however, not yet as complete as the present one in the 3- and 4-point functions.

*analytical calculations for specific quantitities without applying phase space cuts are contained in [50-53]
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Chapter 2

Classical Lagrangian and basic
notations

in this section we specify our notation and give the tree level Lagrangian as it will be used as
starting point for higher order calculations. Moreover, we want to provide a set of formulae
following from the tree level Lagrangian which allows us to perform calculations of measurable
quantities in1owest order. This will become of importance when we are going to discuss the
magnitude of radiative corrections with respect to the “Born approximation”.

According to the general principles of constructing a gauge invariant field theory with
a spontaneous symmetry breaking mechanism the gauge, Higgs, and fermion parts of the
electroweak classical Lagrangian

Lao=Le+Ly+Lr (2.1)

are specified in the following way:

2.1 Gauge fields

The isotriplet of vector fields W2, a = 1,2,3, and the isosinglet vector field B, transform-
ing under gauge transformations according to the adjoint representation of the gauge group
SU(2)xU(1) lead to the field strenght tensors

Wo, =8,W: - 8,W + g; e WOV,

B,, = 8,B, — 8,B,,. (2.2)

gz denotes the non-abelian SU(2) gauge coupling constant, whereas g1 is the abelian U(1)
coupling. From the field tensors (2.2) the pure gauge field Lagrangian

1 1
Lg= ~1 W, Wee — 1 B, B* (2.3)

is formed.
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2.2 Higgs field and Higgs - gauge field interaction

The électric charge operator @ is built from the generators I of the weak isospin and the
weak hypercharge Y obeying the Gell-Mann Nishijima relation

Q:k+§. (2.4)

For spontaneous breaking of the SU(2)xU(1) symmetry leaving the electromagnetic gauge
subgroup U(1).m unbroken a single complex scalar doublet field with hypercharge ¥ =1

8(z) = ( ﬁi((j)) ) (2.5)

is coupled to the gauge fields

Lo = (D,8)"(D"8) - V(3). (2.6)
with the covariant derivative

D, =8, —igp LW + i%B# (2.7)
The Higgs field self interaction

V(@)= ~p* 873 + 2(@*‘@)2 - (2.8)

is constructed in a way that it gives rise to spontaneous symmetry breaking. With help of
the non-vanishing vacuum expectation value v, related to the coefficients of the potential V
by

2p

v = 75 (2.9)
the field (2.5) can be written in the following way:
+
e) = ( (v + H(mq)S ﬁ;-(m))/\/i ) (230)
where the components ¢*, H, x now have zero vacuum expectation values.
The real component H(z) describes physical neutral scalar particles with mass
My = pv2. (2.11)

The Higgs field components have triple and quartic self couplings following from V, and
couplings to the gauge fields via the kinetic term of (2.6). In addition, Yukawa couplings to
fermions are introduced in order to make the charged fermions massive.

i1



2.3 Fermion fields, fermion-gauge and fermion-Higgs
interaction

The left-handed fermion fields of each lepton and quark family (color index is suppressed)

L ,
- ()

with doublet index j are grouped into SU(2) doublets with component index ¢ = +, and the
right-handed fields into singlets

o=l
Each left and right-handed multiplet is an eigenstate of the weak hypercharge Y such that
the relation (2.4) is fulfilled. The covariant derivative

. .Y
D,u = 3“‘! — 1493 IGW: + tg: E B'u (2.12)

induces the fermion-gauge field interaction. The interaction with the Higgs field is specified
in terms of Yukawa couplings:

Cr =Y {9Fiv"Dupf + vRiy* Dyl ) (2.13)

ic
+ ‘CYukawa -

The Yukawa term is conveniently expressed in the doublet field components (2.5). We write
it down for one family of leptons and quarks only, neglecting quark mixing:

EYukawa = _gl(gL ¢+ lR + ER ¢_ vy, + -l'L qu ZR + IR QBO* IL) (214)
= —ga(ur ¢t dp + dn¢ v + dp ¢°dr + dr 4™ dy)
~—gu(Brdtdr + dp ¢ ur + Tro®ur + Ty 6™ up) .

with Yukawa coupling constants g4, which are related to the masses of the charged fermions
by eq. (2.23). ¢~ denotes the adjoint of ¢t.

2.4 Physical parameters

The gauge invariant Higgs-gauge field interaction in the kinetic part of (2.6) leads to mass
terms for the vector bosons in the non diagonal form

1 7ga \* 2 3 92 qp w3 ‘
— W W' — VV , B 2 H . 2.15
2 (21) (W7 + W)+ ( ”) a9 9 B, (2.15)

The physzcal content becomes transparent by performing the transformation from the fields
7+ By (in terms of which the symmetry is manifest) to the “physical® fields

1
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and

Z,,,. = +cosfy W's + sinfy B, (2.17}
A, = -—sinfy Wff + cosfw B,

In these fields the mass term (2.15) is diagonal and has the form

_ 1 0 0 A
My WIWw—* 4 E(A“,Z,,)( 0 M} ) ( i ) (2.18)
with
1
MW - 592’0 (2.19)
1
Mz = Sygi+giv

if the mixing ang}e‘in (2.17) is chosen as

cos Oy = Mw = 92 (2.20)

Mz \[g?+ g2

Identifying 4, with the photon field which couples via the electric charge e = v/4ma to the
electron, e can be expressed in terms of the gauge couplings in the following way

_ g2

e = (2.21)
Vi + g3
or . .
g2 = — , 1= . (2.22)
sin fw cos Oy
Finally, from the Yukawa coupling terms in (2.14) the fermion masses are obtained:
. :
Mig = Gig ——= - 223
j g; V2 ( )
The relations (2.9, 11, 19, 21, 23) allow to replace the original set of parameters
g2, G, /\1 .‘1‘21 Gjo (224)
by the equivalent set of more physical parameters
€, MWa MZ: MH}. M (2'25)

where each of them can be measured directly in a suitable experiment.

For the important class of charged and neutral current processes between fermions the
coupling constants for the vector and axial vector currents as they follow from (2.13) can be
expressed in terms of e, Mw, Mz : {notation: f = (jo), f = (jo')}

13



+
w_ f (L = v5) —mem 2.26
= ie - Y} — 2
§! Tu s 2¢/2 sin 8y ( )
z ¢ .
= teylvs — agys)
£
‘ :
2 g :
lv\’w< = —te€ Qf Y
f
with the neutral current coupling constants
II —2Q; sin® by _
v 2 sin 8y cos O (,2'2‘ )
I.f
G-Jf —_ 3

2 sin By cos By

Q; and I/ denote charge and third isospin component of f. Together with the photon
propagator (Feynman gauge)

1 gt
M/\.Yf"\f\. - k2 (2'28)
and the W and Z propagators in the unitary gauge
) _g,uu + kpku/MZ
e e Y (2.29)
v

we have a set of rules allowing the calculation of cross sections and lifetimes for neutral and
charged current processes at the tree level. Application to the u decay

P’ S & » vf"
eﬂ
w-—
Va

yields the result for the p lifetime (neglecting powers of m?/ME,):

2 2
4 a 5 8m 1
= 1- £ . 2.30
Tu 384m ¥ ( m?2 ) M3, sin® By ( )

Identification with the result of the Fermi model with pointlike interaction

G? 8m?
1l e s (1— m’) (2.31)

T = 7
a 192x3 ¥ mz
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%

leads to the relation Tor
M sin® by = ———. 2.32
w w \/QG!‘ ( )
Together with
M3
M3

sin® Oy = 1 — (2.33)

this gives a correlation between the mass value My and Mz since o and G, are known with

practically negligible experimental errors. Moreover, after M3 has been specified, My is also

fixed ,
M 44
2 _ Z -
Miy = = (1 +4/1 ; ) (2.34)

and the neutral and charged current coupling constants (2.26), (2.27) are determined by
means of

o, 1 ' 44
Sin HW = 5 1—-4/1-~- @ (2.35)
where
o
A= = (37.281GeV)?. (2.36)

V2G,

The relations (2.32) and (2.33) are in general modified by the inclusion of radiative corrections
depending on the details of a chosen renormalization scheme. In the on-shell scheme (2.33)
remains valid also in higher order, and (2.32) is modified according to

o 1

M3, sin® fy = 3G, 1= Ar
u

(2.37)

where the radiative correction Ar depends on all the parameters (2.25) of the model, in
particular on the mass of the Higgs boson My and the top quark m, which do not enter the
tree level result (2.32),
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Chapter 3

Renormalization

In this section we want to give an overview over the strategy and to put together all the results
which we will need for the discussion of 4-fermion processes including radiative corrections.

3.1 Quantization

Since the S matrix element for any physical process is a gauge invariant quantity it is possible
to work in the unitary gauge with no unphysical particles in internal lines. For a systematic
treatment of the quantization of £, and for higher order calculations, however, one bet-
ter relies to a renormalizable gauge. This can be done by adding to £, the gauge fixing
Lagrangian

1
Lrio=—3 (F2+ F} +2F, F.) (3.1)
with linear gauge fixings of the ’t Hooft type: '
F:I: = —1— (8"“””i :FZngqui-) (32)
vew bt
1 z
F; = \/? (8“2, — MzE”x)
1
F, = 0“4, .

VE

In this class of 't Hooft gauges the vector boson propagators have the form

i (1 - ¢V )k kY
S SR Gl 0 .20 3.3
k2 M%-( 9t o v ) - B3

For completion of the renormalizable Lagrangian the Faddeev-Popov ghost term Ly, has to be
added |54] in order to balance the undesired effects in the unphysical components introduced
by L fix -
' L=Ly+ Lyiz + Lan (3.4)
where

SF°
86°( )

Lon = @7(x} uﬂ(;r) (3.5)
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with ghost fields u7, u%, u*, and 3£; being the change of the gauge fixing operators (3.2)
under infinitesimal gauge transformations characterized by 8%(z} = {°(z), 6¥ (z)}.

In the ’t Hooft-Feynman gauge (£ = 1) the vector boson propagators (3.3) become paz-
ticularly simple: the transverse and longitudinal components, as well as the propagators for
the unphysical Higgs fields ¢*, ¥ and the ghost fields u*, u? develop poles which coincide
with the masses of the corresponding physical particles W* and Z.

_ This feature is lost if higher order corrections to the 2-point functions are included. Al-

though the individual poles for the unphysical propagators do no longer coincide with the
physical ones the validity of the Slavnov-Taylor identities [55] guarantees that those rele-
vant combinations of (unphysical) 2-point functions which enter the S-matrix elements for
processes between physical particles arrange the poles of the S-matrix in their correct places.

On the other hand, it is possible to choose the gauge in a form
éa =1 4 550:

which deviates from the 't Hooft-Feynman gauge by contributions of tlie one-loop order. The
gauge parameters §£® may then be adjusted in a way that the pole structure in the unphysical
sector remains the same as for £* = 1 in lowest order. By investigating the relevant Slavnov-
Taylor identities with Higgs and ghost self energies it follows that the renormalization in the
unphysical sector (at the one-loop level) can be treated as decoupled from the renormalization
in the physical sector (the 2- and 3-point functions for the physical degrees of freedom).
Since it is our aim to arrive at a complete one-loop presentation of physical amplitudes for
scattering processes between fermions where Higgs contributions can be neglected at the tree
level and where longitudinal propagators give only terms of order m3/M3, it is sufficient that
we restrict ourselves to the physical sector. ! For this reason we disregard in the following
discussion all higher order contributions to the longitudinal vector boson propagators (those
proportional to k#k”) and to the unphysical Higgs and ghost propagators. A complete list of
these unphysical propagators can be found in [45].

3.2 The strategy

The tree level Lagrangian (2.1) of the minimal SU{2)xU(1) model involves a certain number
of free parameters which are not fixed by the theory. The definition of these parameters
and their relation to measurable quantities is the content of a renormalization scheme. The
parameters (or appropriate combinations) can be determined from specific experiments with
help of the theoretical results for cross sections and lifetimes. After this procedure of defining
the physical input other observables can be calculated allowing verification or falsification of
the theory by comparison with the corresponding experimental results.

In higher order perturbation theory not only the predictions for observables testing the
model are modified but also the relations between the formal input parameters and their
defining experiment are different from the tree level relations in general. Moreover, the
procedure is obscured by the appearence of divergencies in the higher order contributions
which have to be subtracted in a way consistent with the physical interpretation and with

lalso valid for boson production processes ete™ s yy,vZ, 22, WW
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the Slavnov-Taylor identities. This operation leads to a redefinition of the parameters in
the Lagrangian by an infinite amount. Therefore we abandon the use of the parameters in
the original “bare” Lagrangian, the “bare” parameters, and express everything in terms of
finite “renormalized” parameters (which can be measured) and counter terms which absorb
the divergent parts of the loop contributions. Although this would be sufficient to obtain
finite S-matrix elements the off-shell Green functions are not finite by themselves even after
this renormalization. This reflects the feature that amplitudes of “bare” fields between the
vacuum and one-particle states are not the wave functions normalized to unity, due to the
presence of self interactions. In order to obtain finite propagators and vertices also the bare
fields in £ have to be redefined in terms of renormalized fields. In this way the “bare”
Lagrangian is split into a “renormalized” Lagrangian and & counter term Lagrangian which
renders the results for all Green functions in a given order finite. Formally this is done by
multiplicative renormalization for each field

$ = 7 ¢

g — Zyg

and for each parameter in £

with renormalization constants
Z,- =1+ tSZ,'.

The simplest way to obtain a set of finite Green functions consists in the “minimal sub-
traction scheme” [{56] where (in dimensional regularization) the singular part of each divergent
diagram is subtracted and the parameters are defined at a certain renormalization mass scale
. This scheme has become popular in QCD where due to the absence of free fundamental
particle states there is no preference for a specific mass scale in the renormalization procedure.

This situation is different in QED and in the electroweak theory. There the classical Thom-
son scattering and the particle masses set natural scales where the parameters can be defined.
In QED the favoured renormalization scheme is the on-shell scheme where ¢ = /4ra and
the electron, muon, ...masses are used as input parameters. The finite parts of the counter
terms are fixed by the renormalization conditions that the fermion propagators have poles
at their physical masses, and e becomes the eey coupling constant in the Thomson limit of
Compton scattering. The extraordinary meaning of the Thomson limit for the definition of
the renormalized coupling constant is elucidated by the theorem [10] that the exact Compton
cross section at low energies becomes equal to the classical Thomson cross section. In par-
ticular this means that e resp. a is free of infrared corrections, and that its numerical value
is independent of the order of perturbation theory, only determined by the accuracy of the
experiment.

The direct and most natural extension of this QED on-shell scheme leads to the on-shell
scheme of the electroweak SU(2)xU(1) theory. It was proposed first by Ross and Taylor
[57] and becamne popular in a lot of practical applications [23,24]. Since e and the particle
masses are singularly distinguished parameters the physical content becomes best transparent
in terms of the set

€, J‘Vfw, Mz, MH, My (3.6)
as input parameters, together with the physical fields
H"ﬂi, Z,, A,
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from (2.16-17).
Since there is no room for the mixing angle i as an independent quantity we take over

the simplest definition in terms of the physical W and Z masses
M‘21;'
M2

sin2 9“1 =1- (37) :
which was proposed first by Sirlin [21]. This definition is independent of a specific process
and is valid to all orders of perturbation theory.

The advantages of the on-shell renormalization scheme are obvious:

¢ The input parameters have a clear and unambigous physical meaning and can be mea-
sured directly in suitable experiments.

e All parameters (except My and m;) are experimentally known.

¢ The Thomson cross section from which « is obtained is exact to all orders of perturba-
_tion theory.

e The one-loop corrections to ete™ — ff can be naturally separated into “QED cor-
rections” (which means bremsstrahlung type corrections) and “non-QED” or “weak
corrections”. This feature is of importance for the implementation of higher order con--
tributions into Monte Carlo programs. Moreover, the bulk of QED corrections comes
from the infrared soft photons which couple with the Thomson « to the charged fermion
currents.

A conceptual problem seems to arise with the light quark mass parameters as input since
neither their precise values nor their physical meaning are unambigously known. Fortunately,
in our weak radiative corrections they appear only in the vector boson self energies where their
contribution can be replaced by the experimentally known cross section for ete~ — hadrons
via a dispersion relation (see the discussion in 4.3). All other finite mass terms are of order
m% /M% and vanish in the light quark limit.

Quark masses also appear in the virtual and real photonic corrections to processes like
ete” — ¢g and e"¢ — e~ ¢. The singular terms which do not vanish for m, — 0 in ete”
annthilation into quark pairs e*e” — ¢g(~y) are cancelled by the inclusion of collinear hard
final state bremsstrahlung [58] which corresponds to the proper treatment for realistic exper-
iments. In deep inelastic electron-proton scattering all singular mass terms can be absorbed
by a re-definition of the distribution functions for the quarks inside the proton [59].

+

Therefore, our lack of knowledge about the quark masses is no obstacle for practical
applications.
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3.3 Multiplicative renormalization

After this qualitative discussion we want to specify the on-shell renormalization scheme quan-
titatively. Following the general principles to obtain the renormalized Lagrangian plus counter
terms we attach multiplicative renormalization constants to each free parameter and each
symmetry multiplet of fields in £, eq. (3.4):

we — (zF)" we (3.8)
B, — (.’5'2’3)1/2

v - (21)"

i~ (28)" ek

¢ — (Z*)I’Iz

o - 2 (2F)" g

g1 = ZlB Zf)_alz L]

1/2
v - (Zq’) ! (v~ bv)
212 o
gjﬂ - (Z ) Z‘lj gja
The renormalization transformations for u?, ), and the ghost fields are not listed explicitely

here since we do not need them for the fermionic processes at the one-loop level. For com-
pleteness we again refer to [45].

A couple of remarks are in order:

Field renormalization ensures that we arrive at finite Green functions. For physical S
matrix elements the results obtained in this way are equivalent to those derived without
field renormalization, as done in [21,22] . The field renormalization in (3.8) is performed
in a way that it respects the gauge symmetry by introducing the minimal number of field
renormalization constants. Therefore also the counter term Lagrangian and the renormalized
Green functions reflect the gauge symumetry. The price for this, however, is that not all
residues of the propagators can be normalized to one. As a consequence, any calculation
with the renormalized Lagrangian will have to include finite multiplicative wave function
renormalization factors for some of the external lines in S matrix elements.

It is of course possible to perform the renormalization in such a way that these finite
corrections do not appear [46,48,60]. But then the Lagrangian will contain many constants
which have to be calculated in terms of the few fundamental parameters.

The renormalization of the Higgs vacuum expectation value v absorbs the linear term in
the Higgs potential, which comes in by the appearance of tadpole diagrams in one-loop order,

in such a way that the relation
2t

P =

oy
remains valid for the renormalized parameters. As a practical consequence of this tadpole
renormalization all tadpole graphs can be omitted in the renormalized vector boson 2-point
functions. They are, however, necessary to make the mass counter terms gauge independent.
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Strategy for one-loop calculations

Table 3.1:

SAUSWST® XTJI1TN-S

1

SUOTZOUNI UssJa) LIZTTELIOUSS

$STITILIPT

18

S3UB3SUCD UOTIBZTTBOLIOUST SuoTaTPuoD y| SUOTIETNOTED dooT
UOTFETTTERIOUDL |
3 A.
EWIDY IIUNCO SOTNI UBTUIASJI
A h
see L J1EmiE -.Uw < e 4.0.? -l [ [ '8 & £ L3 [
("7 AT M) + (Fm T fte £ neXxe g tRUACZ_m) P
s .
. Lo
. &
(29 + L = °2) UOTIBZTTEWIOUSY
mmu\.fm &MN\...m
150uE

SUOTIETNOTED TB4ADT 313

T Bl s g F e Y

- py

a¥nmed LTIeaTim

P S AP

afnes-y

ﬁ.wwad. Niq _.w.N.m mﬂnmaﬂaamamuﬁ.u”




The systematic way for obtaining results for physical amplitudes in one-loop order is scheduled
in table 3.1. The expansion
Z; =14+ 82;

of the renormalization constants introduced via (3.8) yields the renormalized Lagrangian £
which can now be re-parametrized in terms of the physical parameters {3.6) and the physical
fields A,,, Z,, W, H (also the unphysical Higgs field components #*, x, and the ghost fields u
are present in the R¢ gauge), and the counter term Lagrangian §£. From £ the counter term
Feynman rules are derived. After rewriting them in terms of (3.6) the counter term graphs
have to be added to the loop integrals which follow from £. The renormalization constants in
(3.8) are fixed afterwards by imposing the appropriate renormalization conditions which define
the physical meaning of the used parameters. The results are finite Green functions in terms
of (3.6} from which the S matrix elements for all processes of interest can be obtained. The
validity of Slavnov-Taylor (ST) identities allows to control the consistency of the procedure
and to check the correctness of the calculations.

When all the renormalization constants have been fixed in this way the counter terms for
any matrix element of a physical process in one-loop order are already determined by the
structure of 6C.

The side path outlined in the upper right corner of table 3.1 leads to the tree level results
which have been put together in section 2.4 for the fermion - gauge boson interaction.

3.4 Renormalization conditions

The renormalization conditions for the physical degrees of freedom can be separated into
two classes: the on-shell subtraction of the self energies which makes the particle content
of the theory evident, and the generalization of the QED charge renormalization. Since we
have introduced more renormalization constants than physical parameters we are free to fix
the supernumerary ones by the requirement of residue= 1 for a corresponding number of
propagators. In order to be as close as possible to the common QED renormalization these
residue conditions are imposed on the photon and the charged lepton propagators.

The on-shell subtraction conditions can be written in a graphical way where the shaded
blobs denote the renormalized one-particle irreducible amputated 2-point functions {self ener-
gies) which consist of the diagrams in Figures 3.1-5 together with the corresponding counter
terms from Appendix A:

{3.9)

Re M/@VV\A = 0

W,Z Wz | e My,
Re .- - = 0

H @ H Kr= ME

H

Re —-——-@—»—— = .

+ { k1= W\? O
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Figure 3.1:
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Figure 3.2: Photon - Z mixing energy
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~ Figure 3.3: Z boson self energy
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Figure 3.4: W boson self energy
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With the renormalized irreducible yee vertex (Figure 3.6 plus counter terms)

k 9
Y
P
the second class of renormalization conditions can be depicted as follows:
e (3.10)
> . = (e 'X’,u
e :

r Bz e =0
0
ﬁt(ﬂ?@?)kﬂ:o = 0

A

%
I
o

The last condition is formulated for charged leptons and quarks with I, = —1/2. It means
a condition for the left and right handed fermion field renormalization constants Z;, Z5. In
the case of leptons Z; also determines the neutrino field renormalization. For the I; = +1/2
quarks an additional Z{ for the right handed fields is at our disposal. This constant can be
adjusted in a way that the renormalized left and right handed parts of the up-type propagators
have equal residues at k% = m? (but # 1).

In order to write (3.9-10) in analytical form we have to specify first the normalization of
the irreducible self energies:

The self energies X7 (j = v, Z, W, 7Z) are related to the transverse components of the
vector boson propagators wa by (V =+v, Z, W)

1 1
DY = —ig, -
() *Gu (k-.z-Ma ki = M?

V(&) ﬁm) (3.11)

1 1
' Z — : Z:1,2
Dii(k) = +igw 55— iz T

The fermion self energy T/ is related to the fermion propagator in the following way:

1
k—mf'

; :
Sh(k)

Ef(k) (3.12)

2%—mf B k-mf
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Z7 can be decomposed according to
SIk) = ®BL(E?) + Ty BAE?) + my DE(R?)

1 - 1 .
= 5T Bi0) + & J;”*‘ SL(k?) + my BL(4?) (3.13)

with invariant functions E{’.A,s resp. E{D,R.S'

All renormalized quantities are denoted by the same symbols as the corresponding un-
renormalized ones in connection with a superscript .

Then the conditions (3.9) read %:
Re Y (M) = Re B%(M}) = Re&¥(m?) = 0. (3.14)

The equations correspon&ing to (3.10) are:

f‘z’e(kz =0p=g= me) = ey, - (315)
£20) = o
o5
arz0) = 0
; (L —
_Fl_l'rril— — Yik)u (k) = 0
if u_ is the wave function for the I; = —1/2 particle.

The renormalized quantities are composed by the unrenormalized ones and the counter
terms as specified in Appendix A. The system of equations (3.14) and (3.15) can be inverted
to give the renormalization constants needed for the gauge propagators and the gauge field -

fermion vertices.

3.5 Renormalization constants

The solution of the system (3.14,15) yields all those renormalization constants which we
need for the vector boson propagators, the fermion - gauge boson vertex corrections, and the
fermion wave function renormalization. We write them down in terms of the unrenormalized
expressions which can be found in analytical form in the appendix.

The mass counter terms for the W and Z self energies follow immediately from the un-
renormalized on-shell values by means of (3.14):

§ME = ReZV(ME) (3.16)
§MZ = ReZZ(M}).

?In the following we skip the Higgs subtraction since we do not need it for our applications
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Their dependence on the Z;’Z (z = 1,2), which is specified in the appendix, together with
the set of equations (3.15) yields (sée also the discussion in 3.6.2):

ox -
82, = -II"(0) = ~ ki (0) _ (3.17)
7(0)
. T~ _TI(0) - %
YA 11" (0) cw M3
2 .2 E—yzo 2 .2 s M2 5M2
§27 = —I"(0) — 2 X °W (2)+C“’23W( Z_ W
' Swew MZ S"r AJZ Mw
: T2 9.2 ynZ 2 2 [SMZ  SM?
627 = —I(0) — 3cw — 25y X (20) 4w _ Sw ( M;z _ 2w)
Swcew MZ S“r Mz M“:
£7%(0) ek (§ME  SME
Voo (o) — 22 w 2z _ "
52, Oy =20 Yo\

The last constant §Z}¥ is not independent but is a linear combination of §Z; and §ZZ (see
Appendix A}. It is given here for completeness since we will need it in further course. As an
abbreviation we have introduced the notations

sw = sinfyw, cw = cosfy. {3.18)

For the fermion fields we obtain for the doublet renormalization constants § Z; and the singlet

renormalization constants § Zf in the Iy = —-1/2 states from (3.15):
§Zy = -Sp(m’) ~ m? [Sy(m?) + Sh(m?) + 284(m? )| - (3.19)
82 = -Zp(m?) - m? [E})(m.z_) + Zh(m?) + ZE'S(m?_)] |

The X, . are the invariant functions of (3.13), and ¥} denotes the derivative

8%s,..
ok

1.k =

Rearranging the constants in (3.19) by

52y = %(521, +627), 625 = %(521, - §23)
(3.19) can also be written as
§2y = —By(m?) - m? [Sy(m?) + 285(m? )]
62; = +EA(m_2_ ) (320)

In the case of leptons 62y in (3.19) renormalizes immediately also the neutrino propagator
with the consequence that its residue is different from 1 by the finite amount

T (0) + 82, (3.21)
Therefore, in external v lines a finite wave function renormalization factor

1
L+ 5(25(0) + 821) (3.22)
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has to be inserted.

For the right handed u-type quarks an additional condition has to be imposed in order to
fix 6Z%. We will treat the I3 = +1/2 quarks in a way that the residues for their left and right
handed propagators become equal. This looks somewhat arbitrary. In S matrix elements,

however, in the sum

this unsymmetric treatment is compensated by the corresponding renormalized 3-point ver-
tices.

3.6 Renormalized self energies and vertex corrections

After the determination of the renormalization constants in (3.16)-(3.19) we are now able to
write down the final form for the renormalized self energies and vertices as we will use them
in the subsequent applications to fermionic processes.

3.6.1 Vector boson self energies

The renormalized diagonal and non-diagonal self energies are:

SUEY) = TR - OV(0) -k (3.23)
7Y = D2k - ©2(0) ~ k? C_____;W_“"“"z (27 - 623)
SVZ(0)  cw [SME 6ME
— "er2.__E~,Z 2 )y _ =W z W ,
D)~ R0 4 (2T o (SRS

kY = DF(k?) - ME + SZF(K* — M2),

SW(k) = TV(AY) - 6ME + §ZW (K — ME)
with 622 and 6Z) from (3.17).

If “new physics” would be present in form of new particles which couple to the gauge
bosons but not directly to the external fermions in a 4-fermion process like ete™ — u*pu~
the formulae (3.23) are gereral enough that those effects can be built in. For a discussion of
new physics effects we refer to [17,18] and the work quoted therein.
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3.6.2 Vertex corrections-

The electromagnetic vertex for on-shell fermions

For general fermions f (but f # t}, with momenta p and ¢ the unrenormalized contribution
to the electromagnetic vertex I, is given by the sum of the diagrams in Figure 3.6, denoted
by A,: _ .

I (k*) = ~ie Qv — deAY (3.24)

with (k* = (p - ¢)*)

v Vi 12 vfr1.2 F}"v;(kz)
AV =  AV(E®) — v AR (K + (p+ @) ——

o 15712
= [AFO + B0 - s AT+ FF Y] + 4+ @ LD (5.05)

In (3.25) the finite form factors Fy, 4 have been split off which fulfill the relations

FV,A(O) = 0. (3.26)

The condition of charge renormalization can be formulated as a condition for the vector
part A} (0) of the electron vertex correction: 3
452, —1 £77(0)

— AY(O §7Z5 §Z7 — 627 = 0. 3.27
v(0)+ 862y + 62y Zz+4SWCW M2 (3.27)

which fixes the charge renormalization constant §Z; in the counter term.

The validity of the U(1)y Ward identity, which is formally identical to the QED Ward
identity [61], yields the following relation between the field and coupling renormalization

constants for the U(1) part:
§28 = s2F .

Using the appendix formula (A.1) together with the structure of the mixing counter term in
(A.2) and the condition 72(0) = 0 the following identity for the photon field and charge
renormalization constants is obtained:

sw £72(0)

627 — 823 = — -0 i (3.28)
Z

This identity shows that the charge renormalization constant §Z, although fixed in terms of
an electron specific process, is general and fermion independent. In combination with (3.27)
we obtain:

1 2%(0)
— AY Ze = . .
Ay (0) + éZ5 Teew M3 (3.29)

The r.h.s. is a universal quantity which does not depend on the specific fermion type of the
vertex. It has its origin in the non-abelian boson loops in the v — Z mixing, Figure 3.2. The

3The form (3.27) follows from Appendix A, eqs. (A.2) and {A.7), together with the mixing condition £7Z(0) =
0
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virtual photon and Z exchanges in the vertex corrections, Figure 3.6, are cancelled by the
corresponding contributions in the on-shell electron self energy, Figure 3.5. Individually they
depend on the fermion type.

The generalization of the QED Ward identity to the non-abelian case leads to further
identities [45] like the following one:

— K (A7(R7) + AT (K)) = B(p) - T*(q) - (3.30)

Evaluation of (3.30) for the vector part and writing the electromagnetic neutrino vertex as

AL = 7l = 7s) A (K?) | (3.31)
yields with help of (3.27):
. 1 T%(0)
AY™(8) — =0. .
©) ~ Tower = (3.32)

Evaluating the axial vector part of (3.30) we find:

1 2%(0) _

AY(0) - 62
A( ) A + 4S‘VCW M%

0.  (3.33)

A look into Appendix A.3 shows us that the Lh.s are the renormalized neutrino and axial
electron form factors. The relations (3.32,33) state that the renormalized electromagnetic
axial current of the electron and the electromagnetic neutrino current vanish for k? = 0, i.e
for real photons.

The renormalized vector and axial vector form factors for the electron and the neutrino
electromagnetic current consist therefore of the contributions from the diagrams in Figure
3.6 (Higgs contributions can be neglected) which have been subtracted at the real photon
momentum squared k* = 0.

The diagram with the non-abelian 3-boson coupling in Figure 3.6 is universal, i.e. inde-
pendent of the specific fermions. All fermion dependences in A}/,(0) are compensated by the
62y 4 for the corresponding fermions. As a consequence, all electromagnetic vertex correc-
tions, together with the finite Z factors for external u-type quarks, can be written in terms
of renormalized vector and axial vector form factors *

P = —ie Qg — iev, (FY(R?) - s FF/ (k")) (3.34)

which vanish for real photons:
Fyy(0) = 0. (3.35)

The analytical expressions for the form factors are listed in Appendix C. Note that their
light fermion approximation (f # b,t) deviate from the form given in [45}: the finite external
wave function repormalization for the I; = +1/2 fermions which always go together with the
corresponding vertex corrections are included in the formulae of this appendix.

Heavy fermions were not accounted for in [45].

4the magnetic form factors do not play a role for light fermions in high k? processes and we will skip them
here

32



The weak neutral current vertex

Since we haye exhausted meanwhile our-store of renormalization constants the form of all
other vertex corrections is already fixed. ' :

The condition for the renormalized v — Z mixing
272(0) = 0 (3.36)

in connection with the form of the mixing counter term (A.2) in Appendix A determines the
‘weak neutral current renormalization constant§Z7:

ek — s% 72(0)

ZZ_ ZZ — Y o_ Y o
627 - 82§ = 82]-62] - LW p

ew T77(0)

3.37

Quite in analogy to the electromagnetic vertex renormalization this process independent term
renormalizes the non-abelian vertex contributions in the diagrams of Figure 3.6, whereas
the fermion type dependent contributions are renormalized by the external fermion legs.
As 8 consequence, also the renormalized neutral current vertices have the same structure
as the electromagnetic ones; their form factors vanish at k* = 0 if external wave function
renormalization is included:

P2 = dem () — ay ) + sem (FF/(R7) - % FY/ (k) (3.38)

with
FE(0)= F¥(0) = 0. (3.39)

The form factors can also be found in Appendix C (the remark for the electromagnetic vertex
on p. 32 applies also here).

In summary, the result of our renormalization procedure can be converted into a simple
recipe for obtaining the renormalized v and Z vector and axial vector vertices including
external finite wave function renormalization (for light fermions f # b,¢)) :

Calculate the sum of all contributing one-loop vertex diagrams and subtract its value at
the momentum transfer k? = 0.

The vertex corrections typically amount to the order of 1%. In applications where only
a few percent accuracy is required it is therefore justified to restrict oneself to the 2-point
functions if a simplified discussion is wanted.

Concluding this section, it should be noted that the renormalized vertex corrections can
be obtained by a straight-forward evaluation of the renormalization conditions in section 3.5
without relying explicitly on Ward identities. The utilization of Ward identities, however, is
helpful for a' deeper understanding and for cross checking the results.
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Chapter 4

Input parameters

The electroweak part of 4-fermion processes can be described with help of essentially three
parameters (besides the Higgs and fermion masses). These parameters have been chosen to
be o and My, Mz because the renormalization conditions get a simple form and the physical
transparency is most obvious. The Z mass will be measured with an accuracy of £50 MeV,
probably £20 MeV [11,14] at the e*e~ colliders LEP and SLC. On the other hand, the W
mass Mw will not be known as precisely as to make the induced uncertainty in the radiative
corrections negligible (AMy = +100 MeV with LEP 200 [12]).

There is, however, a further well measured quantity: the muon lifetime 7, resp. the
effective Fermi coupling constant G, which can be used to calculate My when Mz has been
specified. This requires the consideration of the radiative corrections to the muon decay
process in the standard model. For concrete calculations we choose the ’t Hooft-Feynman

gauge.

4.1 Radiative corrections to the muon lifetime

The lowest order matrix element for 4~ — v,D.¢” in the Standard Model is represented by
the W exchange diagram

'L" > » VR

and reads (neglecting terms ~ m? /M. ):

1e?

Mp = = @ y,(1 = vsJu, - Ty (1 = 75)0), - 4.1
2= g am, et T B sk (4.1)

{4.1) leads to the Born formula for the p lifetime

om® 8m? .
1o m () sn (42
TO 3847r AI“J&%"

H
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which, if identified with the Fermi model result

1 Gim® 8m? '
— = ;‘(1— ";e)  (43)
T 1927 m; :
vields the tree level relation
T
My sty = : 4.4
The virtual QED correction in the Fermi model
(4.5)
K >
together with the real bremsstrahlung corrections integrated over the full phase space
4.6)
y o
/ i A
» w / —
— . \_'é » % vg
e e
Y
yield (4.3) times a QED correction factor [9)
rmz a 25
CEgpi =14 5 (Z - w2) . (4.7)

In the standard model the virtual photon correction corresponding to (4.5) is a box dia-
granm. ‘

ML, = (4.8)

T
~
3

4
b

4
<

Va.

n
]
3
<
A
4
y'y

With the photon mass A as an infrared regularization this box graph for momentum transfer

<« M{- can be written in such a way that the virtual QED correction (4.5) of the effective
Fermi model is split off:
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w e glog e 4 2
— 2log 3 2log 3 +2) + (4.9)

The split off point-like term combines with the real bremsstrahlung diagrams to give the QED
" correction factor (4.7) to the decay width formula 77

The left-over term in (4.9), together with the weak vertex corrections

A 4
-~

Mg - (A% + AWw 4 252 — 252} + 820 + §2{)

= Mp- (A" £ A"m) (4.10)
where
, 3(3c2; —1) Mw m?
AW & )2%aw T 1) W My
4ﬂ{ 25, 2log ~y + 2log 32
7 3
+ (1 T a.z + T)logcg{f} , {=ep , (4.11)
23“1 Sw

with the UV finite v wave function renormalization factors according to (3.22)

e - - Ve * ¢ @_"—‘—}é ,

[

1 v v
= Msp- 3 (B(0) + 825 + B7(0) + 62¢)
a 1 m2 m? mi m?
= c— .z - —& Zf _log —2 — 2]og £ 412
Mp ypn (9 log A3 2log % og Y 8%y ) > | ( )

36



and with the massive box diagrams

W r4

« 5 5
= Mg — [1 = — + —— ) log(c? 4.13
REYAREINEL s .

yields a UV and IR finite virtual correction term

(43 7 - 432r
by = 8 + ——2 log e} 4.14
. v 47‘_3%‘/ ( + 28%4; ogCW) ( )

to the Born matrix element:

MVzMB-(l +6v) (4.15)

Summing up the irreducible W self energy to all orders

o\/\-—@\f\f— L ) MW’ -fe P
W W w W W

according to the solution of Dyson’s equation in the one-loop approximation, leads to the
following replacement in the W propagator:

1 1 1 1
— o ~ - . —
B =Mk - ME 4 EW(R?) M - 2RO

(4.16)

With (4.17) and (4.18) the matrix element for p decay with weak corrections can be written

as
14y 1 -
r = e 2y . 4.1
My = Mp N 10 BT R (4.17)
MW
*  where - \
E¥(0) a ( 7 — 45},
Ar = + 6+ ———— logek, | . (4.18)
% .A’IEV 47"3%‘/ 25%1; W



This yields the following modification of the tree level formula {2.32):

e 1 _ (37.281 GeV)?
V2G, 1-Ar  1-Ar

M}, sy = (4.19)

which was derived first by Sirlin [21].

The geometrical summation (4.17) corresponds to the summation of the leading logarithms
according to the renormalization group [20]. Therefore, the leading logarithmic terms

2
My
2

mf

~ o log™

coming from the light fermion loops are contained to all orders in the form (4.19).

Through % which gets loop contributions from all particles of the model (see Figure 3.4)
Ar is a guantity depending on the full parameter set (3.6). Together with the definition (3.7)
of sin’ @ in terms of the boson masses the following relation equivalent to (4.19)

M2 T 1
My 1-0) = : 4.2
v ( M% \/EG;_; 1 - AT‘((X,Mw,Mz,MH,mg) ( 0)

plays a central role in the discussion of the electroweak parameters. Its importance is twofold:

¢ It isinteresting by itself since it allows a comparison of the My — Mz —sin® §w correlation
with the experimental data.

¢ It provides a value for Mw (after specifying the other masses) as well as for sin® fyy,
which can be used as numerical input parameters for the calculations of other mea-
surable quantities of interest. This will largely be utilized in the applications of the
following sections.

Before entering into a quantitative analysis of (4.20) we have to discuss the treatment of the
input concerned with the fermionic contributions to the weak radiative corrections.

4.2 Contributions from fermion loops

The closed fermion loop contributions to the transverse components of the vector boson self
energies constitute a gauge invariant subset of the one-loop radiative corrections and, in
general, also the dominating part. * In this section we want to give a list of approximations
to the relatively involved exact expressions in (3.23) and Appendix B which are valid in the
light fermion limit | &% |> m}, f # t, and discuss their asymptotic behaviour with respect to
a heavy top quark. These simplified approximate formulae will allow a better understanding
of the role of the fermion contributions.

1The fermion loop coniributions have been treated seperately alse in two recent papers [62] in order to
illustrate the size of the left-over terms of the full radiative corrections

38



4.2.1 Photon self energy
The fermionic part of the renormalized v self energy in (3.23)

em(k?) = K70}, (K)) + iIm ], (4.21)
at large values k? > m} can be written as follows (real part only):
) = 2iygr(io ’°2+0( ™)
ferm - 4 3 = 7 3 og
top(kz) (4.22)
where the sum extends over all flavor and color indices (except ).
For large m, the top term
o 2m? 1
n;p_A%-ggqf{Fw{nuﬁm)(1+-£§)-5} {4.23}

with Nc = 3 and F from Appendix B tends to zero:

a k2
C .

1'—‘I‘r
top ¥ 30 Bm?

Hence, heavy fermions decouple from the photon.

4.2.2 Z and W self energies

The fermionic part of the renormalized Z self energy in (3.23) can be separated in the following
way:

$Z_ (k) = ferm(k)—ReZ‘?e,m( M32) (4.24)
+(k* — M3){~11},,,.(0)

+ C%V - S%V Re ( ferm(MZ) Eferm('z\/flzf"))}

2
Sw Mz Mw

vielding the real part for | k% |> mf, :

us,..(k*) = W (4.25)
o 2 (9 M§ - 5W
= A | 1
ar #t{ @ (3 8 m§ + 65ty ogcw
4.5 5 k? | & |
—5 (it ad) o 3 8 312
+ 17 (k%) .
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Asymptotically, for large m, we have as the leading top term:

3(ck, — s%) m?
2 ~ 22w —Sw) T 4.26
tor ™ gg 43y M, ( )

In a similar way we can write for the fermionic contribution to the renormalized W self energy
n (3.23):
jerm(k ) J’erm(kz) Re 2;l;--m M‘le) (4'27)
+ (k2 - A'IW) { H}erm( )

( fe,;iMz) E}V;;jlw))}

+C%VR
-5W

The quantity of main interest for our purposes is

ferm(O)
M‘%"

which enters the radiative correction Ar in (4.18):

erm( )
“eml S = (D) fem (4.28)
w
@ MZ 5 3, — sk )
= — log =2 — 2| - T TW,
4r f#{sQf (og 3) 6sh, oW
+ (Ar)top .

In the asymptotic region for large m, the leading top term is given by

o 3¢k, m?
Ar)op 5o —— —W . L 4.29
(A7 )iop am 453, ME ( )

The quadratic rise of the m, term is responsible for the large top mass dependent radiative
corrections in case of a heavy top quark (see section 4.3).
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4.2.3 The light quark contributions

In all three expressions (4.22,25,28) the leading logarithms from the light fermions enter in

terms of the combination A2
5
z
Z 37rQ'f ( j 3)

which represents the photon vacuum polarization at k? = M2. These large logarithmic terms
constitute in general the dominant contributions to the self energies resp. to Ar. Their
origin is the appearance of two different mass scales where the boson masses and the electric
charge have been renormalized. According to the charge renormalization the photon vacuum
polarization

I"(0) = —6Z7 C o (4.30)

has to be evaluated at the exceptional momentum %? = 0. This includes light quark contri-
butions in a region where non-perturbative strong interaction effects cannot be ignored.

Since reliable theoretical predictions are not available one has to use experimental data
for the evaluation of the hadronic part in the vacuum polarization. Instead of a direct
perturbative evaluation of {4.30) in terms of quark loops a better strategy is to replace the
quantity II]_{0) by

nea(0) = Rellj ,(Mz) + I} 4(0) - Rell} 4(M3)

= Rell},o(M3) — Re Iy, (M3) (4.31)

where I1},o( M%) can be evaluated perturbatively, and the real part of the renormalized vac-
uum polarization I17 satisfies the dispersion relation

A a oo R(s")
Rell}  (s) = — ’ :
enhad(s) 3 $ 4m2 ds sr(sf — 5 — 26) (4 32)
with . .
R(s) = o(ete” ~+ 4* — hadrons) (4.33)

olete” = y* — putu~)
as a fairly well known experimental quantity as input.

By this treatment all terms in IIZ and Ar which are singular in the quark masses are
cancelled, and the large log terms are everywhere replaced by the dispersion integral (4.32).
The left over terms of order m}/M% vanish in the limit m; — 0 and do not play a practical

role for the light quarks. For b and ¢ quarks they are treated perturbatively with free quark
fields.

The evaluation of the integral (4.32) for five flavors using e*e~ data up to an energy
Ey = 40 GeV and perturbative field theory for the tail E > Ej has recently been updated by
Jegerlehner [63] yielding (for Mz = 93 GeV):

ReI)(M2) = ~0.0286 + 0.0007 . (4.34)

The error is due to the experimental error of the e*¢~ data, mainly in the region below the
T resonance. Earlier evaluations of (4.32) based on the same method have been performed
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by various authors [64]. The improvement of the result (4.34) is due to the experimental
improvement in the ete™ data at high energies from PETRA and PEP.

An independent analysis of (4.32) by evaluating the low energy contnbutlons at a spacelike
momentum k? = —79 GeV? [65] yields a slightly different result

Re I}/ (M2) = —0.0274 + 0.0013 . . (4.35)

Quite recently, a re-evaluation of (4.32) By Burckhard et al. [66] yields the value —0.0288 +
0.0009, which is quite close to the result of [63].

Around the weak boson mass scale the integral (4.32) can sufficiently well be described in
analytical form by an expression which is equivalent to the result of a perturbative calculation
with quark loop diagrams. The quark mass parameters in that approach are effective quark
masses adjusted to fit the numerical value of the dispersion integral (4.32} and have no further
physical significance. The values which reproduce the result in (4.34) are:

m, = mg = 0.041 GeV (4.36}
m, = 0.15GeV, m,=1.5GeV, my =4.5GeV .

The choice of effective quark masses includes QCD effects in the real parts of the vacuum
polarization functions automatically. In the imaginary part QCD effects from the 2-loop

diagrams

have to be added (see sections 5 and 6}.

4.3 The My — M, — sin® 6y correlation

After My has been specified the relation (4.20) can formally be solved to give a value for My

1 44
2 _ af2 . 2 - = 37
M, = M} 2(1+ 1 M§(1—Ar)) s (4.37)
as well as for sin® Oy
ME 1 44 :

A R e 1 B 4.8
sw=1-317 =3 ( \/1 MZ(1 — Ar) ) (5%

with 4= o




Since Ar is a function of My itself these equations can be solved by iteration. For the
calculation of Ar also some values for the until now unknown parameters m, and My have
to be specified. For m, = 35 GeV, My = 100 GeV, Mz = 93 GeV, and the input (4.34) for
the hadronic vacuum polarization we find -

Ar = 0.0709 & 0.0007 (4.39)
in full agreement with (63] 2.
Table 4.1 W mass and sin? fy from (4.20) for various Z, Higgs, and top masses.
M-Higgs = 10 100 1000 Gev

M-Z m—top sin®*2 MW sint*2 MW sine*2 MW
90.  50. 0.2429 78.3% 0.2445 78.23 0.2477 78.06
90. 100. 0.2376  78.59 0.2392  78.50 0.2425 78.33
90. 150. 0.2316  78.89 0.2333  78.81 0.2366 78.63
80. 200. 0.2239  79.29 0.2256 79.20 0.2291 79.02

90, 230. 0.2181 79.58 0.2199  79.49 0.2235 79.31
91.  50. 0.2354 79.57 0.2370  79.49 0.2401  79.33
91, 100. 0.2301 79.85 0.2317  79.77 0.2349  79.60
91. 150. 0.2241  B0.16 0.2257 80.07 0.2290  79.90
91, 200. 0.2164  B0.56 0.2181  80.47 0.2215 80.29
9t. 230. 0.2106  80.85 0.2123 B80.76 0.2158 80.58
92.  50. 0.2283 B80.82 0.2298 80.74 0.2329 80.58
92. 100. 0.2230 81.09 0.2246  81.01 0.2277 80.85
92, 150. 0.2170  81.41 0.2186  81.33 0.2218 81.16
92, 200. 0.2093  81.81 0.2109  81.72 0.2143  81.55
92. 230. 0.2035 82.11 0.2052 82.02 0.2086 81.84
93. 50. 0.2216  82.05 0.2231  81.97 0.2261 81.81
93. 100. 0.2184 82.33 0.217¢ 82.25 0.2210 B2.08
93. 150. 0.2103  82.65 0.2119  82.56 0.2150 B82.40
93. 200. 0.2025 83.05 0.2042 82.97 0.2075 82.79
93. 230. 0.1967 83.35 0.1984  83.27 0.2018  83.09
94.  50. 0.2153  83.27 0.2167 83.19 0.2197 83.03
94. 100. 0.2101 83.55 0.2116  83.47 0.2146  83.30
94. 150. 0.2033 83.87 0.2055 83.79 0.2086  83.62
g4, 200. 0.1962 B4.28 0.1978 B4.19 0.2010 B84.02
94. 230. 0.1903 B4.58 0.1920 84.50 0.1953  84.32
95. 50. 0.2092 84.48 0.2107  84.40 0.2136 B4.24
95. 100. 0.2041 84.75 0.2056  84.67 0.2086  84.51
95. 150. 0.1979  85.08 0.1994 85.00 0.2025 B84.84
95. 200. 0.1901  85.49 0.1917  85.41 0.1949 85,24
95. 230. 0.1842  85.80 0.1859  85.72 0.1892 B5.54

ZNote that the final value Ar = 0.0711 given in [63] is an average over different renormalization schemes
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Figure 4.1 : The quantity Ar in (4.18) for Mz = 92 GeV and various My (in GeV).
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The value for Ar changes if M, My, m, are varied, and so do the corresponding values
for Mw and sin® @y . For a range of input parameters which is of current interest the values
for My and sin® 6y are put together in Table 4.1. The quantity Ar is plotted in Figure 4.1.

The strong dependence on a large top mass according to the quadratically rising term
(4.30) in Ar can be utilized to derive an upper limit on m, from the present experimental
values for My and Mz [16]: m, < 185GeV at the 1-0 level depending slightly on the Higgs
mass. In combination with the information from neutral current neutrino data this limit can
be improved [67,68]:

m, < 200 Gel™

at the 90% confidence level (depending also on My ).

Since the top contribution in Ar is negative it tends to cancel the large term from the
light fermions with increasing n;. Around m,; = 230 GeV the radiative correction

Ar — 0
and the tree level formulae (2.34-35) become valid.
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The variation with the Higgs mass is much less striking. Changing My between 10 GeV
and 1 TeV the value for sin’#y varies by 0.005, which matches the accuracy obtained in
neutrino scattering experiments (Asin’ 8w = 0.005) and the aimed accuracy from LEP 200
via the measurement of My. Estimates for the uncertainties of the various experimental
determinations of sin®§y are put together in Table 4.2.

. Table 4.2

Experiment Asin? 6w
vN 0.005

ve (CHARM II) 0.005
My, Mz (pp) 0.003
G,, My (LEP) 0.0005

App{ptp~) (LEP)  0.001
Arr (LEP) 0.0003
My (LEP 200) 0.0006

e — e e w— o aem wm

Theory (hadronic) 0.0002

Our values in Table 4.1 arein complete agreement with the corresponding results of Jegerlehner
[63]. The values obtained for sin’ fy by Lynn and Stuart [33] are systematically lower by an
amount of 0.0005. This is due to the slightly smaller value (4.35) for the hadronic QED part
of Ar, which has been used as input in [33]. Adjusting this hadronic term numerically (by an
additive model independent constant) yields also full agreement between the two calculations.
Further checks of these results were performed by Bardin et al. [69] who also find quantitative
agreement after adapting the hadronic input.



4.4 Theoretical uncertainties

As far as the standard model parameters m,, My will not be known within a reasonably
small range the induced uncertainties will obscure the theoretical predictions for My resp.
sin? G in terms of the precisely known quantities o, G, and (with LEP/SLC) M. But in
principle these errors can be reduced by a discovery of the corresponding particles. Otherwise
precision measurements can be used to narrow down the allowed mass range of the outstanding
particles,

The error from the hadronic contribution to the vacuum polarization will not improve

without higher precision measurements of o(e* e~ — hadrons) in the energy range below My

[63]. This error does not exceed the uncertainty expected in the high precision experiments
at LEP and SLC.

In addition, a further theoretical uncertainty is due to the unknown effects of higher orders
in perturbation theory. Formally, an uncertainty §(Ar) 2 (Ar)? = 0.005 would be estimated
from the unknown 2-loop contribution in Ar. However, according to the renormalization
group {20] the geometrically summed expression

1
1+ Ar 4. =
"t 1-— Ar

as used in the applications of the previous sections incorporates already all the leading loga-

rithmic terms of order ~ a"log™ m¢/Mz for n > 2. These terms, which describe the running
of o in QED

S S
a(p?)  of0)

constitute the dominant part of the correction factor

1 ) m? .
— log — 4.40

1
1-Ar’
This leads to the simple interpretation
o(0)
A = ow mo(u’ = My)

i.e. the leading logarithms can be absorbed in a quantity a(Af§,) according to (4.40).

Since these leading terms are independent of the electroweak model (and therefore renoz-
malization scheme independent) higher order uncertainties come from those terms not con--
tained in {4.40) which depend explicitly on the chosen renormalization conditions. The
renormalization scheme dependence of the one-loop terms in Ar (not those in a{u?)) can be
used to estimate the higher order uncertainty.

An uncertainty of Ar can be related to a corresponding one in My, as derived from (4.37):
61‘\{;1/ . S%v 5(&7‘)

M“: o C%‘;—S%‘: 2(1—&1’) )

Applying two different renormalization schemes for fixing the finite parts of the renormaliza-

tion constants [70] ® we can estimate the higher order uncertainty in terms of a shift in the
W mass, which amounts to (maximum}

Sy < 20 MeV’

(4.41)

3the on-shell scheme as explained in section 3 and a scheme where &% is directly renormalized by 7,
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or, in terms of Ar:

§(Ar) < 0.0011 .

By investigation of 4 different renormalization schemes Jegerlehner [71] obtains a similar
result:
§(Ar) ~ 0.0011 .

For realistic estimates this error has to be considered in addition to the error in (4.34)
from the experimental data. If we assume that the errors can be added in quadrature we
obtain

§(Ar) = 0.0013 (4.42)

which we will consider as a reasonable value for the theoretical uncertainty in the My — My —
sin® @ correlation.

Sirlin [72] has estimated the effects coming from the light fermion o”log Mz /m terms in
Ar: converted to the W mass shift they are of order 1 MeV.

From the fermion sector large radiative correction effects occur at the one-loop level

in the case of a large mass splitting between the members of a SU(2) multiplet [73] (e.g.

for m; >» my) and one might worry about large next order contributions. Van der Bij and

Hoogeveen [74] have calculated the 2-loop heavy fermion effects to the p-parameter p = 14+ Ap
with -y -

Ap = B0 2 (0) . (4.43)

In the heavy top limit the leading term is given by

210 — 7?2 m, \ 4
AP(Z)Z(E) 8 3(M:.,)

The corresponding contribution to Ar can be roughly estimated in terms of

2
[
P N
w

which is related to a shift in sin® 6y not negligible for very large m,. For m, < 200 GeV,
favored by present data {67,68] those effects are insignificant.

Effects of a heavy Higgs particle at the one-loop level are much smaller in size since the
dependence on My is only logarithmic [75]. Although at the 2-loop level a term ~ M% shows
up in Ap its coefficient is small such that it is not significant for Higgs masses below 1 TeV
[76].



Chapter 5
The width of the Z boson

One of the basic measurements at the near future colliders LEP and SLC will be the determi-
nation of the mass Mz and the width I'z of the weak neutral gauge boson with an accuracy
of 50 MeV, probably 20 MeV {11,14]. This requires an adequate theoretical accuracy on '
of about 10 MeV.

For this purpose it is necessary to treat next order corrections to the Z width. They are
of twofold importance:

e For precision measurements of Mz it has to be considered that bremsstrahlung emission
from the initial state influences the Z resonance line shape significantly. The magnitude
of this peak deformation depends on the precise value of I'z; also its s-dependence is of
importance, which will be discussed later in chapter 6.

¢ The partial widths for Z — ff will allow one to study the weak coupling constants for
the various types of fermions at the level of guantum corrections.

Calculations of one-loop corrections to Z — ff which mean 2-loop corrections to the
imaginary part of ©Z have been performed for the leptonic widths in [71,77] and also for
Z — qg in [39,40,78]. In [39,40] the accurate discussion of the top quark influence on the
Z — bb decays has been performed. The results of various independent calculations agree
pretty well within 0.5 MeV.

Electroweak corrections to open top final states in case of m; < Mz /2, a possibility
which is experimentally not completely ruled out, have been considered in [79]. They are
less important in view of the uncertainties from the top mass in the phase space factors and
from large QCD corrections near threshold [80]. Therefore here we want to study the case
my > Mg /2.

5.1 Lowest order results

In lowest order the Z propagator has the Breit-Wigner form

1

. 5.1
s — M2 + iMzT (8-1)

Dy(s) =
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The lowest order total width I'} is related to the one-loop self energy %(s) of the Z boson
by

MzTl% =Im¥2%(s = M2). ‘ (5.2)
It can be written as the sum of the partial fermionic decay widths I‘%(ff) with m; <'Mz/2 :
Tz =2 T2(ff). (5.3)

b

These partial widths can be expressed in terms of the vector and axial vector coupling con-
stants (2.27) of the fermion f to the Z as follows:

= o

r5(ff) = N§ 3 Mz /1~ duy (031 + 2p5) + 25(1 ~ 4py)) (5.4)
with Né = 3 for quarks, Né = 1 for leptons, and
2
My

= —= 5.5

For actual calculations the dependence on s¥, resp. Mw is eliminated by utilizing eq. (4.20),
as discussed ift Section 4.3.

Making use of the relations (2.32) and (2.33) we can write down another possible tree
level representation of the partial decay width

o G, M
T(fF) = N& 247“/% VE— 4y (1—4py + (20 - 4Qssh ) (1 +20y)) (5.6)

leading to the Born total width in the G, representation:

7= _T7(ff}. (5.7)

f

s |

5.2 QCD corrections

QCD corrections to the hadronic partial widths for Z — ¢g will not be explicitly incorporated
in the numerical results given below in Table 5.1-4. They can easily be included by multiplying
each electroweak partial width I'...(¢7) by the QCD correction factor [81,82] yielding in the
massless quark approximation:
a (M2 (M2 ?
rew+QC-‘D(qg) = Few(QQ) ) {1 + Lz‘")‘ + (‘_(ﬂ_""g)' (198 - 01151’?]) (58)

i
with ny = number of flavors.

Recently also the next order term has been calculated [83] which is even larger than the
0(a?) term. For five flavors it is given by

a,\?
+ 64.835 (—-—) .
T
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However, both second and third order terms are not of numerical significance for our aimed
accuracy.

For the following discussion in Section 6 this QCD part will always be included with the

following value for a,:
o (M2) =0.1240.02, (5.9)

according to (84]
o, ((34GeV)?) = 0.138 + 0.023 . | (5.10)

5.3 Electroweak corrections

The partial widths (5.4) in lowest order are influenced by next order corrections in terms of
the vector boson 2-point functions, external wave function renormalization of the fermions,
and irreducible vertex corrections.

The Z propagator (5.1) is modified replacing the constant width term by the renormalized
Z boson self energy %7(s) from (8.23):

1

Dz(s) = - =
z(s) s — M% 4+ ReZ?(s) + ¢ ImE4(s)

(5.11)

where Re $Z(M3%) = 0 due to the on-shell renormalization condition (3.14) for the Z boson.
Around the Z pole approximately a Breit-Wigner form

1 1
-DZ(‘S) = S ' ; 1) (5'12)
1+ T2(M3) s— M3 +iMpT
is recovered by a re-definition of the total width
.o
= Ly (5.13)
1+ IIZ(M2)
with I'} from (5.3,4) and
. nZ
f12(M2) = af;e (M2). (5.14)
s

This global normalization (5.13) corresponds to the wave function renormalization of the
Z line in the decay diagrams 5.1. For each partial width this means that (5.4) has to be
multiplied by a common factor:

- - N ~1
rOF) =T3(FH) - (1 +07(M3)) (5.15)
Furthermore, the relation (4.20) can be utilized in order to re-express (5.15) in terms of the

Fermi constant G, yielding:

1-Ar

e (5.16)
1+ T2(M3)

rO(fF) =TY(fF)
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with T'3(ff) from (5.6).

Since the large contributions from the light fermions

2

I M
& porml]

in Ar and in T%(M2) cancel in the expression (5.16) (see eq.s (4.25) and (4.28) ), P9 turns
out to be a sufficiently good approximation (for ms < 100 GeV) including already the major
part of the one-loop corrections. ?

In addition to (5.16) we have to incorporate the -Z mixing contribution and the vertex
corrections together with the external fermion self energies (Figures 3.5,6). Since we do not
consider radiative corrections to Z — #f we can neglect all terms of order mf/Mr2 (f #t)
in the loop expressions. This means that also Higgs contributions in vertex and fermion self
energy diagrams are neglected, except for f = b.

In case of the Z — bb decay channel the full top mass dependence coming from the
virtual ¢ quarks in Figures 3.5,6 is included. Due to the underlying 't Hooft-Feynman gauge

also “unphysical” charged Higgs bosons enter the diagrams as virtual states with poles at
k? = M.

The final result for the partial width can be written in the following way:

T(ff) = (TY(f) + ATH(£F)) - (1 + H2(M3)) ™ (5.17)
with I'S(ff) from (5.4), and

f 2

ATz(ff) = Ng 5 o Mz {vs (Re FY (M) + QI2(M2)) + oy ReFJ'(M%)} . (5.18)

The v-Z mixing term is related to the mixing energy £77 eq. (3.23) :
I"?(s) = Re Eﬁz(s)/s (5.19}

The finite vector and axial vector form factors F, 5 % which include the fermion wave function
renormalization factors are listed in the Appendix C for the various types of fermions.

Finally we have to include the QED corrections (Figure 5.2) due to virtual photon ex-
change and real bremsstrahlung integrated over the full phase space. For light final fermions
the result can be simply obtained [85] by multiplying (5.17) with the correction factor 1+6£ED,

with X
(81
6l on = — Q2. 5.20
QED = I Qy { }

Its relative influence is < 0.17%.

'Othets than Z — ff decay channels in higher otder of the coupling constant are very small [86], for a light -
Higgs about 5 MeV from Z — Hff [87)



Figure 5.1 Non-QED contributions to the partial decay widths I'z(ff)
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5.4 Results and discussion

Besides the quantities o, G,,, Mz, which are sufficient to determine I'z at the tree level, the
unknown parameters My and m, enter the higher order result. For our numerical dxscuss1on
we proceed in the following way:

After specxfymg the values for Mz, My, m, we derive from (4.20) the corresponding value
for My rtesp. sin’ @y thus fixing the coupling constants vy, a; and the next order terms in
(5.17-18).

Table 5.1 contains the total electroweak Z width I'z (including QED corrections) for fixed
My = 100 GeV. The tree level values I'} correspond to the standard parametrization given
in (5.3-5), '} is the tree level width (5.7) in the G, representation. For top masses not too
large (m, < 100 GeV) T'} gives already an approximation which is good within 5 MeV. For
large top masses, however, I'} becomes insufficient as well; in some cases the parametrization

% in (5.4) is the better approximation.

Table 5.1 Total Z width, no QCD corrections.

M o my re g 1y

20. 50. 2.1305 2.2936 2.2948
90. 1toe. 2.1739 2.3056 2.3035
90. 200, 2.2966 2.3386 2.3275
91 50. 2.2176 2.3889 2.3898
91 100. 2.2648 2.6019 2.3993
91, 200, 2.3997 2.64379 2.4244
92. 50 2.3071 2.64869 2.4876
92. 100 c.35849 2.5010 2.4978
92, 200. 2.5062 2.5481 2.5240
93. 50 2.3992 2.58718 2.5831
23. 100. 2.4545 2.6029 2.5992
93. 290, 2.6161 2.6451 2.6264
94 50. 2.6938 2.6914 2.6911
94 100, 2.5531 2.7075 2.7033
94 200 2.7295 2.7531 2.7316
95, 50. 2.5910 2.7978 2.7968
95. 100. 2.6543 2.8149 2.8lp02
95. 200, 2.8464 2.8639 22,8396
96. 50, 2.6207 2.9070 2.9049
96. 100, 2.7581 2.9250 2.9199
96. 200, 2.9670 2.9776 2,9504
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92 GeV, My = 100

MH=100 MH=1000 GEV

MH=10

The variation with m, is strong enough that it has to be taken
Mr

MZ

The Higgs and top mass dependences of the total width T'z are put together in Table
Total Z width for 5 flavors without QCD corrections.

5.2 for various 7 masses.

into account if one wants a theoretical precision of 10 MeV, For example, the variation of my
Table 5.2

between 50 and 150 GeV leads to an increase in I'z by 21 MeV (for M
GeV). On the other hand, the variation of I'z with the Higgs mass remains smaller than 10

MeV.
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U QUARKS
100 10090

1000

100
MH=10

ELECTRON

10
1000

B QUARKS
101

1000

10

100

HEUTRIND

=17
1000

MH

100

HT
D QUARKS

Mz

HH=s10

Partial widths without QED and QCD corrections.

HADRONIC DECAY WIDTHS
HT

MZ -

Table 5.3
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The hadronic uncertainty from (4.34) is responsible for a hadronic uncertainty in I'y
amounting to (Al'z)nee = £0.6 MeV. The somewhat larger hadronic error in the photon
vacuum polarization of £0.0013, in the result (4.35) [65] results in (Al z)p00 = 31 MeV. In
both cases the uncertainty coming from the light quarks is of no practical importance for I'z.

Next we discuss the partial decay widths for Z — ff and their dependence on the model
parameters, listed in Table 5.3. Again, the variation with the Higgs mass is not very striking:
0.2 MeV for the leptonic channels, and somewhat more in the hadronic decay modes, but
still smaller than 1 MeV.

The dependence on m, is strongest in the Z — u@ and Z — dd decays. In the Z —
bb partial width, however, the top mass dependence is much weaker. The reason for this
behaviour is the additional top dependence of the vertex corrections in Z — bb which cancels
(partly) the top contributions in the gauge boson 2-point functions. This is exhibited in more
detail in Table 5.4 (for Mz = 92 GeV, My = 100 GeV):

The tree level approximations T}(ff) as defined in (5.6) are slightly different for d and
b quarks due to the finite m;. The determination of sin’fy by means of (4.20) and the
dependence of Ar on m, are responsible for the variation of T'$(ff) with the value of m,.
The weak corrections AT%**(ff) defined as

ATE(FF) = T2(f ) — T%(fF) (5.21)

with the corrected partial width T'z(ff) from (5.17) induce additional top quark contribu-
tions. Those entering via the Z-Z and Z-v propagators are identical for both d and b, whereas
the vertex and quark self energy diagrams.{Figures 3.5,6) yield different corrections for d and
b final states. For bb they tend to cancel the increase of the lowest order term for larger m,.

Table 5.4 Top dependence of the weak corrections to Z — bb, dd

\ weak g a
My 19(dd) Arg=*(dd) 'y (bb) AT (bb)
50 0.3784 0.0001 0.3768 -0.0002
100 0.3809 -0.0005 0.3773 -0.0020
158 0.3838 -0.0011 0.3801 ~0.0055
200 0.3875 -0.0017 0.3839 -0.0102
230 0.3904 -0.09021 0,3867 -0.0139
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Finally we want to compare our results with those of the other calculations by Wetzel |78]
and Akhundov et al [39]. Wetzel employs a different renormalization scheme ; therefore only
a comparison of the corrected values for I'z(f f) is meaningful. For Mz = 92 GeV, My = 100
GeV and m, = 40 GeV, as specified in [78], we find agreement within 0.5 MeV for the v, e, u,
and d partial widths. Heavy quarks are not discussed in detail in [78].

In order to make our results comparable with those of Akhundov et al [39], obtained in
the on-shell scheme and the unitary gauge, we have to put my = 0 in the tree level formula
and to adjust our value for the hadronic QED vacuum polarization in a way that it fits the
table for sin’ §y given by Lynn and Stuart [33] (since their hadronic part was adopted in
[39})-

Doing this, we find excellent agreement in all partial widths within 0.1 MeV, sometimes
0.2 MeV, for the whole range of the considered top and Higgs masses.

Concluding this section, our discussion of the Z width has shown that the electroweak
corrections play a role for precision experiments, in particular the top mass dependence. The
variation with the Higgs mass does not exceed the aimed experimental accuracy.

t
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Chapter 6
eTe~ annihilation into fermion pairs

In the near future measurements at the ete™ colliders LEP and SLC will determine the
properties of the Z boson (mass, width, coupling constants) with high accuracy. The basic
processes are the annihilation processes into lepton and quark pairs ete™ — ff, which are
described in lowest order by the photon and Z exchange diagrams.

The high precision tests of the standard model require the inclusion of the radiative cor-
rections for an adequate theoretical discussion. Moreover, the observation of new phenomena
from ideas beyond the standard model (“new physics”) would also be possible [17,18] which
makes a careful treatment of the radiative corrections in the minimal model necessary for
establishing a solid background. Since polarization effects play an essential role around the
Z peak [14] we will discuss the ete™ cross section including polarization of the incoming e*.

6.1 Cross section for polarized beams and lowest order
results

The degrees of longitudinal polarization of e are denoted by PF (P, = 1: right handed,
P; = —1: left handed, for both electron and positron), the degrees of transverse polariza-
tion by Pf. Since the transverse polarization is the “natural polarization” in a storage ring
we want to include this situation for completeness. The principle physical insight gained
from transverse polarization does not exceed that from unpolarized beams; information is
transfered from the polar angle to the azimuthal angle distributions. Measurements of az-
imuthal observables, however, are normally less sensitive to systematic uncertainties than
polar angle distributions or charge asymmetries which makes also the transverse polarization
an interesting and practically important tool.

Without neclecting terms from the final fermion mass m; the differential cross section can
be written in the following way, where the color factor N/ = 1 (leptons), N[ = 3 (quarks)
distinguishes between the final state fermions: (6 = £(c™, f), py=m}/s), s={p- +p)*)a

d 3 ) o
3% - Z_SN(J;,/l — 4y {(1 - P{ Py) Xy + (P} — P[) Xy + P}#P; Xr} (6.1)
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with

Xy = Gu(s)(1 + cos® 0) + 4y Gafs) sin® 8 + (/1 — 4uy Gs(s) - 2cos b (6.2)
Xy = Hi(s)}(1+cos’0) + 4u; Hy(s) sin® 0 + (/1 — 4py Ha(s) - 2cos 6
Xz = (1—4uy) [Fi(s) cos2¢ + Fy(s) sin2¢] sin’ @ .

The vector and axial vector coupling constants (2.27) and the propagator in the lowest order
Breit-Wigner approximation with I'} from (5.3)

8
8 — Mé +iMzI‘°z

xo($) = (6.3)

determine the functions in the expressions (6.2) as follows:

Gi(s) = QF — 2vvsQsRexo(s) + (vl + af)(v] + o] — psa}) [ xo(s) I© (6.4)
Ga(s) = Qf - 2v,QRexo(s) + (vl + al)v] | xo(s) I’

Gs(s) = —2a.a5Q;Rexo(s) + dv.acvsas | xo(s) |

Hy(s) = —2a.9;Q;Rexo(s) + 2v.a.(v} +af — ,u,faf,) | xo(s) 2
Hy(s) = —2a,v;Q;Rexo(s) + 2veaev§ | xo(s) |?

Hi(s) = —2v.a;Q; Rexo(s) + 2(v? + a’)vsa; | xo(s) {*

Fi(s) = QF — 2vvsQsRexols) + (0F — a){v} + a2) | xols) I?
Fy(s) = 2veae(v;+a§)ImX0(s)

6.2 General structure of radiative corrections

As indicated in the description of the on-shell renormalization scheme in section 3.2 the
one-loop corrections to the process ete™ — ff can be subdivided quite naturally into the
following subclasses:

¢ “QED corrections”, which consist of those diagrams with an extra photon added to the
Born diagrams either as a real bremsstrahlung photon or a virtual photon loop. They
are depicted in Figure 6.1. Although considered not very interesting with respect to
the underlying theory they are in general large at LEP energies and hence need a lot
of attention for practical purposes.

» “Weak corrections”, which collect all other one-loop diagrams: The subset of diagrams
which involve corrections to the vector boson propagators v, Z (Figure 6.2), the set of
vertex corrections (where the virtual photon contributions have been removed) and box
diagrams with two massive boson exchange (Figure 6.3).

The separation of the QED corrections is sensible since they form a gauge invariant subset
and depend on the details of the experiments via the cuts applied to the final state photon.
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Figure 6.1: - QED corrections to ete™ — ff
:Y;z v Z : : Y12 3y :
Figure 6.2: Propagator corrections to ete™ — ff
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Y, Z
Z, W
SN V—
iI
ilramere
Figure 6.3: Vertex corrections and box contributions to ete™ — ff
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Their proper treatment constitutes the link between data taking and physics analysis. The
infrared finite weak corrections are independent of experimental cuts; they include the more
subtle part of the electroweak theory beyond the tree level and are also sensitive to “new
physics” objects.

Due to the smallness of the electron mass the lowest order Higgs exchange diagram can
be neglected. For the same reason also diagrams with Higgs - gauge boson mixing and
box diagrams where one or both of the internal vector bosons of Figure 6.3 are replaced by
Higgs scalars are negligible; they are suppressed by at least a factor 2%~ The propagator
corrections, however, involve all particles of the model, in particular the as yet unknown
Higgs boson and the top quark, and thus depend on My and m,. For light final fermions
(f # b,t) the vertex corrections of Figure 6.3 contain only W and Z in virtual states. Vertex
corrections to heavy fermions depend also on the Higgs-fermion Yukawa couplings.

The tree level formulae of 6.1 are valid also for a ¢f final state. The complete treatment
of the radiative corrections for such a heavy fermion production process, however, is rather
lengthy and will therefore be presented elsewhere [88]. In the present article we want to
restrict ourselves to the situation where only the known fermions appear as external particles
for which the one-loop corrections can be cast into a compact and transparent form. Since
the my ternis give only a very small contribution already at the tree level we can neglect all
fermion mass effects in the next order vertex and box diagrams with two exceptions:

» mass terms from a virtual top quark are always treated without approximation in vertex
corrections involving the (¢,5) doublet and the WW box contribution for bb final states;

¢ in the QED corrections all mass terms (also from light fermions) are kept which would lead
to mass singularities for my — 0.

In this approximation the vertex corrections can be represented in terms of form factors
F{i SI)I (k?) for the vector and axial vector currents only. Also the box diagrams can be written
as a sum over terms like

(initial current) . (final current} - (formfactor).

where the currents have only vector and axial vector contributions, This simple structure
arises from helicity conservation at the vector boson - fermion vertices in the small mass limit.
It allows to express the corrected cross section in the same way as given in (6.1) and {6.2);
only the invariant functions in (6.2) which are not already suppressed by a front factor m%/s
have to be substituted by their corrected versions.

According to our general strategy outlined in section 3 all the ingredients in the cross
section (6.1) are expressed in terms of the physical masses. Once Mz will be known the
differential cross section and all derived observable quantities {total cross section, all kind of
asymmetries, ... ) are functions of My or synonymously of sin’ 8y (after specifying values
for My and m,). Those observables can therefore provide measurements of sin® 8y which
are supplementary to the determination from the low energy processes i decay and neutrino
scattering. In addition, the sin® f dependence of the e*e™ observables if formulated in terms
of sin? 8w, My, ..., is preserved also in the case that sin? fy is not only a convenient book-
keeping device but an independent parameter. Such a structure is encountered e.g. in a non-
minimal SU(2)xU(1) model with additional Higgs bosons in non-standard representations
with dimension > 3. This, however, under the assumption that the loop contributions are
dominated by the standard model radiative corrections and new bosons give only negligible
effects in the loop diagrams.
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On the other hand, if we take the minimal model seriously, all the neutral current cou-
pling constants (via sin? fw) and My are fixed after the other masses have been specified:
their values follow from the solution of the equations (4.37), (4.38), as done in section 4.3.
After inserting these values into {(6.1,2) the auxiliary quantity sin? §y has completely disap-
peared from the final result. Then the measurable quantities in ete~ — ff are predictions,
dependent on My and m, only {(assuming that My is well known). A possible mismatch
with experiment would become visible in a disagreement between data and these predictions
from My, m; within a reasonable range. Additional structures like non-standard Higgs rep-
resentations can be allowed for if the tight relations (4.37,38) are sofiened by means of the
replacement

Mz — \/f;MZ}

with a further independent parameter p.

6.3 The (v, Z) propagator

In lowest order, after diagonalization of the neutral boson mass matrix, the propagator matrix
is diagonal. But mixing due to quantum corrections prohibits the photon and Z boson from
propagating independently of each other in higher orders. Consequently, the propagator
of the v Z system has to be considered as a 2x2 matrix. The radiative corrections to the
propagator system can be obtained by inversion of the matrix (transverse parts only)

k? 4 B (k?) TE(k?) ) (6.5)

-1 .‘ .
(D) tJuv ( YR k? = M2+ 2E(k?)

with the 1-particle irreducible (1PI} renormalized self energies specified in (3.23) to one-loop
order, yielding:

) D, D -
Dpy = _zg_uy ( D.:z 5; ) (6.6)
where (s = k?)
1 -
‘D‘r‘(s) = - . i\‘.fz(s)z (6'()
s+ X(s) - = MI+EE(5)
1
DZ(S) = ~ ¢ 2 (6'8)
s — M} + 3%(s) — %‘—3—)
B8 (s
D z2(s) (s) (6.9)

s+ E(s)][s — M3 + B2(s)) — Bv7(s)

Obviously the matrix (6.5) can be diagonalized only for one specific value of k2. This has
been done by fixing the mixing counter term in such a way that (6.5) is diagonal for k* = 0
(Section 3.4).

Expansion in terms of the ¥’s allows to interpret (6.7-9) as a summation of the 1PI
contributions to the vector boson 2-point functions to all orders (see also the discussions in
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In the graphical representation the lines with the double-shaded blobs denote the full propa-
gators (6.7-9) and the single-shaded blobs the 1PI self energies; the dot at the lines indicates
that all the diagonal 1PI contributions to the v andZ propagators are included:

s A’ Y % +'W+V...
Y v v i 4 4

T Y

z Z Z Z z Z Z
In O(«a), with the leading log terms resummed to all orders, the propagators are simplified to
D, = _r (6.10)
s+ Xv(s)
D; = L
s — M3 + TZ(s)
1. 1
D,z = —~-%"%(s) -
s s — M2 + ilmZ2(s)
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The further approximaton of the Z propagator in (6.10)
Re £Z ~ 0, Im 2%(s) ~ Im S%(M2)

leads to the lowest order Breit-Wigner form

i
s — ME 4 i MT%

Dy(s) =

which has been used in the Born formulae (6.4).

Off resonance, in the continuum region, the approximation (6.10) is adequate. Around
the Z peak, however, (6.10) becomes insufficient:

1. The on-resonance value of the amplitude for e*e~ — ff in lowest order is of O(1) and
not of O(«) as in the continuum: The tree level width which is given by the imaginary
part of the one-loop Z self energy Im TZ(M2) cancels the coupling constants in the
numerator of the matrix element. For the next order corrections to the cross section
around the Z peak the O(a?) contributions to the Z width have to be included. One

- 2
part of them is given by the imaginary part of the (£7Z} term in (6.8).
g g

2. The real part of (272)2 in (6.8} gives a O(a®) correction to the resonance amplitude.
In a systematic expansion up to O(«) it would therefore not appear. A numerical
study shows that it is indeed negligible if the top quark is not too heavy (< 150 GeV).
For a large mass splitting in the (¢,5) doublet, however, the O(a®) term matches the
experimental accuracy aimed in LEP experiments. For practical reasons it is desirable
to have a handle on the effects induced in the physically interesting observables.

For an appropriate discussion in view of the questions raised above we proceed as follows:

Ad 1:
The resummed form (6.8) is still insufficient for the imaginary part of the Z propagator:

besides the reducible O(a?) term Im (ﬁ“fz )2 we need also the 2-loop irreducible part Imfl{zz )

of the diagonal Z self energy contributing to the O{a?) width as well. Both the reducible and
irreducible terms have been included in our discussion of the on-resonance Z width (s = M2)
in Section 5.3. Note that the s-dependence of the imaginary part is also significant: the

replacement : )
MzTz(M2) = /sTz(s) = Im B%(s)
causes a shift of the resonance peak on the energy scale of about 35 MeV [41,52] to lower
values.

Altogether, we have to replace the imaginary part of the denominator in (6.8) by the
proper expression

- 2

(2%(s)) s
s+ 3(s) M3

Im |5%(s) - -Im 5%, (M3) (6.11)

where $7Z still denotes the 1P one-loop part (a similar discussion has been given by Wetzel

in [32]).
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The term: Im E(ZZ)(M%) is related by unitarity to the Z width and has been calculated in
chapter 5. The electroweak next order corrections to the fermion loops yield:

Im $%,(M3) = My 3" (ALL(F) + T3(F) - 23) (6.12)
f#t .

with T'S(ff) from (5.4) and ATz{ff) from (5.18)} with the mixing term removed (since it is
already contained in the first part of (6.11) ).

In addition to (6.12) there are still other contributions to Im f‘.l(zz): 3-body decays, and
QCD corrections to the fermion loops. Among the 3-body decays of the Z only the decay
mode Z — Hff for a light Higgs boson is numerically of some significance, although only
marginally [87]). For My = 10 GeV the sum contributes

> Tz(Z - Hff) =~ 5 MeV
f

to the total Z width. This decay mode has not been included in our discussion of the Z
width in chapter 5. For completeness we will keep it in {6.11) as

Im £5,°°%% = Mz Y T3(2 - Hff) ' {6.13)
b

for the further discussion, based on the results of [87]. Other decay modes give only negligible
contributions |86].

More important are the effects from QCD: strong corrections increase the total Z width
by about 70 MeV. For the light quarks they can easily be incorporated in (6.11) by adding
the term

Im 55,°°P(M3) = Mz S T'%(¢d) - (Roep — 1) (6.14)
q

where Rgcp is the correction factor in (5.8) with the value of o, in (5.9). For the Z — #f
partial width in case of 2 “light” top quark the mass dependent QCD corrections have to be
used instead of (5.8) which differ significantly from the zero mass approximation. We do not
list them here but refer to the literature (80,81). In view of the uncertainties associated with
the values of &, and m,; the 2-loop 1PI electroweak contributions are of minor importance
[79]. For this article we restrict ourselves to the case 2m; > Mz and postpone the detailed
discussion of open top production to another place [88].

After specifying the 1PI 2-loop term in (8.11} as the sum
Im Bf(M3) = Im 35" (M3) + Im $%,9°P(M}) + Im B5,* 7% (M2) (6.15)

of the various contributionsin (6.12,13,14) we have completed our discussion of the imaginary
part (6.11) of the Z propagator. The remaining uncertainty from the experimental error in a,
as given in (5.9) can be estimated to be of order 10 MeV in the Z width. For a comprehensive
discussion of the ingredients in the Z propagator see also the contribution by Burgers [42] to
the CERN report on Polarization at LEP [14] It should be noted that the available computer
programs [90] for numerical studies include also the case m, < Mz/2 together with the mass
dependent QCD corrections based on the results of {81].
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Ad 2:

The inclusion of also the real part of the i)”z)z term in (6.8) takes care of the fact that the
physical Z mass gets a contribution in higher order from mixing with the photon. A rigorous
treatment would require a proper 2-loop renormalization and is related to the question what
the meaning of the Z mass is at the 2-loop level. For a discussion at the present stage the
most natural possibility is to define Mz by the condition

~ 2
) SvE( M2
Re [£2(M2) — (—(—Z))— = 0. (6.16)
s+ Tr(M2E) ‘

With this definition (and in the constant width approximation) we recover an approximate
Breit-Wigner form around M2, quite in analogy to (5.12):

1 1
D 2 - . - 6.17
2(s) 1+ 1Z2(MZ) s— ME+iM,Ty (6.17)
but now with (ﬂ )2
. 8 . Y2(s)
% (M2%2) = — Re |8%(s) - ~— 6.18
(Mz) 35 e (s) ot (s (6.18)
s::M%
and
-~ 2
) SYZ(M2) .
'z = ! Im |[SZ(M3) - ( ( Z) + Im 5%,(M3) (6.19)

1+ 072(M2) M M2 + Sv(MZ)

where also the results of the foregoing discussion have been implemented.

In order to fulfil the requirement (6.16) we have to modify the renormalization condition
which fixes the Z mass counter term §MZ in section 3.5. Instead of (3.16) the condition

leading to (6.16) reads:

(807 (03))’

- . (6.20)
MZ + £7(M3)

§MZ = Re |DZ(M2)

The condition for the W mass counter termn 8 M3 is unchanged and so are all the other
renormalization conditions formulated in 3.4. Now the set of equations (3.16-17) defining the
renormalization constants and the renormalized 2-point functions (3.23) are implicit equations
since they contain the renormalized mixing on the r.h.s. However, it is straightforward to
solve them for the renormalized quantities in terms of the non-renormalized ones.

Writing the photon propagator (6.7) in the form

~ 2
' 1 272 (s) ) 1
D.(s) = — 4+ . : — (6.21)
() s+ E7(s) (s + B (s) s — M2+ $2(s) - E";(s()))
N B s4-27 (s
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graphically depicted as

%
%

Yy X o y £ Z v

shows the presence of a second pole which is exactly the Z pole of (6.8). The pole of the
mixing propagator (6.9) at s = 0 is cancelled by the £'Z in the numerator. The photon
propagator (6.7) near its “conventional”pole at s = 0 still behaves Like

1 1

14+ (20)(0) + 5%(0) - (57 (0)/(ME — £%(0)) s

D.(s) =

|

because of our renormalization conditions for £” and ¥7 in (3.15). The photon field renor-
malization constant §Z] (and also the charge renormalization constant §Z)} thus is not
changed by the mixing with the Z boson.

For Z and W the additional mass counter term in (6.20) appears in the field and cou-
pling renormalization constants (3.17) and hence in the 2-point functions (3.23) involving
massive bosons. In other places like the boson-fermion vertices this additional term does not
show up since the corresponding counter terms contain only differences éZ; ~ §Z, which are
independent of § M3 ;. Vertex renormalization is therefore not affected.

The modification of the W propagator via §Z) has a further consequence:

The quantity Ar in (4.18), which (together with Mz) determines the numerical value for
sin’ y , is modified according to

~ - 2
2 272 Ar2 M2
Ar = Ar 4+ FRe (Z ?)) ik (6.22)
Sy M3 + X(M3)
= Ar + AT‘(Z) .

Ar(zy is responsible for a small shift in sin® By if the top mass becomes large. For many
physically interesting quantities like the width, peak cross section, and line shape of the Z,
the effect of this shift in sin® 8y is almost cancelled by the modification of the Z propagator
discussed above such that the combined net effects are tiny.

To make this statement more quantitative we list a comparison of the following quantities
calculated with and without the real part of the mixing term in (6.8): the integrated cross
section for ete™ —s p*p~ at the resonance peak (without QED corrections), the total Z
width, and sin? 0y as well as My. The upper values are those derived without the mixing
term. The table contains the results for Mz = 92 GeV, My = 100 GeV, and for various top
masses.

As one can see from the table there is practically no difference in ¢ and in T'z for all
values of m,: the changes in ¢ are well below 0.1%, and the variation of I'z is < 3 MeV and
therefore smaller than the uncertainty induced by the error of a,. For My as well, the shift
remains below the experimental accuracy of 100 MeV, although it can come very close to 1t.
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m-top sigmo [nb] Z width {GeV] sin**2 theta W-mass [GeV]

50 1.98505 2.5588 0.22983 80.739
1.9503 2.5593 0.22981 ) 80.740

100 1.9497 2.5699 0.22458 81.013
1.9500 2.5694 0.22457 81.014

150 1.9515 2.5820 ©.21859 81.326
1.9518 2.5807 0.21884 B81.313

200 1.9553 2.5982 0.21092 B81.724
1.9550 2.5881 0.21187 81.675

230 1.9591 2.6101 0.20516 82.022
1.9577 2.68074 0.20692 81.931

LA AL REREER SR EERASELEST TSRS RSN RESS2SR2R R RR22R T RS S0 2

The changes in sin® 8y are also only marginal for not too high top quark masses; for m, = 200
GeV the difference is of the order 0.001. Thus, sin’® 8y is the only quantity which is affected
by the mixing term, with measurable consequences on the on-resonance asymmetries to be
discussed later. It is worth to note that our results on sin’ i agree within 0.0002 with the
corresponding values of Kennedy et al. [91] (they have the slightly smaller values). This
has to be compared with the uncertainty in sin® @ of 0.0004 from other sources (see section
4.4). The values for 'z given in [91] are not for the physical width and cannot directly
be compared with ours. Moreover, in [91] not the complete vertex corrections have been
included. As pointed out by Burgers [42] the results of [91] are in agreement with ours after
correcting for these inadequacies.

We want to conclude this discussion with a few critical remarks how to classify the listed
additional small shifts in sin? fw in the light of further next order contributions not included
at the present stage: ‘

1. The modification of Ar by (6.21) leads to a sizable change in sin® 8w only if m, is large.
For small m, this variation is covered by the hadronic error in sin® fy with its source
in the data entering the dispersion relation (4.32) for the light quarks. For a heavy top
the leading contribution to Ar, eq. {4.29), rises proportional to m} /M, and hence can
become very large. Strong corrections to the (#,b) contribution to Ar can be estimated
from their effects in the p parameter shift Ap (defined in (4.43) ) which is in leading

order related to Ar by
2

Ar ~ — CT“ Ap.
Sy .
The O(«,) strong corrections to Ap have been calculated by Djouadi and Verzegnassi
[92] and are reported to be large, in the heavy top limit given by

g 22 + 6
Ap——aAp-(I*a—ﬂ+).
™ 9
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This leads to an increase in sin® &y of 0.002 for m, = 230 GeV. Since the leading
top approximation is not accurate enough for Ar preference would be given to a full
calculation of the strong corrections. Without restriction to the leading term Kniehl
et al. [93] have investigated the strong interaction effects in Ar( ) by the method of
dispersion relations. They found smaller corrections but instead of the on-shell top
mass an effective constituent top mass is used which is related to the mass Mr of the
toponium ground state by m, ~ Mz — 400 MeV (the precise relation is also affected by
QCD corrections). The effect of the strong corrections can be expressed in terms of a
change in the predictions for My by 25 - 60 MeV if m, varies from 60 to 250 GeV. Both
calculations [92,93] yield positive corrections to Ar. For m; > 150 GeV also the choice
of the scale where o, has to be evaluated becomes of some significance, but still below
the experimental sensitivity (estimates in [93] report an uncertainty in the left-right
asymmetry which is about 1/3 of the aimed experimental error). A systematic study
to get rid of this uncertainty would require a O(a?} calculation. At present there seems
not yet a sufficient consensus on the strong interaction effects from heavy quarks. In
the results given in the following sections we use the lowest order expressions for the
(t,b) doublet without incorporating the results of [92,93], having in mind, however, that
our values for very large m,; may not give the ultimate answer.

. We do not consider our strategy outlined above for the purely electroweak part as

reliable enough for extrapolating to top masses much higher than about 250 GeV. The
confidence in the reliability of the results is essentially based on the negligibility of
2-loop irreducible effects, which i1s safely true if m, is small enough. As has been shown
for Ap |74] those effects are small also for heavy fermions in the absence of large isospin
mass splitting. For a very heavy top, however, Yukawa couplings become strong and
irreducible contributions involving Higgs bosons may become also large: for m, > 220
GeV the corresponding coupling constant

2
i g2 My
Ayykawa = 5 | —= > a,
Yuk an (ﬁ Mw) =

is of the same order as a,. For the imaginary parts we have shown in [40] (see also

chapter 5) that 2-loop irreducible effects are of the same size as the O(a?) reducible
ones in case of a heavy top. Therefore we would estimate that the limit of the present
method is reached when the changes of sin? iy from the next order term in (6.22) exceed
the O(aa,) corrections. This applies also to the method of Kennedy and Lynn in [43]
since their “starred” objects are constructed on the basis of one-loop 1PI graphs only.
Without a closer inspection of the 1PI 2-loop contributions involving strong Yukawa

_conplings the extrapolation to very high top masses as done in {43] has to be considered

with some reservation.
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6.4 'Weak corrections

In this section we specify the complete set of the one-loop non-QED corrections (weak correc-
tions in the sense of 6.2) to the polarization dependent differential cross section for e*e™ — ff.
Before doing this, however, we want to give a simple interpretation of the involved looking

propagator corrections discussed in the preceding section which allows a better qualitative
understanding and a simplified treatment in terms of an “improved Born approximation”.

6.4.1 Improved Born amplitude

The matrix element for ete™ — ff with the dressed propagators (6.7-9), (6.21) can be
expressed graphically by use of the notation of section 6.2:

oo+ o - e - e
rse5<

Neglecting the small imaginary parts except that of the Z propagator and replacing the full
s dependence around the Z to a very good approximation by

S(s) = sH"(M2) (6.23)
(s) = sH'?(M2)

where
f*(s) = Regﬁfs) (6.24)
2(s) = Re)ji(s)

and introducing the symbol
Yu @YY = Teyptte - gy ey
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for the spinor contractions we can write the amplitude in the following way:

2

M = —— " 6.25
Y )QQf Y, Q5 ( ).

+ e? 1 1
dsfycl, 1+ 1IZ(M2) s - M} + i1z

+7u I = 280 Qe — Isvs) @ [l — 255,Q; — Iy
Thereby I'z denotes the physical width {6.19), and

72 (M32)
3, = sk — swow ——2— . 6.26
W w w w1 T HT(Mg) ( )

NZ(M3) is defined in eq. (6. 18); it differs from the one-loop expression in (5.13) just by
the quantity Ar; in (6.22). Making use of the relation (4.19) and its modification (6.22),

together with

62

MIP = — S . 6.27
‘WMz = T Ton) (6:27)

which is practically identical to the QED running a in (4.40), we find for the amplitude (6.25)
the Born like expression

e(M2)?

M = Q.Q T ® Y (6.28)

L G, M2
\/5 S—ﬂ4’2+2——~rz

9 [ - 25%Q. — Ivs| @7 1] —26%,Q; - Ho

with _—
o= AT (6.29)
1+ I12(M3)

In this correction factor the formally higher order terms cancel as well as the leading log
terms from the light fermions. It is therefore very close to 1, except for a heavy top. The

leading top term yields
3« n12
1611'3‘2,‘; M“;

. * it behaves for large m, like the p parameter defined in (4.43). (6.26) defines an effective
mixing angle which deviates from s also in case of a heavy top only, to leading order given

by

K~ 1 =~ 14+ Ap: (6.30)

%

52 2 2
52~ 52, 4+ alMz) ) 3eiy Ly
w w 47 45%{/ .Afﬁ, ’

The amplitude (6.28)} together with the approximations (6.30) and (6.31) contains all (po-
tentially) large effects from fermions, either light or heavy. The quality of the approximate
formulae for x and 3}, is depicted in Figure 6.4. The residual terms of the full expressions
are of the same size as the vertex (and box) corrections to be included next.

(6.31)
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Figure 6.4:

Full (—) and approximate (- - - -) form of « and the effective 5%;.
Mz =92 GeV, My = 100 GeV.
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6.4.2 The complete expressions

In order to obtain the full result for the differential cross section (6.1) we have to specify
only the invariant functions in (6.2), which are listed to lowest order in (6.4). We do this by
introducing a compact notation in terms of s-dependent coupling constants and propagator
functions according to the following table: '

J 14 A v 4] X3

1 Q. 0 Qs 0 X1 = X

2 Ve Qe vy afs X2 = Xz

3 ‘Qe 0 vy as X3 = X~z

4 Ve a. Qs 0 X1 = Xv2
5 Fy(s) Fy(s) Qs 0 X5 = X

6 Q. 0 F (s) Fil(s) X6 = X

7 FZ<(s) FZe(s) vy of X7 = Xz

8 v a. Fy/(s) Fy'(s) Xs = Xz

9 (v} + al) 2ve0, (v + o) 2vsay Xo

10 2v.a, (v2 + a?) 2vsay (v} + a}) X10

1 2 s]w 231W 2=lw 2slw X1

The coupling constants are those of (2.27); the form factors F* ... FZ7 from the vertex
corrections are listed in Appendix C.

The functions y are defined as follows:

X+ = sD,(s) (6.32)
xz = sDg(s)
Xz = —sD.z(s)

with the propagators D, z.,2 from (6.7-9). x9.10 belong to the box diagrams with ZZ exchange
and x11 to that with WW exchange. The box contributions depend also on the scattering
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They can be expressed in terms of functions I and I5 given in Appendix D: !

(a4
Xo = g[I(s,t,Mz)ﬂI(s,u,Mz)] (6.33)
o
X1 = '2';[15(51taMZ)+I5(sauaMZ)]
_ o | [I(st,Mw) + Is(s, t, Mw) for I = —1 fermions
X = ox | [=1(s,u, M) + Is(s,u, My] for I = +1 fermions.

The result can be summarized in terms of a matrix element

M = o (V5 - 45s) @ 7% (V] — ) x
7

Now we have collected everything for specifying the invariant functions as to be inserted into
the cross section formulae (6.2):

11
Gi(s,t) = Re Y (VFVE + A4 ) (VIV + ALAl) xixi (6.34)
Gk=1

11
Gs(s,t) = Re S (VFAP + AVEY (VA" + A1V xixk
k=1

11 X
Hy(s,t) = Re Y (VPAP + A3V ) (V)W + AlAl ) xod

j9k=1

11
Hs(s,t) = Re S (ViV& + A;Ai‘)(l@fA{‘ + AV xsxa

1hk=1
11 s f
Fi{s,t) = Re S (ViVe — &40 VIV + AlAl) xix
hk=1
U furf I
Fz(s,t) = —Im Z (1/3-8142* - A; ‘3\.“)(1/} 1’;‘, + AjAk )ijk .
Jk=1

For the functions G, and H, the lowest order expressions, if any, in (6.4) are sufficient; the
same applies to the small mass term in Gy, H;.

The cross -section for unpolarized beams requires only G; and Gi. H,, H; yield the
longitudinal and Fy, F, the transverse polarization part of the cross section.

'1n case of WW exchange either the direct or the crossed box diagram contributes depending on the isospin
of the final fermion f
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6.5 QED corrections

The distinguishing feature of the weak corrections is their independence of the specific ex-
perimental set up. The last piece completing our discussion at the one-loop level consists
of the QED corrections which are the result of an incoherent superposition of 2-particle and
(inclusive) 3-particle final states. In order to obtain an infrared finite result it is sufficient
to deal with the soft photon part of the real bremsstrahlung cross section. The soft photon
approximation means that the radiated photon energy k® < AEF is restricted to a maximum
energy AE which is small compared to the energy of the scattering process: AE < /s = 2F.
In this approximation the QED corrections can be cast into a form quite similar to that of
the weak part. Since the photons radiated from the initial state need not necessarily be soft
with respect to the resonance shape, however, the energy loss in the Z propagator has to be
taken into account.

In real experiments the restriction to small values of AE/E is often not applicable due
to the geometrical layout of a realistic detector. Then also hard photons with k° > AE
become important and the definition of the final state may depend on other restrictions
like accollinearity cuts to the outgoing fermion. These have usually beenr applied for u pair
production, conveniently treated by Monte Carlo simulations [28,44]. The proper hard photon
part is IR and UV finite; it can be treated as decoupled from the rest of the electroweak
cross section. The electroweak properties of the Z boson enter only globally in terms of the
characterizing quantities mass, width, and coupling constants. For the adaptation between
the soft and hard part, however, it has to be ensured that they are consistent with each other.

The abelian structure of the electromagnetic U(1).,, symmetry implies that the virtual
photonic corrections are UV finite already without the full SU(2)xU(1) renormalizability.
After a complete renormalization of the full theory the photonic part of the corrections is
recovered, but the separation within the whole set of radiative corrections is not unambigous
and, in general, scheme dependent. It is a nice feature of the on-shell renormalization that
we are left with the same QED corrections which would be obtained from a restriction to the
U(1)em gauge structure only [29].

For completing our renormalized one-loop corrections in the on-shell scheme we list this
class of virtual and soft real QED corrections. Differently from the weak corrections, the
results cannot be presented at the level of amplitudes; we put them together as additive
contributions to the functions in (6.34) with the same notations for the propagators:

GPFP = Q) Ixa P O, - (6.35)
+Q.Qy 2Re {x1x} (.05 Cf; + acay Ci)}
+ 1 x2 P {0} + al)(v} + a}) C; + dveacvsay CF)}

ED
_G:? = Q? [ x1 |2 Cﬁ

+ QeQy 2Re {x1x} (acas Cf; + vevs CH)}
+ | x2 I* {aveacvsay €3 + (02 + a2)o} + a2) €1y}



HPPP = Q.Qs2Re{xix;(acvs Cf; + veay Cfy)}
+ {xz2 )P {Zveae(vfe + a.f.)Cz‘; + 2(@3 + a.z)vfaf C._g}

ED R ,
HY = Q.Qs2Re {X1X2 (veas Cfy + acvy Cig)}
+ | x2 |° {Z(Uf + alyvsas Cgp + 2veac{vy + ﬂ-fr)cfé}

FJQED - Q,zf ]XI 12 Clv;
+Q.Qy 2Re {x1x} (vevs €Y + acay CH)}
+ | xa I (02 = al)(v} + a}) Oy

FPEP ~ 0.

The coeflicients are defined as follows:

Ch - ViR + Vgin + QeQs(X + 2ReV™) (6.36)
C{ = 2ReA™

Chi = YiE + Vin + QeQy(X + V7 + V7)

Ciz = QeQs (47 +477)

Cya = ViF + Yeait + Vsin + QeQp(X + 2ReV?)

Ch = Q.Q;-2ReA? .

For convenience we make use of the abbreviations

8 ¢ AE -
ﬁe = }.Og (m—g) - 1, ﬂ,‘m =2 log ;, € = —E— | (6.3()
and of the complex Z mass with the physical width T'z
M? = M2 —~ iMyTy (6.38)
and specify the ingredients in (6.36) in the following way:
2« _
yr = — {Be+ Q1Bs + QeQsfint | log(e) - (6.39)

: 2a M? — 5
il A 2
MR T {ﬁe log (e T se) + Q%535 log(e)

1 2 5 }
+ 2Qleﬁmt IOg ("= ﬂ_d'2 —8 Sf)

76



res 2o M? —s
; iR = {ﬁe loglegm—rro !+ Q3B log(e)
3
+ Qleﬁina log | Gm ]}
2a , s— ML M2 — s+ se ML—s
Ytail - B, M, (arc an LT, arctan M,

i = (Bt Q1) + 2+ QD (- 3).
(6.40)

The guantity X is the finite part of the initial - final state bremsstrahlung intexference

X = %[logz (-é) - 2Ls,(-§) ~ Yo’ (-%) + 2L (—%)] . (6.41)

and the following functions are the finite parts of the vy, ¥Z box diagrams:

| FaLi R ‘% [G(s,t) — G(s,u) + 271 log (5)] (6.42)
A" = %[G(s,t) + G{(s,u)]
viZ - %[V(s,t) — V(syu)]

A? = o [Als:t) + A(s,u)]

with

1
1

s t s(s + 2t) [ , 2}
= - 1 . 6.43
Gls0) 2(s + 1) IOgs-!—ie 4(s + t)? 8 s tie o _ ( )

- M? t M?
A(s,t) = ? {log + ~ log (1 - _s_)

s+ 1 s — M? |
s+ 2t 4+ M? 1 ( 1 )10 M?—s L ( s) Li ( _t__) '
T e ) 8\ aem ) T G T T

V(s,t) = A(s,t) + 2Li; (1+——) .

Li, denotes the dilogarithm

P log(l —zz)
r——",

- Liy(z) = —fo dr 2B

With this soft photon part our description of the one-loop renormalization is completed. The
missing hard photon part, which is important for practical reasons, will not be given here. It
has been treated extensively in the literature [28,29,44,50-53,94,101] and exists also in form
of Monte Carlo programs [28,44,91,99,101]. In this place we only give an overview on the
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present status; the influence of the QED corrections on the various measurable guantities,
including hard photons, will be addressed in the following sections in each case seperately.

The soft photon part (in various approximations) has been calculated by several authors
[26-29,95] for unpolarized beams; general beam polarization is discussed in [29]). The formulae
given in this report are the most complete ones for the single photon case given in the literature
up to now. They differ slightly from those of [29] where multi-photon radiation was included
via exponentiation, similarly to [27]. Also vacuum polarizations are removed here since they
have been treated already in the context of the preceding section. The restriction to the
single photon case is required for the combination with the hard photon part in the Monte
Carlo generator {44]. Multi photon emission can be restored analytically by exponentiating
the infrared terms in (6.35). The discussions in [28,44] include the hard photon part in
the unpolarized case. In [44] the helicity amplitudes are given for the radiative processes
ete™ — putpu~y,e*e”y allowing to extend the existing Monte Carlo program also to beam
polarization. The Monte Carlo generators based on [44] contain in addition the full weak
part for unpolarized beams, that of [91] also for longitudinal polarization. Independent
analytical calculations for total cross section and forward-backward asymmetry in ete” —
ptp~ have been performed by Bardin et al. [50-52], for the cross section with longitudinal
beam polarization by Jadach at al. [53].

The major part of the quoted work is concerned with the single bremsstrahlung process.
An analytical calculation of the O(a?) initial state corrections to the integrated cross section
has been performed by Berends et al. (36, resummation of the leading log terms to all orders
by various authors [27,29,3537]. A Monte carlo approach to generate multi-photon final
states based on the strategy of Yennie et al. {96] has been developped by Jadach and Ward
[38].

6.6 The Z line shape

Besides o and G, we need the Z mass Mz as an experimental quantity for completion of our
input to fix the theory. Mz will be measured from the shape of the resonance, in particular
from the location of the maximum. The relation between |/s,..; and Mz is influenced sizably
by the initial state bremsstrahlung. Since the O(a) QED corrections are large around the
Z peak (typically —40% ) a careful study of the next order contributions becomes necessary
for precision measurements of the mass and width of the Z boson. The main source for large
negative corrections is the initial state bremsstrahlung where both soft and hard photons
lead to a reduction of the peak cross section: soft photons because of the absence of the ideal
elastic process, and hard photons because of the energy loss in the resonance propagator.
The reduction of the peak height of the integrated cross section is roughly given by the factor

20 My M2
- —= 1 Tz = 0.6

as can be seen from the IR term in (6.35).
A partial summation of multiple photon emission consists of exponentiation of the leading
log terms with the main effect:

2
- 2% tog(E7) 1og(22) —  (F2)
T I'z

2
m} Tz

~ 22 log( M} /m?)
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A comparison with and without exponentiation shows that the position of the maximum in
O(a) is significantly too high. The exact treatment of the O{a?) initial state QED corrections
to the integrated ete~ — pu~ cross section has been performed in [36]: The displacement
of the resonance peak of +184 MeV from O(a) is reduced by -88 MeV due to the O(c?)

“contributions if Mz = 93 GeV is taken (Figure 6.5). The remaining uncertainty can be

estimated from
O(a?) exponentiated — O(a?®) non exponentiated

to be about 15 MeV.

Figure 6.5
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The effect of final state radiation amounts to a factor 1 + i—:Q} for each fermion type con-
tribution to the total cross section which means a correction of less than 0.2%. Also the
interference of initial-final state radiation together with vy, vZ box diagrams does not influ-
ence the maximum position in a significant way [42,53].

For a final answer also the weak corrections have to be incorporated. This has been done
by Berends et al. [41] with the following main results:
¢ The position of the peak maximum is shifted to lower values by about 35 MeV. This shift
is due to the s-dependence of the width and was confirmed by Bardin et al. {52].
¢ The dependence of the maximum position on the unknown standard model parameters
Mg, m, is insignificant. This is important for an experimental determination of Mz which is
required to be free of model assumptions.

This last point is substantiated in Figure 6.6 which presents the Z line shape as depend-
ing on My, m,, and in the values of table 6.1. The results include the higher order QED
corrections; they are an update of [41] (which are only very little changed) based on the most
recent version of the weak part in 6.4, and were figured out by Burgers {42] using [90].

Table 6.1: Peak maximum and position in ete™ — u*u~. Mz = 92 GeV, a, = 0.12.

myGeV]  Mg|GeV] Omaz[nb] VEmaz [GeV]
40 100 1.369 92.094
60 100 1.452 92.094
90 10 1.446 92.094
90 100 1.453 92.094
90 1000 1.454 92.094
230 10 1.454 92.096
230 100 1.461 92.096
230 1000 1.461 92.095
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Figure 6.6
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Higgs-mass dependence of the Z peak in muon-pair production. M,=92GeV,
m,=90GeV, a,=0.12, Dashed line M, = 1000GeV, solid fine M, = 10GeV.

Top-mass dependence of the Z peak in muon-pair production. M,=92GeV,
M, =100GeV, a,=0.12. Upper solid line m,= 230GeV, lower solid line m, = 60GeV,
dashed line m,= 40GeV.
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6.7 On-resonance asymmetries

The measurement of the Z mass from the resonance shape completes our set of input param-
eters o, G, Mz for fixing the theory.

For testing the theory further precisely measurable quantities are necessary. From the Z
line shape one can determine, besides Mz, the following quantities:

‘e the total cross section
or =3 o(ete” = ff)
!

e the total Z width I';

which have already been addressed in the previous sections. The hadronic cross section will
be discussed later. Without beam polarization the further observables are accessible:

e the partial widths I'z(Z — ff) ;

o the forward-backward asymmetries

glor _ o.back

AFB(€+6_ — ff—') = (6.44)

afor 4 ghack ;
with

a0 ‘_1_0:_ back — itz
o< /2 o’ 8>x/2 ds}

o_jor —

The instrument of longitudinal polarization for the incident e~ beam offers the polarization
dependent asymmetries

e the left-right asymmetry
i Tl (6.45)

Arr =
where o1(g) denotes the integrated cross section for left (right) handed electrons;

o the polarized forward-backward asymmetry

for back for back
oy —op® —(og —og™)

0.‘{"" + o.%ack + a.}fza" + o.?iack

AFplete” = ff) = (6.46)

In this section we want to discuss these asymmetries in some detail. In lowest order the
on-resonance asymmetries are simple combinations of the fermionic coupling constants ? :

3 2‘!,‘e [ v faf

A = —- . 6.47
FB c 4 vl al vida} ( )
2v.a
ALR — ewe
12 4 o?
AJ;J;?;; § . 21);(1;
U
4 vy +aj

Zup to small terms ~ (Tz/M3z)? coming from the pure v exchange
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The ingredients in all these asymmetries are the combinations

_ vaaf _ 2 |213J‘—4stinzgwl )
vi+aj 14 (2@ ~ 4Q,sin? )2’

(6.48)

for a given species of fermions they are functions of sin® fy only. Note that A%%(ete™ — ff)
measures the same quantity 4; as the final state polarization of the fermion f in ete™ — ff.
Ay is displayed in Figure 6.7 for various fermions.

The ¢-dependence of the cross section (6.1) in case of transverse polarization gives rise to
an azimuthal asymmetry, which is determined by the quantity

Ar = —. {6.49)
On-resonance it reduces to
which measures essentially the same information as the unpolarized leptonic forward-backward
asymmetry if the lepton couplings are universal. We will therefore skip a more elaborate dis-
cussion, but refer to App(ete”™ — ptu™). The following general features of Ay are of practical

importance: full ¢ acceptance, independence of the final state, insensitivity to QED correc-
tions [29].

Figure 6.7: The quantity A; for quarks and leptons.
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Since a sensitivity to sin®fw means also a sensitivity to the details of the weak part of the
model the structure of (6.47) suggests Arp and A’;?é to be the best candidates for elec-
troweak tests: App measures the initial state and A%y the final state coupling constants,
allowing simultanously tests of the fermion universality. The particular sensitivity of Apx to
sin® - will allow a measurement of this parameter with an error of +0.0004 if an aceuracy
(AALR)ezp = 0.003 can be achieved [14] (see Figure 6.8).

Figure 6.8: sin’ @y from o, G,, Mz, and from Arp. Mz = 93 GeV, m, = 60 GeV.

AR

Arr is practically independent of the final state fermion species which allows an inclusive
measurement without loss of statistics. Another important advantage of Apg is the property
that it is only very little influenced by QED corrections. This was first pointed out in
1982 by Bohm and Hollik [29] for the soft photon part, and was later confirmed also for
the inclusion of hard photons, analytically by Jadach et al. [53], and numerically via Monte
Carlo simulation by Kennedy et al..[91]. At the Trieste Workshop on radiative corrections
in 1983 [23] the author emphasized the unique possibility of testing the non-QED part of
the electroweak theory in terms of Arp {97]) which was followed by a closer inspection of the
weak contributions by Lynn and Stuart [33] and Hollik {34]. AL is only very little influenced
also by QCD corrections in case of quark pair production [80,98] as far as the quark masses
are small. Moreover, also Aﬁ?}f;'has been shown to get only very small QED corrections [99],
allowing the conjecture that the next order contributions do not play a practical role. For a
discussion of the QED corrections to the unpolarized forward-backward asymmetry and their
cut dependence we refer to [100]. The weak corrections to Arp(e*e™ — pu*u~) have been
treated by many authors [26,30-34,95,101].

The explicit sensitivity of Azg and Apg(ete” — pFp~) to sin by allows to use these

quantities for measurements of sin’ 6. From this point of view sin® 8w (resp. Mw) is con-
sidered as an independent parameter, not yet fixed in terms of G,. Figure 6.9 shows the
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on-resonance asymmetries Ay, Arp, in lowest order from (6.47), and with the weak correc-
tions included. Although for a “light” top quark the Born approximation is very close to the
full one-loop prediction, the differences of ~ 0.005 in Arg (and even larger fore other Higgs
masses) and ~ 0.004 in Arp are not negligible in view of the experimental accuracy.

Whereas the Born term is a function of sin’§y only, the complete expressions depend
also on m, (and to a less extent on My). The determination of sin® 8w from a measured
value of Arg or App hence is not free of assumptions on m; and My. This, however, is not
surprising since also the determination of sin? § from M3z, G, yields values dependent on
my, My, and both results have to agree if the minimal model is correct. The asymmetries
which correspond to those “correct” sin® 8y values are marked by a dot in Figure 6.9

Figure 6.9: Azp and App inete™ — utpu™. Mz = 92 GeV, My = 100 GeV.
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This brings us to the second point of view: Given Mz (together with m,, My), sin? By
and My are fixed in the minimal model, and so are the asymmetries. The lowest order
values are obtained from the Born formulae (6.47) together with sin’ y as derived from G,
and Mz. The effect of the propagator corrections can be summarized by a shift in sin® fw,
yvielding the effective 3}, of (6.26) which is independent of the final fermion species. The
residual contributions are almost completely due to the weak vertex corrections. Both types
of corrections are significant for Arp in view of precision experiments. The results are put
together in the following table (for Mz = 92 GeV, My = 100 GeV, m, = 50 GeV}:

Arn Arp
Born term 0.1596 0.0192
with propagator corrections 0.1727 0.0248
with full weak corrections 0.1668 0.0230

Next we want to describe the influence of the O(a?) term in the Z propagator, as dis-
cussed in section 6.3: The upper values in the table are those derived without the mixing
term. As one can see App is slightly changed for large m,, whereas App is not influenced in
a way exceeding the experimental accuracy. (Input: Mz = 92 GeV, My = 100 GeV)

me [GeV] Arr Ars
50 . 0.1663 0.0229
0.1668 0.0230
100 0.1760 0.0253
0.1745 0.0249
150 0.1891 0.0280
0.1850 0.0276
200 0.2068 0.0310
0.1990 0.0315
230 0.2200 0.0328
0.2089 0.0345

In the following tables we collect the predictions for Arp, Arp in ete™ — utp™ for a
wide range of the model parameters. As can be seen, the variation with My in Arp is about
five times as big as the expected experimental error. This means that Arr becomes sensitive
to the Higgs mass; probably it is the only quantity which can probe indirectly the Higgs
sector of the minimal model. The variation in App is somewhat less striking, about twice
the experimental error.
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Table 6.3:

Apgp for ete™ — p*p~ {masses in GeV)

M-Higgs
M-2 n—top 10 o0 1000
0. 50. 0.0585 0.0510 0.0404
90. 100. 0.0669 0.0595 0.049
90, 150. 0.0787 0.0714 0.0612
90. 200, 0.0943 0.0871 0.0772
90. 230. 0.1055 0.0984 0.088&
91. 50. 0.1181 0.1110 0.1009
91. 100. 0.1281 0.1190 0.1092
g1. 150. 0.1372 0.1302 0.1206
91. 200. 0.1519 0.1450 0.1357
91. 230. 0.1624 0.15586 0.1485
92. 50. 0.1736 0.1668 0.1573
92, 100. 0.1812 C.1745 0.1652
92. 150. 0.1917 0.1850 0.1760
92. 200. 0.2055 0.1980 0.1901
92, 230. 0.2154 0.208% 0.2003
83. 50. 0.2252 0.2188 0.2098
g93. 100, 0.2325 0.2261 0.2173
93. 150, 0.2423 0.2360 0.2275
93. 200. 0.2553 0.2491 Q0.2408
93. 230. 0.2646 0.2584 0.2503
94, 50. 0.2732 0.2671 0.2586
94, 100. 0.2802 0.2741 0.2658
94. 150. 0.2894 0.2834 0.2753
4. 200. 0.3015 0.2956 0.2878
94, 230. 0.3102 0.3044 0.29867
95. 50. 0.3178 0.3119 0.3040
95. 100. 0.3244 0.3188 0.3108
95. 150. 0.3331 0.3274 0.3198
95. 200. 0.3445 0.3389 0.3315
95. 230. 0.3526 0.3471 0.3398
98, 50. 0.3591 0.3536 0.3461
g6. 100. 0.3655 0.3600 0.3526
96. 150. 0.3737 0.3682 0.3610
96. 200. 0.3843 0.3790 0.3720
96, 230. 0.3919 0.3866 0.3798



Table 6.4 :

A;-B for ete™ = ptp~ (masses in GeV)

M-Higgs
M-Z m-top 10 100 1000
20. 50, 0.0043 0.0037 0.0030
90. 100. 0.0050 0.0043 0.0035
90. 150. 0.0062 0.0054 0.0044
90. 200. 0.0081 0.0071 0.0059
80, 230. 0.0097 0.0086 0.0072
a1, 50. 0.0124 0.0112 0.0096
91. 100. 0.0138 0.0125 0.0108
91. 150. 0.0158 0.0145 0.0127
91. 200. 0.018g 0.0174 0.0155
91. 230. 0.0213 0.0197 0.0176
92, 50. 0.0248 0.0230 0.0208
92. 100. 0.0287 0.0249 0.0226
92. 150. 0.0295 0.0276 0.0252
92. 200. 0.0335 0.0315 0.0280
92. 230. 0.0365 0.0345 0.0319
93. 50. 0.0404 0.0383 0.0354
a3. 100. 0.0428 0.0408 0.0377
93. 150. 0.0462 0.0440 0.0410
93. 200. 0.0509 0.0486 0.0456
93. 230. 0.0545 ©.0520 0.0490
94. 50. 0.0588 0.0561 0.0528
94, 100. 0.0614 0.0588 0.0555
94. 150. 0.0652 0.0826 0.0593
94, 200. 0.0705 0.0678 0.0644
94. 230. 0.0744 0.0717 0.0682
a5, 50. 0.0785 0.0757 0.0721
95. 100. 0.0816 0.0788 0.0752
95. 150, 0.0858 0.0830 0.0793
95. 200. 0.0915 0.0886 0.084¢
a5, 230. 0.0957 0.0927 0.0890
96. 50. ©.0997 0.0967 0.0928
96. 100. 0. 1031 0.1001 0.0962
96, 150. 0.1075 0.1045 0.1006
96. 200. 0.1135 0.1104 0.1065
96. 230. ©.1178 0.1147 0.1108
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Finally we want to compare our results with those of Lynn and Stuart [33]. To this end
we have to restrict ourselves to the O(a) contributions and to adjust our hadronic part of Ar
to ArplP = —0,0274, which was used in [33]. Doing this, we find agreement in App within
< 0.0004 for the whole parameter range. The values for App are also in very good agreement
for m, < 130 GeV (differences smaller than 0.001); for m, = 180 GeV our values are slightly
higher (by about 0.002).

The following tables for the hadronic forward-backward asymmetries with and without-
longitudinal beam polarization complete the results of this section. In e*e™ — bb, cZ they are
expected to be measurable with an error of about 0.02. For a detailed experimental discus-
sion see the contribution by Drees et al. {102] to the CERN report on Polarization at LEP [14].

Table 6.5: App(ete™ — bb) (masses in GeV)
M-Higgs
M-Z  mtop 10 100 1000
90. 50. 0.0423 0.0371 0.0297
90.  100. 0.0481 0.0429 0.0357
90.  150. 0.0561 0.0510 0.0439
90.  200. 0.0664 0.0614 0.0546
80.  230. 0.0737 0.0687 0.0621
91. 50. 0.0B42 0.0792 0.0721
91. 100. 0.0898 0.084%9 0.0779
91. 150. 0.0975 0.0925 0.0858
91.  200. 0.1072 0.1024 0.0959
91. 230, 0.1140 0.1093 0.1029
92. 50. 0.1237 0.1189 0.1121
92. 100, 0.1291 0.1243 0.1177
82, 150. 0.1383 0.1318 0.1252
g2. 200. 0.1455 0.1409 0.1347
92.  230. 0.1519 0.1473 0.1413
93. 50. 0.1608 0.1561 0.1497
93.  100. 0.1660 0.1613 0.1551
93. 150. 0.1728 0.1682 0.18621
93. 200. 0.1814 0.1770 0.1711
93.  230. 0.1874 0.1830 0.1773
94. 50. 0.1954 0.1810 0.1849
94.  100. 0.2004 0.1960 . 0.1900
94,  150. 0.2068 0.2025 0.1967
94.  200. 0.2150 0.2107 0.2051
94, 230, 0.2206 0.2164 0.2110
g5, 50. 0.2279 0.2236 0.2178
95. 100, 0.2327 0.2284 0.2228
85. 150. 0.2387 0.2345 0.2290
95.  200. 0.2463 0.2423 0.2370
95. 230, 0.2516 0.2476 0.2424
96. 50. 0.2582 0.2541 0.2486
96. 100. 0.2628 0.2587 0.2534
96.  150. 0.2685 0.2645 0.2593
96. 200. 0.2758 0.2717 0.2667
96.  230. 0.2805 0.2767 0.2718
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Table 6.6:

App(ete™ — cc) (masses in GeV)

M-Higgs

M-z m—top 10 100 1000
90. 50. 0.0295 0.0258 0.0207
90. 100. 0.0336 C0.0299 0.0248
90. 150. 0.0394 0.0358 0.0307
90. 200. 0.0474 0.0437 0.0386
90. 230, 0.0531 0.0494 0.0444
91, 50. 0.0601 0.0563 ¢.0511
91. 100. 0.0643 0.0608 0.0554
91. 150. 0.0703 0.0665 0.0614
91, 200. 0.0782 0.0745 0.0694
g1. 230. 0.0841 0.0804 0.0753
82. 50, 0.0807 0.0869 0.0816
92. 100, 0.0950 0.0912 0.08860
92. 150. 0.1010 0.0972 0.0820
92. 200. 0.1080 0.1052 0.1001
92. 230. 0.1148 0.1110C 0.1059
83. 50, 0.1210 o. 11714 ¢.1118
83, 100. 0.1253 0.1214 0.1162
93. 150. 0.1312 0.1274 0.1222
a3. 200. 0.1391 0.1353 G.1302
93. 230. 0.1448 0.1410 0.1360
94 50. 0.1505 0.14686 0.1414
94, 100. 0.1548 0.1510 0.1458
94, 150. 0.1607 0.1568 0.1517
94. 200, 0.1684 0.1646 0.1596
94, 230. 0.1740 0.1702 0.1853
g5. 50. 0.17¢81 0.1753 ¢. 1701
95, 100, 0.1835 0.1796 0.1748
g5. 150. U. 1891 0.1853 0.1804
85. 200. 0.1967 0.1829 0.1880
95. 230. 0.2021 0.1983 0.1935
96. 50. 0.2067 0.2029 0.1978
98. 100. 0.2110 0.2072 0.2023
96 . 150. 0.2165 0.2128 0.2078
96. 200. 0.2238 0.2201 0.2154
g6. 230. 0.2291 0.2254 0.2207
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Table 6.7:

AR%(ete™ — cE) (masses in GeV)

M-Higgs
M-Z m—top 10 100 1000
90, S50. 0.4698 0.4672 0.4635
S0. 100. 0.4727 0.4702 0.4665
80. 150. 0.4768 0.4743 0.4707
0. 200. 0.4821 0.4797 0.4763
g0. 230. 0.4859 0.4835 0.4802
91 50. 0.4902 0.4878 0.4844
91. 100. 0.4929 0.43905 0.4872
1. 150. 0.4966 0.4543 0.4910
91. 200. 0.5014 0.4992 0.4961
91. 230. 0.5049 0.5027 0.4997
92. 50. 0.50886 0.5083 0.5032
92. 100. c.5110 0.5089 0.5058
92. 150. 0.5144 0.5123 0.5093
92. 200. 0.5189 0.5168 ©.5129
92. 230. 0.5221% 0.5200 0.5172
93. 50. 0.5252 0.5231 0.5203
93. 100. 0.5275 0.5255 0.5227
93. 150. 0.5306 0.5286 0.5258
3. 200. 0.5347 0.5328 0.5301
93. 230. 0.5376 0.5357 0.5331
94. 50. 0.5403 0.5384 0.5358
94. 100. 0.5425 0.5406 0.5380
94. 150. 0.5453 0.5435 0.5410
94. 200. G.5491 0.5473 0.5448
94, 230. 0.5517 0.5499 0.5476
95. 50. 0.554¢ 0.5523 0.54988
95. 100. 0.5561 0.5543 0.5519
95, 150. 0.5587 0.5570 0.5547
95, 200, 0.5622 0.5605 0.5582
95. 230, 0.5646 0.5629 0.5608
96. 50. 0.56686 0.5649 0.5626
96. 100. 0.5685 0.5668 0.5646
96, 150. 0.5709 0.5693 0.5672
96. 200. 0.5711 0.5725 ¢.5704
96. 230. 0.5764 0.5748 ©.5728

N
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Table 6.8:

A’;;-oé ete™ — bb) (masses in GeV)

M-Higgs
M-Z m—top 10 100 1000
80, 50. 0.6925 0.6921% 0.6914
90. 100. 0.6929 0.6924 0.6917
90. 150. 0.6932 ¢.6927 0.6921
90. 200. 0.6936 0.6931 -0.6925
90. 230. 0.6939 0.6934 0.6928
91. 50. 0.6963 0.6959 0.6953
9t. 100. 0.6966 0.6962 0.6856
91. 150. 0.6969 0.6965 0.6959
91, 200, 0.6973 0.6968 0.6963
9. 230. 0.6975 0.8697% 0.6965
92, 50. 0.6997 0.6993 0.6988
92. 100. 0.7000 ©.6996 0.6991
9z, 150. 0.7003 0.6999 0.6993
92. 200. 0.7006 0.7002 0.6987
92. 230. 0.7008 0.7004 0.6998
93. 50. 0.7028 0.7024 0.7018
93. 100. 0.7031 0.7027 0.7022
93, 150. 0.7033 - 0.7030 0.7025
93. 200. 0.7038 0.7032 0.7028
93. 230. 0.7038 0.7034 0.7029
‘94, 50. 0.7056 0.7053 0.7048
94, 100. 0.7059 0.7056 0.7051
94. 150. 0.70861 0.7058 0.7053
94. 200. 0.7063 0.70860 0.7056
94, 230. 0.7065 0.7061 0.7057
95. 50. 0.7082 0.7079 0.7074
95, 100. 0.7085 0.7081 0.7077
95. 150. 0.70886 0.7083 0.7079
95, 200, c.7088 0.7085 0.7081
95. 230. 0.7090 0.7087 0.7083
96, 50. 0.7105 0.7102 0.7098
98, 100. 0.7108 0.7105 0.7101
896, 150. 0.7110 0.7107 0.7103
96. 200. 0.7111 0.7108 0.7105
86. 0.7112 0.71%0 0.7106
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6.8 The total hadronic cross section

Besides the hadronic partial widths and the hadronic asymmetries of the previous section the

cross section

*e” — hadrons) = Y o{e*e” — qg) (6.50)

q

ofe

s a hadronic quantity of special interest since it is large and can be measured with high
precision. It constitutes the major part of the total eve™ cross section in the vicinity of
the Z and hence fills sizably the Z resonance shape from which Mz will be measured. In
section 6.4 it was emphasized that the peak cross section is insensitive to the detailed values
of the unknown parameters of the model, which was demonstrated explicitly in terms of the
cross section for ete™ — ptp~. Here we want to make this statement quantitative also for
the hadronic part. The QED corrections, which are left out here, can be incorporated by
convoluting the non-QED cross section with the initial state radiation spectrum [42]; other
QED corrections are negligible (see the discussion in 6.4).

Following the general convention to express the (unpolarized) hadronic cross section in
terms of the dimensionless quantity

o(e*e” — hadrons)

R = (6.51)
Jo
with the pointlike muon cross section
4 2
o9 = oo(e+e“ e A p.'*”,u'") = _1;_04_" {6.52)
. 8

we list the on-resonance values for R in table 6.9, again varying the model parameters in a
wide range. For b, ¢ final states finite mass terms have been kept. As can be seen, the cross
section is almost completely stable against changes in the internal parameters. This stability
is & consequence of cancellations between the corrections to the Z width in the denominator
and the corrections to the coupling constants in the numerator of the matrix element. For
the same reason R is also insensitive to QCD corrections and therefore to the uncertainty in
o,.

It may also be of advantage to normalize the hadronic cross section in terms of the real
muon cross section instead of the fictitious o4 in (6.52). Such a modified R ratio

-__m a(e*e” — hadrons)

R* =

olete — uty~) (6.53)

can be measured without the requirement of an absolute normalization. (In this case, however,

QCD corrections are present). We list also the values for R* in table 6.10.

The on-resonance R* is only a ratio of coupling constants and is determined essentially
by the actual value of sin® 6w, in lowest order (and neglecting finite mass terms) given by

54+ 2(1—$s%) + 3(1— 4%,y

R* =3
1+ (1 —4s%)?

(6.54)

The dependence on sin? i is displayed in Figure 6.10 (QCD corrections included), together
with the effect of the weak corrections. The strategy is the same as for Figure 6.9: to consider
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sin? 8w as an independenet parameter, not yet fixed via G,. This again offers a possibility to
measure sin? 6y which remains also valid for the more general situation beyond the minimal

model with

M
I aiis L
M2 cos? 0w
The sensitivity to sin’? i, however, is much weaker than in case of the left-right asymmetry
Arp. '
Figure 6.10 :
sin® 8y dependence of R* in lowest order (- - - -} and with weak corrections (—-).

Mz = 92 GeV, My = 100 GeV.

]
021 023 025
sin‘By,
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Table 6.9:

Total hadronic cross section R on resonance (masses in GeV}

M-Higgs
M-2 m—top 10 100 1000
90. 50. 3952, 3969, 3971,
90. 100. 3950. 39867. 3970.
90. 150. 3949. 3966. 3968,
90. 200. 3949. 3966. 3968,
90. 230. 3949, 3966. 3968.
91. 50. 3944, 3960. 3962.
9t. 100. 3942, 3969. 3961,
91. 150. 3842, 3959, 3960.
91, 200. 3943, 3960. 3961.
91. 230. 3944, 3961. 39862,
92. 50. 3940. 3957. 3957.
92, 100. 3940. 3956. 3957,
92. 150. 3940. 3957 . 3858.
92, 200. 3942, 3959, 3960.
g2. 230. 3944 . 3961, 3961 .
93. 50. 3941, 3957. 3958.
93. 100. 3941. 3958, 3958.
93, 150, 3942, 3959. 3959.
93. 200. 3945, 3962. 3962.
93, 230, 3947, 3865. 3964,
94, 50. 3946, 3862. 3962.
94, 100. 3946. 3963. 3962,
94. 150, 3948. 3965, 3964,
94, 200. 3951. 3g6¢. 3968,
94, 230. 3954, 3972. 3971,
95. 50. 3953. 3970. 3969.
95, 100. 3954. 3971. 3970.
95, 150. 3956. 3973. 3972.
95. 200. 3960. 3978. 3977,
5. 230. 3963. 3982. - 3980.
96. 50. 3963. 3980, 3978.
96, 100. 3964, 3981, 3980.
96. 150, 3967, 3984. 3983,
96. 200. 3971, 3989, Jggs.
96. 230, 3975, 3993, 3992.
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Table 6.10: Total hadronic cross section R* on resonance (masses in GeV)

. M-Higgs

M-z m—top 10 100 1000
90. 50. 20.59 20.48 20.44
90. 100. 20.51 . 20.49 20.46
90, 150. 20.51 20.4% 20.46
0. 200. 20.50 20.49 20.46
90. 230. 20.50 20.48 20.46
91, 50. 20.68 20.64 20.62
91. 100. 20.68 20.65 20.62
91. 150. 20.66 20.64 20.62
91. 200. 20.64 20.63 20.61
91, 230. 20.63 20.62 20.60
82. 50. 20.78 20.77 20,75
92. 100, 20.78 20.77 20.75
92, 150. 20.77 20.76 20.74
82. 200. 20.75 20.74 20.72
92. 230. 20.73 20.72 20.71
93. 50. 20.87 20.86 20.85
3. 100. 20.87 20.86 20.85
93. 150. 20.85 20.84 20.83
93, 200, 20.82 20.81 20.80
93. 230. 20.80 20.79 20.78
94, 50. 20.94 20.93 20.92
94 . 100, 20.93 20.93 20.92
94. 150. 20.91 20.90 20.89
94. 200. 20.87 20.87 20.86
94, 230. 20.84 20.84 20,83
95. 50. 20.98 20,97 20.97
95. 100. 20.97 20.97 20.96
85, 150. 20.94 20.84 20.93
95. 200. 20.80 20.90 20.89
95. 230. 20.86 20.86 20.86
96, 50. 21.00 20.99 20.99
96. 100. 20.99 20.99 20.98
96. 150. 20.95 20.95 20.95
96. 200. 20.91 20.91 20.91
96, 230. 20.87 20.87 20.87
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Chapter 7

Summary

The fundamental processes in high energy e*e~ annihilation are the 4-fermion processes
ete™ — ff. In lowest order they are of pure electroweak origin, in the standard model
medjated by the exchange of photons and Z bosons.

Experiments at the et ¢~ colliders LEP and SLC will determine the mass and width of the
Z boson with high accuracy as well as a series of on-resonance asymmetries with and without
beam polarization. Together with ¥ mass measurements and with the precisely known muon
decay constant G, these experiments provide precision tests of the standard model where the
inclusion of radiative corrections is not only a necessity but also a benefit: providing 2 unique
chance to test the quantum structure of the standard model and to probe its empirically
unknown part. The values for all the total and partial Z widths and for all the asymmetries
can be calculated in terms of the few input parameters o, G,," Mz, together with the as yet
unknown Higgs and top masses entering the results at the level of radiative corrections. If
the minimal model is correct all these calculations have to reproduce the experimental results
with a choice of My and m,; within a reasonable domain (50 GeV < m,; < 200 GeV, as favored
by present experimental data; 10 GeV < My < 1TeV, as favored by theoretical consistency
arguments). If agreement is found the measurements with high accuracy will restrict the
parameter range to an area substantially smaller than allowed by present days’ data.

As a quantity with small systematic errors (experimentally and theoretically) the left-right
asymmetry is the most sensitive probe not only of quantum effects in the standard model
but also of possible new physics beyond the minimal model, in particular of new particles
which are too heavy to be produced directly. By this feature longitudinal beam polarization
considerably improves the physics potential of the eTe™ colliders.

In this paper we have presented the standard model results for the quantitities measur-
able in e*e” collisions around the Z pole with high accuracy, and outlined the path how
these results come about. The detailed presentation of the formulae provides the basis for
practical applications, also in other energy domains below and above the Z resonance, and
can be considered a guide through the analytic part of the corresponding computer programs
for the Z line shape [90] and Monte Carlo generators [44]. The way of presentation allows
in addition to easily incorporate all kinds of new objects in SU(2)xU(1) with couplings to
the gauge bosons but not to the external fermions (“oblique corrections” in the terminology
of (17]). Moreover, our set of formulae for the weak part is sufficiently complete as to pro-
duce theoretical results with the required accuracy, in particular with the leading fermionic
contributions resummed to all orders. Not listed are the expressions for the higher order
QED results which have meanwhile been calculated for the initial state QED corrections :
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explicit 2-loop calculations [36], and resummation of the dominant infrared photon terms to
all orders, either analytically [27,29,35,37] or by Monte Carlo event-by-event generation [38],
being in nice agreement with each other within the required accuracy. Together with these
higher order QED terms the basic ingredients for precision tests of the electroweak theory
are reliably calculated, and the generally dominating QED corrections are under control.

Uncertainties in the radiative corrections come from the uncertainty in the hadronic con-
tribution to the vacuum polarization. Also the unknown Higgs and top mass may be consid-
ered as a source of incertainties preventing at present the numerical predictions from being
unique. The error in the theoretical predictions induced by the hadronic uncertainty matches
the experimental error of the future experiments. For the goal of revealing signals from new
physics and identifying their origin our ignorance of the top mass remains an obstacle which
can be circumvented only by more restrictive experimental information on the top quark.
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Appendix A

Counter terms

Here we collect the formal relations for the renormalized 2- and 3-point functions as composed
by the unrenormalized quantities and their corresponding counter terms.

A.1 Vector boson self energies

We expand the renormalization constants according to

Z; =14 462Z;.

It is convenient to introduce the following linear combinations of the SU(2) and the U(1) field
renormalization constants § 257 and the coupling renormalization constants §Z; "2 (i = 1,2):

[

827 st ok, §ZW \
o0 )= (@ &) (52 ) a)

From the unrenormalized vector boson self energies 7, £'%, ©Z, TW the corresponding
renormalized ones are obtained via

YK =
BZ (k) =
WY =
S (k?) =

(kY + 627 K’ (A.2)
TE(k?) — M2 + 6§27 (K* — M2)

(k) — §ME + 620 (kK — ME)

T2k — §27° K + (6277 - 6237) M2 .

In the last line the combinations (1 = 1,2}

have been introduced.

by

§M?

§27% = ﬁ(aziz ~§27) (A.3)

The mass counter terms § A, ; are related to the fundamental renormalization constants

M2

2 id
_ 5;‘;;*/ _ %(352;2—252;*2). (A.4)
w ’

This relation allows to express finally the §Z7" in terms of the unrenormalized on-shell

vector boson self energies.
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A.2 Fermion self energies

In section 3.4 we have decomposed the unrenormalized self energy of a fermion f into V, 4,5
parts with invariant functions E{r‘ 4.5(k?). The renormalized fermion self energy can be written
as follows

$Ik) = k(L) +62]) + s (Sh(F?) - 62) (A.5)
ém
Frn2y _ | vty
with ; ;
$24 = M §Z4 = ‘SZL;62R . (A.6)

§Z; ‘is the left-handed renormalization constant for the whole doublet; therefore not all of
the 62{,‘ 4 are independent for the members of a family. We have dropped the family index
in the formulae.

"A.3 Vertex corrections

With the coupling constants vy, a; of the fermion f to the Z we get the renormalized elec-
tromagnetic vertex as

I = T — ieQy, (62] — 623 + 8Zf — 62 s) (A.7)
—iemloy — aps) (5277 — 6237)
with the unrenormalized vertex V77,
The renormalized weak neutral current vertex has the form
P21 = TZV 4 iequ(vy — agys) (627 - 827) (A.8)
tieQsv, (6277 — 6277)

tiev (vs8Z) +as8Z5)
—ievuys (5824 + a6 2).

For the muon decay matrix element we need also the charged current vertex

- . e .
I\:Tr"lv — I‘l::"lu + i

2\/§SW

with 6Z for the corresponding lepton doublet.

Yull = y5) (1 + 828 — 82} + 621) (A.9)

I', denotes always the unrenormalized vertices.
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Appendix B

Unrenormalized vector boson self
energies

Here we list the functions ¥"%%W in terms of the on-shell parameters and in dimensional
regularization. With the dimension D and the mass scale 4 we introduce the symbol for the

singular term

2
'mJ

2
A; = —— — v +logén - log " (B.1)

4-D e
for a given kind of mass m; (v is the Euler constant).

In [45] the formulae were listed in a compact form for leptons and quarks together. This
form, however, cannot be used for the incorporation of a heavy lepton from a next generation
if it is accompanied by a massless neutrino. ' The formulae given here are free of this

restriction.

We make use of the abbreviations
s=k, =M}, w=ME, h=Mj.

Then the functions read as follows (fermion summation extends also over color in case of
quarks):

a |4 3
2s) = - {5 > Q5 [SAf + (s +2m3) F(s,my,my) ~ g] (B.2)
f
—(3sAw + 3s + 4w) F(s, Mw, Mw)} ,
o 4
Z‘Tz(s) = 4—‘” {—5 Z Qf‘t,‘f [SA_f -I- (S + ani)F(s,m.f,mf) — g] (B.3)
[(3(; + )s +2w} Aw
Cwsw

4 £
3¢ 4¢3, —) ] , A } ,
CWSW [( cw + =< ) ( cw + 3 w| F(s, Mw,Mw) + Sewsw

'the same applies to [49]
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=7(s)

=% (s)

{ Y. 2afs (Ag + g - 10g(—-£—2 — i.s))

I=e,p.7 [}

+ = ;} [(v + a,_f) (sA; + (s + 2mf)F(s,mf,mf) - g’)
3

8ck st

19 1 1
o ) e (s - )]
6sfy  6cly s

+ [(—-cw (40s + 80w) + (¢} — s ) (8w + 5) + 12w) F(s, Mw, Mw)

—

m% F(s, mf,mj)]

—z)? h
+ (10z—2h+s+ (—h—s—-z)*—) F(s,My,Mjz) —Zhlog; — 2zlog%

h + MuyM
+(102—2h+s)(1-hﬂzlog%fi—log ud Z)

2 1
+'§S (1 -+ (C%V - S%V)z — 463‘;)] —“-5—2—} 3

12“:W3W’
a 1 [ 3 ,
s — —my ) A
arn 352, {,=§J ( 1) A
m: m 2 m?
s (s_ g 2;) F(s,0,m) + 25 - ‘sf}

3
+
+
3
I~“°
——
3
P
{
3
Y
~

2 )2
+ [sévz - %‘: (Tz + 7w + 10s — 2(—2—-—3)—)
s

a2
1 (w+ 2 — % - (—z—,)"”—)—)] F(s, Mz, Mw)

ayr

2 2 X
+ w (—41{: -~ 10s + —E)—) F(S,O,ﬂf;{’)

h_ 2
+ (51!’—-h+f—(——'—1‘i)F(s,MH,ﬂfw)
2 2s

(o2 % I o)

Y (72 + Tw 4+ 10s — 4(z — w)) — sy = +
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‘e

(2 + s) h o h
— — j — —
3u 12/ h—w gw

2 32 1/5 z 32
—%‘K(?z—l-?w-{-—g—s)+s%vz+g(§s+4w—~z—-h)——%y—(4w+—3—)} .

The function F can be defined via the integral representation

m? + m? ™My
Flomom) = -1+ B g »
1 2 2 _ 2 2 _
a dz log zt —z(s + m;llmTz) + my — e

F has the property F(0,my,ms) = 0. The analytical form can be found in [45]. In this place
we want to give only some simpler expressions for special situations:

One mass zero: )

™m $ .
F(s,0,bm) =1+ (-——*1) log (1-- E-—ze)

&

Small s (<€ mi,m}):

F 4, M2) = it 3

(ssﬂ']l,mz) (mg _ 'm% 2 m% — mg Og m%
s
F(s,m,m) = W_i_
Large s (3> m?,m2):
{s]  ,mitmi mi

F m = 1-lo + log — trB(s) +---

(3,1’?11, 2) g R m% — m% gmg + ( )
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Appendix C

Vertex form factors

In this appendix we list the non-QED parts of the renormalized form factors for the electro-
magnetic and the neutral current vertex of the known fermions (on-shell fermions). The form
factors given here deviate from those of ref. [45] in a threefold respect:

(1) They include the finite wave function renormalization of the external fermions and are
therefore not irreducible;

(ii) they contain the complete m, mass dependence when the top quark appears in internal
lines as well as the unphysical Higgs bosons;

' (iii) the QED part (virtual photon contribution) has been removed. It is instead incorpo-

rated in the QED corrections of section 6.5.

C.1 Weak neutral current vertex

For momentum transfer 5 = k* large compared to m} the finite result for the Zff vertex
after renormalization can be summarized in terms of vector and axial vector form factors:

P21 = fevu(vs — agys) + temu (F/(s) — wFy (s)) (C1)
The explicit expressions for the form factors read for
neutrinos:
FZ¥ = FZ {C.2)
o 1 1 ‘ 253, 3ck,
= — Ax(s, M -——-—A M ——A M
41 dew sw [4cfvs%,,- 2, Mz) + 2s%, (s, Mw) + (s, Mw)
and for the charged fermions:
a
FZ = o [07(02 + 3a2)As(s, Mz) + Fj] (C.3)
FY' = - [ag(8v] + a)Aals, M) + F{|
with
1 3611
L A Mw) — — A M C.4
Fy Y. 2(s, Mw) 3(s, Mw) (C.4)
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1 3
FY = ——ﬂAz(s M)+ % Ay(s, Mw)
8s3 cw 4ty
1—532 3CW
Ff = =53 W Ag(s, Mw) — - Asfs, M
3 Y- 2s, Mw ) ey 3(s, Myw ) .

Note that (C.4) is not valid for the (¢,5) doublet.
The functions A;, A; have the form ! (w = M?/s with M = Mz or My, s > 0)

-

Ag(s, M) = —é — 2w — (2w + 3)log(w) (C.5)

+2(1 + w)? [ L +“’) Liz(—é)J

log(w)log{
. [3 + 2w — 2(w + 1)’ log (HTW)]

5 2w
Ax(s, M) = 6~ ?u + (2w + 1} v4w — 1 arctan T

8 1 2
— Zw(w + 2 tan ——— | .
3 Hw ) (arc an T 1)

The situation for the b-quark vertex is more complicated due to the presence of the top
quark and the charged Goldstone Higgs bosons in virtual states. The general form (C.1)
and (C.3) is also valid for f = b; only the left-handed contribution F} has to be calculated
separately. »

F? is the sum of the top dependent vertex diagrams ( see Figure 3.6) and the counter
term in (A.8) (without the Z contribution to the b quark self energy). The result is

FE =3 F 4 fo — 1 L szin (C.6)
= dswew ‘
where \
i‘n m -
621" = 5o~ 2+ 3) (Balmdyme, M) +mi By, me, M) (€7
“’

For the function By see equatxon (C.16); By denotes the derivative

Bi(s,mq,my) = aB;(s,m;,mg).

The F; in (C.6) are the expressions corresponding to the diagrams in Figure 3.6 after sub-
tracting those (divergent) parts which are cancelled by the vertex counter term after renor-
 malization:

wta (3 M
F = 1’;*;“’ {—§+z1og~—“’—+40(s e, e M) (C.8)
Snr

—2s [02 s,my,my, My ) — Cy (s,m,:,m,,Mw)]
+4s5 CH(s,my,mq, My ) — 25 Col5,my, my, Mw)}
vy — a

t 2
i 2my Co(s,my, my, Mw),
w

1Az only for s < 4MZ



3
F. = _46’:’ {—_—+1,'ZC§(S,MW,Mw,mt)

25 [C}(s, My, My ,m.) — C; (s, My, My, )]
+4s C (s, Mw , My, m,)}

v—a (my \? [ 3 My .
B = 452, (M'w) {—"Z'HOg m + 2C (s, me,my, Myy)

—s O (s,muymy, M) ~ C7 (s,my,my, Myy)| }

vy + Gy ( m,
Myw

2
2
1o ) my Co(s, my, my, My ),
Sw

2 L2 e V2 1

SS%VCW ﬂc{w 4
my
F; = F, = ~ T o Cols, My, My, me).
SWwew

The functions €Y', €y, €5, CF are specified in terms of the scalar 3-point integral Co and
the finite parts of the 2-point integrals By, B; defined below in sect. C.3:

?

M _
(4mj — 3) CH(s, M, M, M') = log — a7 Bo(s, M, M) ~ Bo(m{, M, M) (C.9)
‘ +(M’2 - Mz + nlg)CO(SaM,M,M’)ﬁ

Co(s, M, M, M") = i [ ol s M,J\.if) + 1]
1
+5(M2 M? —mlyCi(s, M, M, M")
1
+2M’2 Cols, M, M, M"),
1
(4m} — s} CH(s, M, M, M) = 5JE-:»’O(S M,M)+ = [Bl(mb,M’ M) - :
(M - M+ m,,) CH(s,M,M,M')
—Cy(s, M, M, M'),
17+ 1
Cy(s,M,M,M') = -3 [Bl(mf,M’,M) - Z] — C{s, M, M, M").
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C.2 Electromagnetic vertex

The renormalized v f f vertex can be written in a way similar to the Z f f vertex in (C.1} (the
global — sign is due to our conventions in section 2.3):

D = —ieQsy — iew (F)/(s) — 1 Fi(s)) (C.10)
with the electromagnetic form factors
. o '
o= y |@s(vF + a})Aa(s, Mz) + G (C.11)

8
F}j = 4—7[_ [Qf vaa.f Az(S,Mz) + G{,]

and
3
Gy = ~— As(s,Mw) (C.12)
GF = ——2 Ag(s, M)+ — As(s, My)
L = 123%‘, 208, Mw 4S%~v 3l 8, Mw
1 3
Gt = A My — Mw).
L GS%V 2(3’ n ) 45%" A3(5! W)

Again the form (C.12) is not valid for the (¢,5) doublet.

For the vbb vertex we have to use the following G4, calculated in analogy to C.1:

g
1 .
Gy =Y G - gfsz;" (C.13)
i=b
with 6§27 from (C.7) and
1 3 My
Gy = ) {——+2Iog . + 4 C3(s, My, M) (C.14)
GS“r 2 T

—2s [C;(s,mt,m,,Mw) - C;(s,mt,mt,Mw)]
+4s C (s, my, my, Mw ) — 25 Cols,my, my, My)
—-me Co(s,mt,m,,Mw)},
G, = ——-1-2- {—3 +12CN s, Mw, My, m,)
45, 2
=25 [C5 (s, My, Miy,my) — C5 (s, My, My, m,)]
+4s Cf (s, My, My, m,)}

IE
1 my 2 3 Afw
d 653, \ M 1 + log o + 2C(s,my,my, Mw)

—s [C;’(s,m,,m,,ﬂlw) - C{(s,mt,m,,Mw)]

—m} Co(s,my,m,. ﬂ’fw)} ,
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1 my \? 1
S = =i (igy) {ma+ 268w 4w m)
m?
4sh,

Gy = @, =

Co(s, Mw, My ,m,).

The C functions are the same as in (C.9)

C.3 Two- and three-point integrals
Finally we have to specify the functions By, By and C,.

By is the finite part of the scalar 2-point integral By

dPr 1
(2m)P (k* — M?) ((q + k)* — M"?)

1

1672

Bo(¢*, M, M') = u*P [
and is defined as 3
Bo(S,M, M’) = “Z-(AM “+ AM') + Bo(S,M, M’)

with A defined in (B.1). In terms of the function F in (B.6) it is given by

2 12
M-+ M2 e ML pgs, M, My,

Bg(s,ﬂf, .M') =1 - m logHJ—;

The function By is related to F in the following way:

1 M M M?-M*-s

— ' !
B]_(S,M,ﬂ[):—z—l-mflogﬂ‘,+ %s F(S,AI,M).
It is the finite part of the vector 2-point integral
dPk k,

? 2 t A=D1
toms 2 PO MM =070 Gy (=307 (g + %7 -~ M%)

defined with the following subtraction:

1 1 _
By (s, M,M") = _E(AM' + 5) + By(s, M, M’).

The scalar 3-point integral for equal external masses my

d*k 1

i

Cols, M, M, M") :/

ter? (2m)* (k2 — M) ((k - pg)? — M?) ((k + pp)? - A?)

where

—
l
3
e
I
3
-t
e, b3

s={(pr+ps)’. P
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is equivalent to the parameter integral

1 v -1
Co(s,M,M,M'):-jt; dy/ dx (a.y2+b:c2+cmy+dy+e:c+f)
0

with
a=m:, b=-c=s, d=M>—M?—-m? =0, = M" — .
i !

Applying the method of 't Hooft and Veltman {103] it can expressed in terms of dilogarithms

1 2 —
3 S(-1y {Li2 ( i ) ~ Li, ( m -1 )} (C.17)
¢+ 2ab =5 i Ty = Yi; T — Y

(1 1o 4712.})
8

d+ 2a + co
¢+ 2ab
d
(1 - a)(c + 20b)°
d
afc + 2ab)’

Cols, M, M, M’} =

together with

[N

o =

and.

T =

Tog =

Ty =

—cE\Je? — dbla + d + §)
2b ’
—d 4 \/d? — 4f(a+b+c)
2a '

Yij —

Yoj = Y35 =
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Appendix D

Box functions

The box diagram with exchange of two massive bosons

e —+——-1M/\</W\4——r~—- §

L

v

can be written with help of the notation

Yula — by5) @ v*(c — dvs) = Bevula — bys)ue - Byv*(c — dys)vy
in the following way for V = Z:

62

. (84
i {’ru(ﬂf + & — 20eae7s) ® 14(v] + o) — 2vgayys) - o= I(s: 1, M) (D.1)

&
(vl + af — 20e0075) ® ¥Y1s(v] + af — 2vsass) - o Ll Mz)} :

For V = W the corresponding expression is:
e 1

34
2 _S—(_Z'g‘j'}'y(l - '75) ®’Y‘u(1 - 75) ) Er' [I(SFtﬁ MW) + IS(sat-; -A’IW)] . (DZ)

For f # b, when the fermion masses can be neglected, the functions I and I5 have a compact
analytical form which has been calculated by Denner [104]:

s [s+2t+2M? t ? "
I(s,t, M) = Li (1 —)——-—1 (% D.3
s(s, 8, M) s+f{ 2(s + 1) [" + 8 ( ¥s (D-3)

1. t 2 — Y n
e\ ) T T og_( yz)

2¢ — 4M?t 2M2/t — 2M1
s+ 4M?t/s + /t—2A /3-J(s,t,M) ,
2(s + t)(zy — z1)
2 .
I(s,t, M} = Ii(s,t,M) + 2log’ (—?ﬂ) + ~J(s,t, M),
Y2 T — T
J(s, 6, M) = Lip—t— 4 Lip— 2 — Li,— 2 — Li,—

&£y — T2 ry — Y2 T — 4 T2 — Yo
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with

L12 =

402
Mz = (1 +4/1 ) .
2 s

]
|
—.
ek
H_
—
[y
i
S
MR R
™
———
b=t
+
B
S
R

| -

e -—0——1-’\/\/\/\;:\/\’-———- b
W..
¥ Jl{:
et _4--n/\zvv3vv—--—-— ;
wi‘

has to be taken into account. In this case we have to replace the expression I + I in {D.2}
by a more complicated term, which can be written in form of a parameter integral:

I(s,t, M) + I(s,t, M) = -/O' d:r[oldy/:dzz(l _2) (% L4 —,””;’i(l "y?)“) (D.4)

with
L =—(1-z2(l —z)s — 22y(1 — gy}t + (1 — 2)M? + z(1 - y)m?.
For our concrete calculations this integral has been evaluated numerically. We do not give

the complicated analytical expression in this place but refer to the systematic treatment of
the heavy fermion case in our forthcoming article [88].
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